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Abstract— In C-arm computed tomography (CT) systems, the
source trajectory does not follow an ideal trajectory. Thus, the
real data acquisition geometry is typically expressed by a sequence
of projection matrices. However, exact reconstruction algorithms
are based on an analytic expression of the projection geometry. In
this work, we present a reformulation of an exact reconstruction
method to handle projection matrices. In particular, the M-line
approach is investigated for a short-scan circle-plus-arc data
acquisition. The computation of the derivative with respect to
the source trajectory is numerically most critical for which
a novel and stable implementation is developed. In order to
determine the backprojection range, a 2D polygonal weighting
scheme is proposed. Image results are presented from phantom
data acquired by a Siemens AXIOM Artis C-arm system. Excellent
image results are achieved. Due to the complete data acquisition,
the problem of cone artifacts is totally resolved.

I. INTRODUCTION

On C-arm systems, the data acquisition geometry is usually
described by a set of projection matrices rather than by analyt-
ical equations, because C-arm systems are not able to acquire
data along an ideal source trajectory [1]. For approximate
reconstruction approaches like the FDK algorithm [2], these
deviations are only taken into account in the backprojection
step (see also [3]). However, when exact image reconstruction is
applied, deviations from an ideal description of the acquisition
geometry have to be considered carefully in each processing
step (including the filtering step) in order to ensure the accuracy
of the approach. In this work, formulae are presented to
adapt the algorithmic steps of an exact filtered backprojection
(FBP) algorithm recently proposed in [4] (denoted as M-line
algorithm in the following) to process information provided by
a sequence of projection matrices. The proposed algorithm is
able to process cone-beam (CB) data measured on a real C-
arm system. A novel and numerically stable implementation
was developed to compute the derivative with respect to the
source trajectory. In order to determine the backprojection
range, a 2D polygonal weighting scheme is proposed. The
system was configured to collect data on a circle-plus-arc
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Fig. 1. For each reconstruction point x, backprojection is performed over three
segments L1(x),L2(x),L3(x) and then the contributions are accumulated [4].

source trajectory. This trajectory is complete according to Tuy’s
sufficiency theorem [5] and can easily be performed with C-
arm systems. The M-line algorithm can easily be applied to real
trajectories because it does not assume an ideal description of
the acquisition geometry. Alternative reconstruction algorithms
as e.g. [6] for the circle-plus-arc geometry are available but
require a different adaptation to deal with real data (see [7]
for a recently proposed scheme). Real data is acquired with
an AXIOM Artis dBA C-arm system (Siemens AG, Medical
Solutions, Forchheim, Germany). Reconstruction results of the
adapted M-line algorithm using a complete trajectory are com-
pared to a state-of-the-art FDK algorithm using a short-scan
circular path only.

II. THEORETICAL BACKGROUND

The task in image reconstruction is to recover the density
of an object f(x) under examination provided a set of line
integrals

g(λ, θ) =
∫ ∞

0

f(a(λ) + tθ)dt, (1)

where λ denotes the source trajectory parameter, a(λ) describes
the corresponding source position and θ the direction of the
line. If we assume a flat panel detector located at a distance
D from the current source position, each detector value at



coordinates (u, v)T refers to a line integral with line direction

θ = (ueu + vev −Dew) /
√

u2 + v2 + D2. (2)

Here, the detector coordinates are identified by two unit normal
vectors eu and ev and the coordinate origin (u0, v0)T =
(0, 0)T is the orthogonal projection of a(λ) onto the detector
(referred to as the ”principal point” in the following). The
vector ew = eu×ev points from the detector towards the source
position. In order to apply these equations, all quantities (e.g.
eu, ev, ew, D) have to be extracted from projection matrices in
practice (Section III).

Accurate image reconstruction for a point x inside the
support of the object can be achieved in three successive steps:

(i) A derivative of the cone-beam data (1) with respect to λ
along constant viewing direction θ has to be computed which
is regarded here as the following limit

g′(λ, θ) = lim
ε→0

g(λ + ε, θ)− g(λ− ε, θ)
2ε

. (3)

The computation of this derivative involves a preprocessing
of the detector content as well as an interpolation between
neighboring projections on the source trajectory (Section IV).

