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Abstract— In this paper, a novel calibration method for C-arm
cone-beam (CB) scanners is presented which allows the calibration
of the circle-plus-arc trajectory. The circle-plus-arc trajectory
has been investigated recently for exact image reconstruction
and is especially well suited for C-arm systems. The main idea
is the separation of the trajectory into two segments (circle
segment and arc segment) which are calibrated independently.
For each trajectory segment, a calibration phantom is placed
in an optimal way. The calibration results are then combined
by computing the transformation the phantom experienced in-
between the independent runs. This combination can be done in
a postprocessing step by using the Singular Value Decomposition
(SVD). The method works for any calibration procedure in which
the phantom has a favored orientation with respect to a trajectory
segment. Results are presented for both, simulated as well as real
data acquired with a Siemens AXIOM Artis C-arm system.

I. INTRODUCTION

Due to their open design, C-arm systems unlike computed

tomography (CT) systems are not capable of acquiring projec-

tions along an ideal trajectory [1]. These deviations have to be

determined by a calibration procedure prior to image recon-

struction in order to avoid severe reconstruction artifacts [2],

[3]. Fortunately, from scan to scan, the C-arm deviates almost

in the same way from the ideal trajectory, so that the calibration

can be done off-line with updating only needed about once per

year in clinical environments. The term calibration here refers

to the estimation of all parameters which completely describe

the geometry of the CB data acquisition system (Section II-

A). Various calibration methods have been suggested in the

literature (e.g. [1], [2], [4]). For C-arm CT, the high-resolution

requirements demand a robust calibration method. Such a

method was suggested in [1] for a circular trajectory and has

been successfully applied to calibrate numerous routinely-used

C-arm systems.

This work presents a calibration procedure for the circle-

plus-arc trajectory that builds on the robustness of the method in

[1]. This work is motivated by the recent development of exact

reconstruction algorithms for a circle-plus-arc data acquisition

[5], [6]. Our main idea for calibration is the separation of the

trajectory into two segments (circle segment and arc segment)

which are calibrated independently. From there we proceed in

two major steps: (i) independent calibration of the circle and

S. Hoppe and J. Hornegger are with the Institute of Pattern Recognition
(LME), University of Erlangen-Nuremberg, Erlangen, Germany.

F. Noo and F. Dennerlein are with the Department of Radiology (UCAIR),
University of Utah, Salt Lake City, UT, USA.

G. Lauritsch is with the Siemens AG, Medical Solutions, Forchheim,
Germany.

du

D

dv

u0

v0

a

(u)

(V)

(z)
(y)

(x)

x

x

principal ray

~

~

~

world
coordinate
system

x-ray camera
coordinate
system

detector
coordinate
system

image
coordinate
system

~

~

Fig. 1. A projection matrix describes a mapping of a point x from 3D
world coordinates to 2D image coordinates x̃ and thus contains all geometrical
information about the C-arm device for a given CB projection.

the arc segment where for each calibration run, a calibration

object is placed optimally with respect to the segment under

consideration (Section II-B, II-C) and (ii) combination of the

calibration results by computing the transformation the phan-

tom experienced in-between the independent runs (Section III).

After a brief review of the calibration problem for a circular

trajectory in Section II, the details of our calibration procedure

are exposed in Section III. Experimental results are given in

Section IV.

II. BACKGROUND

A. Scanner Geometry

In C-arm CT, the scanner geometry is usually described

by assigning to each measurement position one projection

matrix P that includes all geometrical information about the

measurement. Using homogeneous coordinates, P appears as

a matrix of size 3 × 4 that maps any point x expressed in the

3D world coordinate system to a point x̃ expressed in the 2D

detector coordinate system according to the formula

x̃ = Px. (1)

This mapping can be decomposed in three successive steps, see

Figure 1: (i) transformation of the point from world coordinates

to x-ray camera coordinates (Euclidian transformation), (ii)

projection of the point onto the detector plane where it is

represented by detector coordinates (central projection), (iii)



Fig. 2. The calibration phantom contains 108 steel spheres. The big spheres
constitute a logical one and the small spheres constitute a logical zero.

transformation of the point to image (pixel) coordinates (affine

transformation):

P =
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(2)

In this decomposition, R is a 3 × 3 rotation matrix giving the

detector orientation, a is a 3 × 1 vector describing the x-ray

source position in the world coordinate system [7], D is the

focus-to-detector distance, du is the pixel width, dv is the pixel

height, and s is known as the ”skew” parameter because a

value of s other than zero amounts to a device with a sheared

detector pixel grid. Also, (ũ0, ṽ0)
T are the coordinates of the

orthogonal projection of the source position onto the detector

plane. These coordinates are in the image coordinate system,

the origin (0, 0)T of which is at the lower left corner of the

image.

