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ABSTRACT

We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body
registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D
features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method
combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an
automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences
and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach
for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of
the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and
multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection,
tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by
a medical expert with an approach that measures the distance between a set of selected corresponding points
consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of
the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential
medical applications and possibilities for integration into a non-rigid registration framework.
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1. INTRODUCTION

In medical image processing, registration is an important technique that computes a spatial mapping between two
or more images. It can be used in a variety of applications. The fundamental and challenging requirement for the
alignment transform is to overlay corresponding image content optimally. State-of-the-art registration techniques
and comparisons of algorithms within this field of research can be found in several comprehensive surveys.1–4

Registration has become a crucial task in a variety of medical imaging applications, for example, the creation
of atlases or normative databases are suitable for image or object analyses, intra- or inter-patient studies let
physicians gain knowledge of the development of diseases or time based follow-up studies during cancer therapy.
Using different imaging systems for the same subject can help to obtain more information but requires multi-
modality registration techniques. Adding complementary information is facilitated by various medical imaging
systems that can be coarsely divided into two major categories: anatomical imaging to extract morphological
information (e.g. X-Ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US))
and functional imaging that allows to visualize information on the metabolism of the underlying anatomy (e.g.
Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), functional
MRI (fMRI)). In multi-modality image registration, the combination of different types of images is advantageous
for the physician. For instance, CT images provide good spatial resolution, whereas PET images depict the
functionality of the underlying tissue. The lack of functional information in the CT images can therefore be
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compensated by a fusion with according PET images that on their part lack spatial resolution. The presented
work concentrates on a registration approach that automatically extracts 3D regions, retrieves corresponding
pairs and establishes a rigid transform in order to visualize the fused results for a medical application.

2. RELATED WORK

The basis for this work is given by several articles that introduce saliency in the context of image processing. We
use it to extract distinct image regions from a reference and a template image for establishing a 3D transform.
In 1998, Gilles introduced the idea of using a measure for image saliency based on the local complexity of
intensities.5 Kadir and Brady reused that idea and developed a combined approach of image saliency, scale
detection and content description.6 They presented a salient feature region extraction algorithm together with
some example applications, e.g. content tracking across subsequent video frames. In subsequent work on this
subject, the algorithm has been analysed in greater detail and an affine invariant salient feature description was
published.7, 8 Saliency operators have also been successfully applied to estimate the geometrical relationship
between stereo images and to recover 3D information.9, 10

Various common registration approaches are based exclusively on either extrinsic, intrinsic features or voxel
intensities. Hybrid techniques make use of a combination of multiple such properties instead and may be preferred
especially for the registration of images from modalities, where image intensity or geometric information alone
does not provide an accurate measurement basis. For instance, mutual information paired with an additional
information channel that consists of region labelling information may improve the registration results of MR and
PET images.11 Modersitzki and Fischer presented a non-rigid hybrid image registration approach that is based
on both landmark and intensity information.12 Lately in 2005, a semi-automatic hybrid approach was introduced
at the SPIE Medical Imaging that uses a combined landmark and voxel intensity based registration algorithm
that produces better results, especially for low-contrast abdominal regions in CT images.13 Hybrid registration
techniques are known, for instance, in blood plasma gel electrophoresis or protein imaging.14, 15 Huang et al.16

were among the first to use a salient region feature approach for a 2D similarity transform registration and to
show its applicability on MR, retinal and aerial images. Geometric features have also been successfully integrated
into deformable registration frameworks.17 We propose an expansion of 2D salient region features to 3D and
show their applicability for mono- and multi-modality medical image registration.

3. METHODS

The following section provides an overview of the methods that are incorporated in the proposed algorithm.
It is described how a saliency description can be used to automatically extract features from 3D images. In
order to get the most descriptive salient region features, a local maximum search based on a region growing
algorithm is performed on the saliency values that are attained for each voxel. We present a straight forward and
efficient solution to the problem of feature clustering that makes use of a kD-tree structure. In order to derive a
transform between feature sets, the features themselves are considered as points in 3D. This reduces the problem
to registering two point clouds, which can be achieved efficiently with the iterative closest point algorithm (ICP).
The hybrid aspect of the proposed algorithm is included by using a form of normalized mutual information for
the search of correspondences between features from different sets. As the set of feature pairs may still contain
outliers, expectation maximization (EM) type optimization is used to extract the subset of pairs that yields an
optimal image transform. Outliers in this context are region feature pairs that actually match neither in content
nor spatial position.

