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Florian Jäger1, Yu Deuerling-Zheng1, Bernd Frericks2, Frank Wacker2, Joachim Hornegger1

1Lehrstuhl für Mustererkennung, Universität Erlangen,
Martensstraße 3, 91058 Erlangen, Germany;

2Klinik für Radiologie und Nuklearmedizin, Charité CBF,
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Abstract

A major problem of segmentation of magnetic res-
onance imaging is that intensities are not standard-
ized like in computed tomography. In this article
we will present a new method for MRI intensity
standardization by aligning histograms of higher di-
mensions. So the correction process is independent
from spatial coherences and prior segmentations of
the reference and newly acquired images. Although
the approach is not limited to a speci�c application
or area of the body, it is utilized for fast classi�ca-
tion of brain tissue. Therefore, reference statistics
are computed once using a hidden Markov random
�eld approach. The intensity corrected images are
then classi�ed using these learned statistics. In or-
der to evaluate the presented methods the mean dif-
ferences of intra-patient time series are chosen as
reference. Furthermore, results of fast brain tissue
classi�cation are presented.

1 Introduction

For magnetic resonance imaging no intensity stan-
dard, like Houns�eld units in computed tomogra-
phy, is available due to magnetic �eld inhomo-
geneities in both B0 and RF excitation �elds, etc.
The disturbances can be characterized in two dif-
ferent ways: �rst, intensities of the same tissue
class differ throughout a single volume. In or-
der to deal with that problem a variety of algo-
rithms for bias �eld correction were developed in
the last decade. Especially statistical and clustering
approaches yield good correction results [1, 2, 3].
However, these methods do not solve the problem
of assigning a speci�c meaning to observed image

intensities. Hence a certain measured intensity of
the same or different patient cannot be associated to
a speci�c anatomical meaning. For segmentation, a
missing standard has the disadvantage that for ev-
ery new suspect an individual training of the used
(statistical) model has to be performed. For this rea-
son the clinical applicability of many algorithms is
low due to runtime restrictions. Furthermore, visu-
alization systems cannot use standard presets (e.g.
transfer functions) to visualize certain organs or tis-
sue classes. The settings have to be adjusted for ev-
ery single scan. These are the reasons why a second
class of approaches dealing with inter-scan intensity
standardization was developed by several authors.

In [4, 5] a 1-d histogram matching approach was
presented. First, they detected some landmarks
(percentiles, modes, ...) on the template and the
reference histogram, matched them and �nally in-
terpolated linearly between the detected locations.

Pierre Hellier presented in [6] a correction
method that estimates a mixture of Gaussians that
approximates the histogram [7] �rst. Then he com-
putes a polynomial correction function that aligns
the mean intensities of the tissues.

A multiplicative correction �eld is estimated
in [8] that adapts the intensity statistics of an ac-
quired MR volume to a previously created model.
This is achieved by minimizing the Kullback-
Leibler divergence between the model and the tem-
plate intensity distribution.

In [9] a method including spatial information be-
tween the reference and the template image is pre-
sented. In order to match the images a non-linear
registration algorithm was used. On the aligned
images a scalar multiplicative correction weight is
computed.



How intensity standardization and bias correc-
tion in�uence each other is evaluated in [10]. The
authors conclude that both steps are necessary but
the correction of inhomogeneities has to be done
beforehand.

For detection and quanti�cation of lesions in
MRI brain images usually T1- and T2-weighted as
well as FLAIR (Fluid Light Attenuation Inversion
Recovery) datasets are acquired. T1-weighted im-
ages have a higher spatial resolution but a lower
tissue contrast than T2-weighted. FLAIR images
have the advantage compared to T2-weighted im-
ages that it is easier to discriminate between edema
and cerebral spinal �uid (CSF). State-of-the-art al-
gorithms for intensity correction use a single se-
quence for standardization and drop information of
others. For many applications this is suf�cient, be-
cause in many regions of the body a gray value in
one image is associated to exactly one intensity in
another sequence (e.g. the brain). In general, how-
ever, this is not the case. The algorithm presented
in this article utilizes all acquired sequences for in-
tensity correction. With that, it is possible to sepa-
rately correct tissue classes, that have the same in-
tensity in one image but can be distinguished using
more datasets. The presented method is based on a
non-rigid registration of higher dimensional proba-
bility functions of two or more volumes (template
density) with a reference density. From the regis-
tration result a non-parametric correction function
is gained to standardize the intensities of the tem-
plate volumes. With that the statistics are adapted to
a previously calculated standard. Furthermore, the
introduced approach does not rely on any assump-
tions about the shape of the probability distributions
used. Thus the method is completely independent
of any application, region of interest (brain, thorax,
pelvis, ...), scanning protocol (T1-, T2-weighted, ...)
or modality (MRI, CT, SPECT, ...) accordingly.
However, as most of the state�of�the�art algorithms
are tested with application to brain tissue classi�ca-
tion, we will focus on this subject in the following
as well. But one should keep in mind that the brain
intensity statistics are rather simple and thus stan-
dardization is fairly trivial compared to other body
regions as the dependence for brain tissue intensi-
ties is usually only monofunctional but for other re-
gions the functional dependency is of a higher de-
gree.