B. Calibration Phantom

A CB projection of the calibration phantom at a given

source-detector position typically allows the determination of

the projection matrix P for this position (see also Section II-

C). The geometrical shape of the calibration phantom is exactly

known in the world coordinate system. The world coordinate

system is attached to the phantom. Often, the phantom consists

of various spheres of high attenuation that are distributed over a

control region of predefined extent and that are enclosed in low

attenuation base material. In this work, we use a spiral phantom.

This phantom was originally designed to calibrate a trajectory

consisting of a circle or partial circle for subsequent Feldkamp

reconstruction. It consists of a cylindrical wall made of plastics

which has almost no x-ray attenuation. Its outer radius is 72 mm

and its inner radius is 62 mm measured from the axis of

rotation. The height of the cylinder is 205.8 mm. Inside the

wall, there are 108 spheres made of noncorrosive steel with two

different radii arranged along a spiral-shaped path. The large

spheres have a diameter of 3.6 mm and the small spheres have

a diameter of 1.6 mm. The sequence of alternating large and

small spheres represents a binary string with an 8 bit encoding,

such that an arbitrary subsequence of length 8 provides enough

information to identify each sphere of the sequence uniquely

within the whole binary string. This encoding is used to

establish unique correspondences between the projection of the

spheres in the image and their 3D counterparts. A sketch of

this phantom is shown in Figure 2.

C. Calibration Algorithm

To calibrate a circular short-scan or full-scan trajectory, the

(spiral) phantom is placed near the iso-center of the scan

with its main symmetry axis (almost) parallel to the rotation

axis. This arrangement guarantees that most spheres are visible

during the scan with only minor overlaps in regions where the

projection of the spiral exhibits high curvature. The calibration

procedure consists of four major steps: (i) localization of the

spheres in the image, (ii) ordering of the located spheres, (iii)

establishment of unique correspondence between the projection

of the spheres in the images and their 3D counterparts by

decoding binary substrings of length 8, and (iv) estimation of

the projection matrix for each source position. The last step is

described in more details in [1]. Once an initial estimate of the

projection matrix is available, additional spheres can be located

in the image by projecting all spheres in the image plane using

the estimated projection matrix, and performing then a neighbor

search around the projection of previously unlocated spheres.

The process is repeated until a prescribed percentage of all

spheres has been found.

III. CALIBRATION OF THE CIRCLE-PLUS-ARC TRAJECTORY

The spiral phantom is well suited to calibrate each segment

of a circle-plus-arc trajectory. However, to do so the phantom

needs to be positioned differently for each segment, so that

the projections of the spheres are arranged along an ”S-curve”

in every CB image acquired along that segment. Otherwise,

when the phantom is observed from oblique viewing directions,

spheres may overlap in the projection and the projected spiral

may cross over itself, so that the task of locating and ordering

the spheres becomes impossible. Indeed, for the circle-plus-arc

trajectory, only the first 11° or so of the arc segment can be

reliably calibrated with the phantom in the position associated

to the circular scan (see Figure 3a). However, the arc length

required to obtain complete data for reconstruction is typically

of 22°.

When placing the phantom differently from one segment

of the trajectory to the other (Figure 3), one encounters the

problem that the projection matrices obtained for the segments

refer to different coordinate systems and have to be registered

such that they refer to a common coordinate system. We have

developed a method to achieve this registration, providing

thereby a way to calibrate the circle-plus-arc trajectory as a

whole, using optimal placement of the phantom for each of its

segments. The registration was done through the determination

of the change in position and orientation applied to the phantom
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Fig. 3. The calibration setup for the circle-plus-arc trajectory for (a) the circle
and (b) the arc segment is shown. Here, the phantom placement to calibrate
the arc segment differs from that of the circle segment by a 90 degree rotation.

from calibration of the first segment to the next one, using

information provided by so called ”connection points” (CPs).