3.1. Salient Region Feature Extraction

One of the key principles of salient region features is the expression of a high amount of local unpredictability
or signal complexity with respect to a certain scale. In our case, scale refers to the radius of a spherical region
around a voxel. The approach weights points of interest on basis of Shannon’s entropy for circular regions
of different scales.6 We assume that voxels from distinct corresponding anatomical or functional structures
have similar saliency values. This indeed might not be the case if the intensity values in images from different
modalities are too distinct. We observed that the positions of the local saliency maxima for the SPECT and PET
images may often be locally translated within corresponding structures of interest, compared to the according



CT images. A local rigid registration step includes the sub-pixel accurate adaption of the region centers and
addresses this problem. This moves the region to the corresponding location based on local intensity correlations
but does not deform the image content. By introducing this step, the basic assumption of similar saliency values
for corresponding features mentioned earlier is valid for multi-modality images as well. The local property of
the saliency description provides a major benefit to image registration: salient region features that correspond
between different images are invariant to gross spatial transforms, even if the images do not overlap. The saliency
is defined for an image intensity range D as follows:

AD(sp,x) = HD(sp,x) · WD(sp,x) (1)

where HD denotes the entropy with respect to the image intensity values i ∈ D within a spherical neighborhood
region Rs around a voxel position x with scale s:

HD(s,x) = −

∫

Rs

p(i, s,x) log2 p(i, s,x) di (2)

Here, p(i, s,x) is the probability density function (PDF) of the descriptor i for the image intensity values
contained in Rs. WD(s,x) is a measure for the similarity between PDFs with respect to the scale. It grows with
increasing dissimilarity of the PDFs:
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The scale sp that results in a local peak of HD at x is given by:
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(4)

After solving eq. 1 for each voxel, two temporary result images of the same size as the input image have to be
analysed: one that contains the saliency values and a scale image that contains the values of eq. 4. The locally
optimal and therefore most descriptive salient region points are extracted with a region-growing search approach
from the saliency image. For a search space reduction, a global saliency threshold δ is used as a lower limit.
An empirical setting to half the average saliency (δ = 1

2
A) in the conducted experiments produced good results

for the elimination of insignificant regions. An efficient local region growing approach determines the positions
of local saliency maxima, which results in a list of voxel positions that are ordered according to their saliency
values. One effect of the original salient feature extraction algorithm is the clustering of local maxima, which
arises, for instance, if a global threshold is applied and the features are extracted only according to descending
saliency values (see figure 1(a)). Feature clustering may have a negative impact on the accuracy of a subsequent
registration. For example, in multi-modality feature based registration, one image may contain a dominant
salient feature cluster in the upper right part, the other in the lower left part of the image but with a different
underlying anatomical content due to different intensity values and local variations. This may be the case in
PET-CT or SPECT-CT image pairs. A minimization of the mean square error (MSE) between the feature sets
using ICP tends to align mainly the clusters. Obviously in that case, the resulting transform is biased towards
the clusters, whereas if the clustering is removed, the features are spread more uniformly across various salient
structures in the images (e.g. seen in figure 1(b)).