(ii) A one-dimensional filtering operation has to be applied
to the derivative of the cone-beam data along the projection of
a so called ”M-line” with direction α(λ(M), x), which connects
the point a(λ(M)) on the source trajectory to the point x where
reconstruction has to be achieved (Section V).

(iii) The filtered result has to be backprojected into the
image space. Backprojection is carried out over three segments
L1(x),L2(x),L3(x) which depend on the specific point x
and its M-line (Figure 1). The union of all three segments
constitutes the backprojection interval for the point under
consideration (Section VI).

III. GEOMETRY DESCRIPTION USING PROJECTION
MATRICES

The calibration procedure of a C-arm system usually outputs
geometry information in the form of projection matrices – one
matrix for every source position along the trajectory [1], [3].
The 3×4 projection matrix P defines a mapping of the point x
onto the detector plane for each source position a(λ) according
to

c · (ũ, ṽ, 1)T = P · (xT , 1)T , (4)

where c is a homogenous scaling factor. The point (ũ, ṽ)T is
defined with respect to the lower left image corner with its units
expressed in pixel. In this coordinate system, the principal point
has coordinates (ũ0, ṽ0)T . In order to apply the given equations,
the point must be transformed using

u = (ũ− ũ0) · du and v = (ṽ − ṽ0) · dv, (5)

where du and dv denote the pixel width and height respec-
tively. All parameters are obtained by a decomposition of the
projection matrix P as follows (see [8] for details):

P =




D
du 0 ũ0

0 D
dv ṽ0

0 0 1


 [

R −R · a(λ)
]
, (6)
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Fig. 2. The proposed interpolation scheme to compute the derivative g′(λk, θ).
The trajectory is assumed to be of polygonal shape.

where by definition

R =
[

eu ev −ew

]T (7)

is a 3× 3 matrix which defines the detector orientation.

IV. COMPUTATION OF THE DERIVATIVE

In this work, the derivative of the CB data with respect to λk

along constant viewing direction θ is computed directly using
a discrete version of formula (3)

g′(λk, θ) =
g(λk + ε, θ)− g(λk − ε, θ)

2ε
, (8)

where ε ∈ R is a tuning parameter. Provided that the trajectory
is equidistantly sampled at increments ∆λ, setting ε = ∆λ
amounts to a computation of the derivative involving the CB
data g(λk+1, θ) and g(λk−1, θ). Due to the low sampling rate
along the source trajectory however, ε should be chosen such
that ε ¿ ∆λ. Therefore, in our new approach, the CB data
g(λk ± ε, θ) is interpolated from g(λk, θ) and g(λk±1, θ).
Generally, we have to find rays with directions α± and β±,
such that

g(λk + ε, θ) = g(λk+1, α
+) · η+ + g(λk, β+) · (1− η+) (9)

g(λk − ε, θ) = g(λk−1, α
−) · η− + g(λk, β−) · (1− η−),(10)

where

η± =
‖a(λk ± ε)− a(λk)‖
‖a(λk±1)− a(λk)‖ and η± ∈]0; 1]. (11)

The ray directions α± and β± can be computed according to

α± =
o± − a(λk±1)
‖o± − a(λk±1)‖ and β± =

o± − a(λk)
‖o± − a(λk)‖ , (12)

where the points o± are orthogonal projections of the object
center onto the lines {x ∈ R3|x = a(λk±ε)+tθ} (Figure 2). In
our experiments, ε was chosen such that ‖a(λk±ε)−a(λk)‖ =
du = dv for a detector with square detector elements.
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Fig. 3. The backprojection interval is determined by multiplying the projection image (a),(d) with the 2D detector weighting mask (b),(e). The result (c),(f) is
backprojected into the image space. The example involves CB data of a human head phantom which was acquired from a source position on segment L1(x)
(top) and on segment L2(x) (bottom). For visualization purposes, the unfiltered CB data is displayed.

V. SELECTION OF λ(M)

As shown in [4], the point a(λ(M)) can be chosen arbitrarily
on the source trajectory and may vary for each point x.
However, if all points which have to be reconstructed share the
same λ(M), the algorithm is of FBP-type and can therefore be
implemented efficiently. In this work, a(λ(M)) was chosen to
be a source position approximately in the middle of the short-
scan, because then the filtering lines have minimal slopes and
the long object problem is solved (see Figure 1).