The term connection point refers to any source position for

which two projection matrices can be obtained – one using

the non-rotated phantom and the other one using the rotated

phantom. Assume we have determined the projection matrices

P and P ′ of such a CP (e.g. located on the arc segment) by

applying the calibration procedure of Section II-C. We set out

then the goal of finding the 4× 4 matrix H that maps P ′ onto

P as follows:

P = P ′H. (3)

This matrix H can as well be used to transform all other

projection matrices. In order to compute H , we make use of

the connection between a set of known 3D points xi and their

2D images x̃i related by P

x̃i = Pxi. (4)

In this system of equations, all quantities are known. To

incorporate the unknown matrix H , relation (3) can be used

to replace P by P ′H . This gives

x̃i = P ′Hxi, (5)

which has to be solved for H . By writing the unknown entries

of H row-wise into a 16 × 1 vector h, we can reformulate (5)

to a linear equation of h, such that after some calculation (see

Appendix I for details), the following system of equations is

generated

Aih = 0, (6)

Simulated CB data Real CB data

Radius (R) [mm] 750 750
Focal length (D) [mm] 1200 1200
Pixel width (du) [mm/px] 0.372 0.372
Pixel height (dv) [mm/px] 0.372 0.372

Detector dimension [px2] 1024 × 1024 1024 × 1024
Angular sampling (circle) [°/projection] 0.4 0.4
Angular sampling (arc) [°/projection] 0.4 0.4
Number of projections (circle scan) 538 (214.8°) 538 (214.8°)
Number of projections (arc scan) 50 (19.6°) 50 (19.6°)
Number of valid CPs (arc scan) 28 (10.8°) 31 (12.0°)

TABLE I

where the measurement matrix Ai consists only of known

quantities x̃i, xi, P
′ and is of dimension 2 × 16 because each

tupel (x̃i; xi) provides two linearly independent equations.

Therefore, a theoretical minimum of at least N = 8 Ai’s are

required to determine all 16 entries of h. By stacking all Ai’s

on top of each other, a matrix B of dimension 2N ×16 can be

generated with

Bh = 0, (7)

where

B =








A1

A2

...

AN








, (8)

and N ≥ 8.

A linear solution for h to this over-determined system of

equations is provided by the singular vector corresponding to

the smallest singular value of B by using the SVD (see [7]).

In general, the points x̃i may be chosen arbitrarily as long

as they are well distributed inside the field of view (see also

[1]). Practically, these points can be generated from equation

(4), with the xi’s being the midpoints of the spheres of the

calibration phantom. This gives a matrix B with N=108.

It is a simple matter to extend this procedure to more than one

CP to improve accuracy. From each connection point CPk , with

k = 1 . . .K , a 2N × 16 measurement matrix Bk is obtained.

Again, the Bk’s can be stacked on top of each other resulting

in a matrix C of size 2NK × 16. The system is solved by

finding the right null-vector of C using the SVD as before.

IV. EXPERIMENTS

Experiments were performed using simulated as well as real

CB data acquired with a AXIOM Artis dBA C-arm system

(Siemens AG, Medical Solutions, Forchheim, Germany). For

the simulation, a detailed computer model of the calibration

phantom was created. The corresponding CB projections were

generated using an analytical forward projector. The phantom

was rotated by 90° according to Figure 3b but in addition

translated by 10 mm along the z-axis to mimic a realistic

phantom motion. The parameters of the experiments are given

in Table I. In Figure 4, the root mean square (RMS) error

between the true and registered projection matrices P and
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Fig. 4. Calibration accuracy from simulated (top) and real CB data (bottom)
for the calibrated arc segment. In each case, the projection number is plotted
against the RMS error given in pixel units. Projection 50 corresponds to the
last source position (at 19.6°) along the arc segment.

P (r) of the arc segment is shown for the simulated and the

real experiment. The RMS error was computed from image

measurements using

σ(RMS) =

(

1

N

N∑

i=1

(

x̃i − x̃
(r)
i

)2
)1/2

, (9)

with N = 108, where x̃i = Pxi and x̃
(r)
i = P (r)xi denote

the true and estimated image points respectively (after the

homogenous scaling factor has been removed) of the midpoints

xi of the steel spheres of the calibration phantom. For the real

experiment, 31 projection matrices could be calibrated from

the non-rotated phantom and were used as the ground truth.

Every second projection matrix thereof was also used for the

registration to compute the matrix H .

The RMS error gives an estimate of how much the average

projected point deviates from its true position. A different error

measurement may be chosen instead. For example, Faugeras

[8] suggests a decomposition of the projection matrices to

obtain every calibration parameter e.g. x-ray source position,

focus-to-detector distance, skew etc. However, by comparing

these values separately, we get only little insight into how

accurately the point mapping itself behaves, because deviations

from different such measurements may cancel each other when

acting together on a point in 3-space. For this reason, we

suggest to measure the error from image measurements instead.