A nearest point algorithm based on a kD-tree18–20 structuring of the region features is used to solve the
clustering problem in a fast and simple manner. The kD-tree is created with the indices of the region centers
of the extracted local saliency maxima as leaves. The K nearest neighbors of a specific feature f can then be
efficiently found by a tree query on the region center positions, which returns the distance between f and the
features in the tree. The scale parameter can be used as a minimal distance requirement: all returned features
with equal or less distance than the scale of the queried feature f and with lower saliency are removed from the
feature set. This restriction can be applied to the entire set in order to remove clustered regions. If a specific
size of the result set is required, the list may be padded with features of lower saliency that fulfill the distance
criterion. A feature is kept in the set, if its center is not situated within the region of a feature with a higher
saliency value. The resulting set of 3D salient region features is therefore distributed more uniformly, which
provides a better conditioned initial set for the subsequent feature correspondence search. Examples of resulting
sets with the most salient regions are given in figures 1(a) – 1(e).
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Figure 1. The set of salient feature regions before 1(a) and after 1(b) the proposed removal of the clustering. The
most significant 3D salient region features are visualized after the extraction from a CT 1(c), a PET 1(d) and an MR
image 1(e). The volumes are windowed with a specific transfer function to visualize the location of the features in 3D,
whereas the extraction itself has been performed on the entire intensity range.

3.2. Feature Correspondence Search

In the main steps of the approach, an initial ICP algorithm aligns the entire feature sets with a locally minimal
MSE. Feature pairs with a large spatial distance apart are unlikely to correspond and can be removed from the
set of hypothesized correspondences. This drastically reduces the search space for joint correspondences. Let Ir

be the reference and It the template image, the initial search step (also referred to as region component matching
in literature16) estimates a set of hypothesized correspondences between features of the two images. Let Nr be
the number of features extracted from Ir and Nt the number of features from It. The set of all hypothesized
feature correspondences is C = {ci,j} with i ∈ [1, Nr], j ∈ [1, Nt], |C| = Nr ·Nt and with ci,j = (fi, fj) being the
pair of the features fi in Ir and fj in It.

The parameter set Θ defines the transform T that aligns the two images and can be estimated based on the
translation, scale and rotation invariance properties between fi and fj . The translational part between fi and

fj can directly be estimated by: Θ̂T
i,j = pi − pj , with pi and pj being the center positions of the i-th reference

and j-th template features in physical space. The scale invariance in our case is not needed, as for 3D medical
images, the voxel dimensions are provided by the DICOM (Digital Imaging and Communications in Medicine)
header. To achieve rotation invariance, the rotation parameters are estimated by a local rigid body registration
of the 3D salient feature regions based on their intensity values. The optimization is restricted to the rotational
parameter subspace ΘR and driven by an intensity similarity measure. Here we use the entropy correlation
coefficient (ECC, see eq. 5), which is a specific form of normalized mutual information.16, 21, 22 Besides the
improved robustness to the overlap domain, it provides some additional advantageous properties. Like mutual
information, increasing values indicate an increasing dependency between the images and vice versa:

ECC(A,B) = 2−
2H(A,B)

H(A) + H(B)
(5)

The rotation invariance can therefore be formulated as an optimization problem for ΘR:

Θ̂R
i,j = argmax

ΘR

ECC(fi, f
T
ΘR

j ) (6)

The local similarity Llocal of two feature regions with respect to Θ̂i,j = {Θ̂T
i,j , Θ̂

R
i,j} is used as a measure for

the quality of a hypothesized correspondence ci,j , where the samples for the evaluation of the ECC are drawn
from Rs with s = max{si, sj}:

Llocal(ci,j) = ECC(fi, f
T
Θ̂i,j

j ) (7)



Huang et al. suggest to order the set C according to Llocal and to take M feature pairs from the top of the
ordered set.16 A global image similarity measure Lglobal is used to estimate the quality of each of the M pairs:

Lglobal(ci,j) = ECC(Ir, I
T
Θ̂i,j

t ) (8)

where Lglobal is evaluated on the entire overlap domain of the two images instead of just the local feature
regions. Before continuing with the sub-pixel accurate registration on basis of this correspondence subset, the M
pairs are reordered according to descending values of Lglobal. One problem of this approach is the large number
of false matches among the M pairs, which consequently leads to a small amount of good feature correspondences
and more outliers in the resulting set after convergence. This is the case for the top row of figure 2. In addition,
comparing all features with each other has a high computational complexity as Nr × Nt comparisons have to
be performed, which is not suitable for a 3D approach due to the high computation time. In the following, we
present a slightly different approach.