VI. DETERMINATION OF THE BACKPROJECTION INTERVAL

The backprojection interval for each point x is determined
by its R-line (see [4]) which connects two source positions on
the trajectory. Backprojection is restricted to the backprojection
interval to mask out redundant measurements for that point.

The decision if the current projection at a(λk) is located
inside the backprojection interval for a point x can be made by
projecting a part of the trajectory onto the detector plane and
by using only those detector data at the appropriate side of the
projected trajectory as shown in [6]. Referring to Figure 1,
we project the arc part onto the detector when the source
moves along L1(x) or L3(x) and the circle part when the
source moves along L2(x). Because an analytical description
of the trajectory is not available, the projections of successive

source positions are connected by lines in the detector plane,
resulting in a 2D curve of polygonal shape. The polygon is then
used to create a 2D detector weighting mask which defines
the backprojection region. Within the weighting mask, each
pixel outside the backprojection region is assigned a value
of zero, each pixel inside is assigned a value of one. Pixels
within a small neighborhood to the polygon are assigned a
value between zero and one. Thus, a smooth transition zone
is generated in order to avoid reconstruction artifacts. The
weighting mask needs to be multiplied with the detector content
after the filtering step and prior to backprojection (see Figure 3).

VII. RESULTS

We present reconstruction results using complete cone-beam
data acquired with an AXIOM Artis dBA C-arm system
(Siemens AG, Medical Solutions, Forchheim, Germany). Re-
constructions are compared to a state-of-the-art FDK imple-
mentation. For the M-line approach, a two-sided circle-plus-arc
trajectory was used. Depending whether the volume had to be
reconstructed below or above the circle plane, one of the two
arc contributions was chosen. The circle-plus-arc trajectory was
calibrated with the approach described in [9].

Table I shows the parameters used throughout the experi-
ments. Although the sample rate was the same for both algo-



M-line FDK

Trajectory short-scan-plus-arc short-scan
Radius [mm] 750 750
Focal length (D) [mm] 1200 1200
Pixel width (du) [mm/px] 0.308 0.308
Pixel height (dv) [mm/px] 0.308 0.308
Detector dimension [px2] 1240 × 960 1240 × 960
Angular sampling (circle) [°/projection] 0.4 0.4
Angular sampling (arc) [°/projection] 0.4 —
Number of projections (circle) 644 (257.2°) 644 (257.2°)
Number of projections (arc) 53 (20.8°) —
Isotropic voxel length [mm] 0.25 0.25

TABLE I
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Fig. 4. Reconstruction of the cone-beam phantom with disc shaped inlays for
(a) the M-line algorithm and (b) the FDK algorithm. The slices are 43 mm away
from the plane of the short-scan. The window was set to C=0 HU, W=600 HU.

rithms, the M-line approach in addition needs 53 projections
for the arc segment (which was also sampled with an angular
increment of 0.4°).

In Figure 4 and Figure 5, reconstructions of a cone-beam
phantom with inlays of varying shape and density are shown.
The slices are close to the z-edges of the inlays. The M-line
reconstruction result is free of cone artifacts which appear in the
FDK reconstruction as black and white shadows in the vicinity
of the inlays. The different appearance of the left wedge in
Figure 5a compared to Figure 5b might be caused by a different
slice sensitive profile of M-line versus FDK which has to be
investigated in the future.

In Figure 6, one slice of a human head phantom which was
reconstructed with the M-line approach is shown. Again, the
result is free of cone artifacts and even small details can be
distinguished.
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Fig. 5. Reconstruction of the cone-beam phantom with wedge shaped inlays
for (a) the M-line algorithm and (b) the FDK algorithm. The slices are 77 mm
away from the plane of the short-scan. The window was set to C=0 HU,
W=600 HU.

VIII. CONCLUSIONS

We have shown how to adapt the main algorithmic steps
of the M-line algorithm to deal with a sequence of projection
matrices. Reconstruction results using a real data acquisition
setting were presented. Our experiments have shown that the
M-line algorithm provides excellent image quality. Since a
short-scan circle-plus-arc trajectory provides complete data, the
problem of cone artifacts is totally resolved. The proposed



 

 

Fig. 6. Reconstruction of the human head phantom for the M-line algorithm.
The slice is 27 mm away from the plane of the short-scan. The window was
set to C=0 HU, W=600 HU.

method is easily adaptable to other source trajectories in the
context of the M-line algorithm.
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