From the figure it is observed that our approach achieves

sub-pixel accuracy even with real data. The accuracy of real

data is reduced by a factor of 5 compared to ideal data

because of higher errors in the underlying calibration procedure

(sphere localization etc.) and because the ground truth is only

known approximately. To get an impression of the achieved

accuracy, Figure 6 and Figure 7 show the projection of the

midpoints of the steel spheres of the calibration phantom onto

the acquired projection images for simulated and real CB data,

respectively. In Figure 6a and 7a, the points were projected with
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Fig. 5. Singular values s1 . . . s16 of the composed measurement matrix C

for simulated (top) and real CB data (bottom). In each case, the singular values
are plotted in descending order using a logarithmic scale.

the projection matrices which are associated to the minimal

RMS error, while in Figure 6b and 7b, the projection matrices

which are associated to the maximal RMS error were used. The

figures confirm the high accuracy of our method.

Figure 5 shows the singular values s1 . . . s16 of the composed

measurement matrix C with dimension 2NK × 16 for the

simulated (N = 108, K = 28) and the real (N = 108, K = 16)

experiment. A few observations: (i) The plots for simulated

and real data are almost identical. (ii) The smallest singular

value s16 is close to zero. (iii) Singular Value s16 differs

from s15 by a factor of magnitude 102, while any other two

successors differ by a factor of magnitude 10 or less. (iv) The

difference between s1 and s16 is in the order of 107. From

(i), we see that the simulated and the real data set have the

same numerical characteristics. Thus, with our simulation, the

numerical behaviour of a real system is reproducible. From

(ii), (iii) and (iv), we conclude that the system is numerically

stable and that the matrix C has a one-dimensional null-space

as required. The fact that s16 is close to but not exactly equal

to zero, can be blamed on measurement errors (e.g. from the

sphere localization of the underlying calibration procedure).

Figure 8 shows one slice of a human head phantom, which

was reconstructed using the M-line approach according to [9].

The CB data was again acquired with the AXIOM Artis dBA

C-arm system (Siemens AG, Medical Solutions, Forchheim,

Germany). Therefore, the setup is the same as in Table I. For

the calibration of the system, all 31 CPs were used to compute

the matrix H . The reconstruction shows a perfect geometry and

even small details can be clearly distinguished.
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Fig. 6. Projection of the midpoints of the steel spheres of the calibration phantom onto the simulated CB data associated with (a) the minimal (projection 41)
and (b) the maximal (projection 36) RMS error.
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Fig. 7. Projection of the midpoints of the steel spheres of the calibration phantom onto the real CB data associated with (a) the minimal (projection 1) and (b)
the maximal (projection 7) RMS error.



 

 

Fig. 8. Reconstruction of a human head phantom from real CB data. The
slice is 53 mm away from the plane of the circular scan. The window was set
to C=0 HU, W=1000 HU.

V. CONCLUSIONS

We have presented a method to calibrate the circle-plus-

arc trajectory. The idea of combining different trajectory seg-

ments by identifying the phantom transformation applies to

any calibration procedure in which the phantom has a favored

orientation with respect to a trajectory segment. Experiments

for simulated and real data show that the method works with

sub-pixel accuracy. Our calibration results have also been

confirmed with a reconstruction of a human head phantom

using real CB data.

APPENDIX I

DETERMINATION OF THE MEASUREMENT MATRIX

In this appendix, we show how the entries of the measure-

ment matrix Ai can be determined (see also [7]). Our starting

point is equation (5)

x̃i = P ′Hxi.

We proceed by applying the vector cross product to get

x̃i × P ′Hxi = 0.

We denote the j–th row of the matrix P ′ by p′jT and the j–th

column of the matrix H by hj and also xi = (xi, yi, zi, 1)T .

As an intermediate result, we find

P ′Hxi =





xip
′1T h1 + yip

′1T h2 + zip
′1T h3 + p′1T h4

xip
′2T h1 + yip

′2T h2 + zip
′2T h3 + p′2T h4

xip
′3T h1 + yip

′3T h2 + zip
′3T h3 + p′3T h4



 .

By setting x̃i = (x̃i, ỹi, w̃i), the cross product can be written

as

x̃i × P ′Hxi =





axih1 + ayih2 + azih3 + ah4

bxih1 + byih2 + bzih3 + bh4

cxih1 + cyih2 + czih3 + ch4



 = 0,

with

a = ỹip
′3T

−w̃ip
′2T b = w̃ip

′1T
−x̃ip

′3T c = x̃ip
′2T

−ỹip
′1T .

Equivalently,

x̃i × P ′Hxi =





axi ayi azi a

bxi byi bzi b

cxi cyi czi c











h1

h2

h3

h4







= 0.

Because only two equations are linearly independent, the third

one can be omitted. Thus, we chose

Ai =

[
axi ayi azi a

bxi byi bzi b

]

,

with a and b as defined above.
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