The correspondence search space can be drastically reduced from combinations of all pairs to combinations
only between locally nearest feature neighbors. The set of neighbors is estimated by the ICP transform between
the reference and template region feature sets (regarding the sets as point clouds of the region center positions).
The result is used to transform all template features and store them into a new kD-tree. Now, for each salient
feature in the reference image, the approximately nearest neighbors can be determined in a fast search on the
tree. The number Nn of transformed template feature neighbors that are combined with each reference feature
is set to a much smaller value than the entire cardinality of the set (Nn << Nt). This reduces the complexity
to Nr × Nn based on the assumptions that the initial ICP transform is a good approximation of the actual
alignment transform and that features are less likely corresponding if they are a greater distance apart. In our
conducted experiments, a neighborhood size of Nn = 1

10
Nt has been applied successfully to establish an initial

search space for joint correspondences. Furthermore, we order the hypothesized correspondences not by the local
measure Llocal (eq. 7) but by the global one Lglobal (eq. 8) in the first place, which results in far less outliers
in the estimated correspondence set. The second row of figure 2 shows the difference in the top four pairs found
by the proposed method.

3.3. Sub-pixel Accurate Registration

The set of hypothesized correspondences C = {ci1,j1 , . . . , ciM ,jM
} of size M that is computed in the previous

step of the algorithm is used to estimate a transform T between the two images. This transform is not accurate
enough, because its parameters are computed on features that are bound to discrete image grid positions. As
mentioned earlier, some feature pairs are additionally not located at the exact corresponding spatial positions.
The resulting set may therefore contain outliers and inaccuracies that bias the transform in a negative way. In
the following, Θ and C are refined in a sub-pixel accurate iterative process in order to achieve a more accurate
alignment.

The goal of this step consists of the optimization of a joint correspondence set J = {ci1,j1 , ci2,j2 , . . . , cin,jn
},

with J ⊆ C and n ≤ M that contains sub-pixel accurately aligned feature pairs and ideally no outliers. The
elements of the optimized joint correspondence set are used as input for an ICP algorithm in order to compute
a transform that maximizes the global image similarity:

Ĵ = argmax
J

Lglobal(J ) = argmax
J

ECC(Ir, I
TJ

t ) (9)

In order to keep the number of feature pairs low and the registration efficient, an EM-type algorithm is
used with a limited number of iteration steps. A transform TJk

is computed from a gradually refined joint
correspondence set Jk ⊂ J at each iteration. Lglobal is used as a convergence criterion for the refinement
process. The algorithm (illustrated in figure 3) is initialized with a joint correspondence set containing the two
topmost pairs of C: J0 = {ci1,j1 , ci2,j2}. For these initial correspondences, usually the best two from the ordered
set of feature pairs acquired in the previous step can be used.

Compared to the 2D algorithm of Huang et al.,16 all salient region feature centers in the current joint
correspondence set have to be re-adjusted for each iteration step. A reason for this is the subsequent resampling
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Figure 2. The figures show a slice of a CT volume (left part) that has been translated, rotated and overlaid onto
the original slice. A circle represents a salient feature region with a specific scale. The top row shows the four best
hypothesized correspondences after ordering according to Llocal. Only the first pair actually is a true correspondence. In
the second row, the ordering has been performed according to Lglobal and the entire set contained fewer outliers. For the
sake of clarity, only the first four correspondences for each approach are shown.

register feature pairs in J0 with sub-pixel accuracy to refine centers
let J ∗ be the current set of sub-pixel refined feature correspondences

E-Step: ∀ci,j |ci,j ∈ C ∧ ci,j /∈ J ∗

compute Lglobal(J
∗ ∪ ci,j)

M-Step: cî,ĵ = maxci,j
Lglobal(J

∗ ∪ ci,j)

IF Lglobal(J
∗ ∪ ci,j) ≤ Lglobal(J

∗)

THEN Return: transform TJ ∗

ELSE register feature pair cî,ĵ with sub-pixel accuracy to refine centers

add the refined pair c∗
î,ĵ

to J ∗:

J ∗ ← J ∗ ∪ c∗
î,ĵ

recompute TJ ∗

UNTIL convergence criterion is met

Figure 3. The EM-type algorithm for the optimization of both the joint correspondence set and the registration transform.

of the align image during the registration process, which results in subtle intensity changes within the feature
regions. The re-adjustment is necessary for that method in order to maintain a high degree of accuracy. Unlike
the 2D approach, the proposed 3D algorithm 3 does not need a subsequent resampling and is therefore more
efficient. Once a region feature pair has been locally registered with sub-pixel accuracy, following registrations
of this specific pair do not enhance the quality of this correspondence and are neglected. Computation time can
therefore be saved by only refining the iteratively added feature pair locations during each iteration step.

4. RESULTS

The proposed algorithm has been tested on various intra-patient 3D medical images. The measurements have
been performed on 11 PET-CT volume pairs that were acquired at different times, 3 CT volumes at different
stages of the treatment, and 10 SPECT-CT volume pairs from a hybrid scanner (Siemens Symbia). The algorithm



had to compete with different modalities, noise, varying fields of view and image intensity artefacts in some of the
PET-CT pairs, where some slices had different intensity scales that were not corrected during the import. The
PET-CT and CT-CT registration quality was assessed by a medical expert by measuring the distances between
several points of interest: lung right and left apex, cardiac apex, liver round end, left and right upper and left and
right lower renal ends, see tables 1 and 2. As the 10 SPECT-CT images have been acquired by a state-of-the-art
hybrid scanner, the physician manually de-registered the SPECT images rigidly with variations in x, y and
z-direction from 10 to 50 mm and rotations around each axis ranging from 5 to 60 degrees. After registration,
several distinguishable landmarks have been chosen by the medical expert on the CT and the SPECT images.
The distances between the anatomical structure and the information in the SPECT are shown in table 3.

PET-CT Distances x y z

Lung right apex −0.54± 0.70 0.41± 0.92 −1.21± 1.84
Lung left apex 0.06± 0.38 −0.11± 0.68 −1.29± 2.18
Cardiac apex 0.88± 0.80 1.34± 0.60 0.48± 1.86
Liver round end 0.47± 0.77 0.84± 0.72 1.06± 1.83
Upper right renal end −0.65± 0.78 −0.04± 0.80 0.50± 2.74
Upper left renal end 0.23± 0.74 0.01± 0.77 0.35± 1.75
Lower right renal end 0.12± 0.46 0.47± 1.30 1.92± 2.71
Lower left renal end −0.47± 0.77 0.86± 1.50 1.61± 1.71

Table 1. Measured distances after registration for the PET-CT volume pairs in x, y and z-direction given in cm along
with the standard deviation.

CT-CT Distances x y z

Lung right apex −0.28± 0.39 0.16± 0.13 −0.16± 0.18
Lung left apex −0.25± 0.41 0.21± 0.24 −0.06± 0.14
Cardiac apex −0.20± 0.51 0.52± 0.41 0.22± 0.31
Liver round end 0.11± 0.29 0.00± 0.73 0.37± 0.93
Upper right renal end −0.30± 0.42 −0.12± 0.25 0.21± 1.24
Upper left renal end 0.01± 0.33 0.28± 0.44 0.15± 0.67
Lower right renal end −0.5± 0.46 0.02± 0.87 0.89± 0.74
Lower left renal end 0.01± 0.23 −0.14± 0.40 0.46± 0.44

Table 2. The overall measured distances after registration for the CT-CT volume pairs in x, y and z-direction given in
cm along with the standard deviation.

SPECT-CT Distances x y z

Spine 0.07± 0.30 0.09± 0.23 −0.04± 0.22
Kidneys 0.01± 0.26 0.13± 0.50 0.03± 0.21
Others 0.04± 0.06 0.27± 0.37 0.13± 0.22

Table 3. The overall measured distances after registration for the SPECT-CT volume pairs in x, y and z-direction given
in cm along with the standard deviation.

All experiments have been executed on real medical images that sometimes contained a high amount of noise
or artefacts due to variations of the intensity scaling between the slices. We did not address these issues prior
to the registration in order to test the algorithm with such data. Three slices taken from registration results
are depicted in figure 4. The results were assessed by a medical expert using dedicated visualization software
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Figure 4. Slices from fused registered result images. The images show the result of the proposed algorithm for a PET-
CT 4(a), a CT-CT with intensity artefacts 4(b) and a SPECT-CT image pair 4(c). Although the latter CT image
was acquired with a limited field of view and contains a high amount of noise, the proposed registration resulted in an
acceptable accuracy. The remaining mis-registration may be addressed with a non-rigid transform model in future work.

(InSpace∗) for the visualization and the measurements. For the evaluation, the medical expert had the choice
between using centroids of 3D regions of interest and direct landmark to landmark positions. This task was
supported by the integration of fusion visualization into the rendering software together with some additional
measurement tools. In the PET-CT case, a higher standard deviation in the z-direction is evident. A reason
for this may result from the differences between the acquisition models. The CT image shows one respiration
snapshot, whereas the PET image is acquired over several respiration cycles and depicts more or less an average
respiratory motion. Due to this motion of the diaphragm, some organs in the abdominal region are lifted and
lowered, which causes the greater deviation seen in the data samples. Right now, the algorithm models only rigid
transforms and does not cover such local deformations. For the CT-CT data, this effect is no longer dominating
as the patient ideally inhales similarly in both acquisitions. The SPECT-CT data matches inherently well and
a user-defined rigid transformation on the SPECT does not introduce local deformations. Therefore, a good
registration result for these cases may well be expected.

In all the results, a specific measurement error is introduced because the medical expert has to specify the
location manually by selecting the locations in the various slice views. In conducted experiments on this type
of evaluation, however, the mean difference of specifying distances of points of interests in several measurement
steps (both inter- and intra-observer) did not exceed 3 mm.23

5. SUMMARY

The proposed algorithm demonstrates that salient region features are well suited not only for 2D, but also for 3D
registration purposes. Valuable information about corresponding regions is obtained due to a robust optimization
of a joint correspondence set. This optimization is based not only on the local intensity similarity between the
feature regions based on the entropy cross correlation. We use the information gained from a global measure
as well in order to remove outliers and order the correspondences more efficiently. Regarding the well-ordered
and sub-pixel accurate salient feature correspondences as a set of points, the ICP algorithm has been used in
order to compute the final registration transform. The accuracy of the registration has been evaluated by a
medical expert and our experiments have shown that the registration is robust to the amount of overlap between
the images. Varying coordinate systems between CT, SPECT and PET acquisition system may even lead to no
initial overlap in some cases. The proposed algorithm does not rely on any form of pre-translation or pre-rotation
and uses only the ICP transform between the salient feature regions as initialization for the optimization. The

∗A commercial clinical 3D visualization package developed jointly by HipGraphics and Siemens



algorithm has been integrated into a clinical application prototype for robust initial registration between images
of various modalities. Local mis-registrations may still occur due to the rigid nature of the transform model.

The extraction and the search for correspondences between salient features are the most time consuming
aspect of the algorithm. Currently, the whole registration of a 512× 512× 512 volume requires up to 15 minutes
(including pre-processing) and solely intensity based approaches may solve the task of rigid registration in a few
seconds. Nonetheless, there is a high potential for improvement concerning the runtime of the algorithm. The
feature extraction that is currently the most computational demanding task is well suited for parallelization. In
addition, the computation of the local correspondences and the ordering of the salient feature region pairs may be
significantly improved by a faster similarity measure computation and optimization. Regarding the search space
reduction for the joint correspondences, the nearest neighbor criterion for the pair combinations may not always
be the best guess. It has to be investigated whether the scale as an additional hint for the correspondence may
be exploited as well. Our future work will therefore concentrate on improving the performance and including
the information about the feature correspondences into a non-rigid registration framework. Commonly, a rigid
registration is performed before a non-rigid one as an initialization step. Using our approach, the resulting robust
local correspondences between intensity regions of the two images can be directly used as additional information.
This might for instance be utilized in form of an additional energy term within a common non-rigid registration
functional.
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