2 Segmentation of the Brain

2.1 Markov Random Field Theory
Let S = {1, 2, · · ·, N} be a discrete set with N
sites. A label is an event that may happen to a site,
which may be both continuous or discrete.

In our case, two discrete label sets are de�ned:
one for the intensity values denoted as Y and one
for the class memberships denoted asX . Note that a
label in Y assumes its value in the range [1, 2d] and
a label in X assumes its value in the range [1, K],
with d being the pixel depth and K the number of
classes.

Next the neighborhood system and cliques are in-
troduced, which builds the basis for the contextual
constraints. Most authors de�ne a neighborhood for
S as

N = {Ni, i ∈ S}
where Ni is the set of site i's neighbors (e.g. [11]).
The neighborhood system has the following proper-
ties:

1. a site is not a neighbor of itself: i /∈ Ni

2. the neighboring relationship is mutual:
i ∈ Nj ⇔ j ∈ Ni

A clique for (S,N ) is de�ned as a subset of sites in
S , in which all the pairs of distinct sites are neigh-
bors, except for single-site cliques. Let Cn denote
the collection of cliques of size n. In the context of
this article only pairwise interaction between pix-
els is considered. Every clique therefore consists of
two sites.

Furthermore let X = {X1, X2, ···, XN} be a set
of random variables de�ned on the set S , in which
each random variable Xi takes a value xi ∈ X . Ξ is
the set of all possible con�gurations of X . X is said
to be a Markov random �eld on S with respect to a
neighborhood systemN if and only if the following
two conditions are satis�ed [11]:

1. positivity: P (x) > 0,∀x ∈ Ξ
2. Markovianity: P (xi|xS−{i}) = P (xi|xNi)

where xS−{i} denotes the set of labels at the
sites S −{i} and xNi stands for the sets of i's
neighbors.

Markovianity depicts the local characteristics of the
random �eld. This yields that a label at a site i
depends only on its neighboring pixels. In other
words, a site i has direct interaction with its neigh-
bors. Markovianity can always be satis�ed as a
suf�ciently large neighborhood Ni can be selected.
The largest neighborhood consists of all other sites.



In this article the label set X for the class mem-
berships satis�es the conditions of a MRF because
(1) each pixel belongs to exactly one tissue class
so that the positivity holds and (2) neighboring pix-
els are more likely to have the same class member-
ship so that the Markovianity holds as well. The
latter feature is more important because it favors lo-
cally clustered pixels more than single pixels. This
can for example exclude sporadic located pixels in
noisy images and results in a more robust and more
homogenous segmentation.

A set of random variables X is said to be a Gibbs
random �eld (GRF) on S with respect to N if and
only if its con�gurations obey a Gibbs distribu-
tion [11]. A Gibbs distribution is de�ned as

P (x) =
1

Z
e−

1
T

U(x) (1)

where

Z =
X
x∈F

e−
1
T

U(x) (2)

is a normalizing constant called the partition func-
tion, T is a constant called the temperature that con-
trols the sharpness of the distribution. U(x) is the
energy function

U(x) =
X
c∈C

Vc(x) (3)

with Vc(x) being the potential of the clique c and
C denotes the set of all possible cliques using the
neighborhood system N .

According to the Hammersley-Clifford theorem a
MRF is equivalent to a GRF. The theorem states that
X is called MRF on S with respect toN if and only
if X is a GRF on S with respect to N . The practi-
cal value of the theorem is that it provides a simple
way to specify the joint probability P (x), x ∈ Ξ by
specifying the clique potential functions Vc(x) [11].

In our case only cliques of size two are consid-
ered. Thus the energy function can be written as

U(x) =
X
i∈S

X
i′∈Ni

V2(xi, xi′) (4)

and the conditional probability as

P (xi|xNi) =
e
−Pi′∈Ni

V2(xi,xi′ )P
xj∈X e

−Pi′∈Nj
V2(xj ,xi′ )

. (5)

2.2 FGM model
Finite mixture (FM) models are adopted in the do-
main of brain tissue segmentation by various au-
thors [7, 12, 1], where most of them assume a Gaus-
sian distribution for the tissue classes (Finite Gaus-
sian Mixture (FGM) model). More speci�cally, the
entire brain is to be classi�ed into 3 classes: white
matter (WM), gray matter (GM) and CSF. Assume
the observable gray value is generated by a random
process whose distribution is a mixture of these
classes which can be characterized by the param-
eters of its normal distribution.The segmentation is
accomplished by assigning each voxel, represented
by its intensity, to the class with maximum posterior
probability.

Suppose each image consists of K classes (tissue
types). Let yi = (yi,1, yi,2, . . . , yi,L) denote the
intensity vector of the voxel at site i, L being the
number of MRI sequences. The FGM model is of
the form

p(yi;Θ) =

KX
k=1

wkp(yi|k; θk), (6)

wk ≥ 0,

KX
k=1

wk = 1

where Θ = {wk; θk|k = 1, ..., K} and θk =
(µk,Σk), µk is the L-component mean vector
and Σk is the L × L covariance matrix. wk is
the locally independent prior probability (wk =
p(k)). p(yi|k; θk) is the class-conditional distribu-
tion density

p(yi|k; θk) =
1p

|2πΣk|
·

exp(−1

2
(yi − µk)T Σ−1

k (yi − µk)) (7)

with |Σk| and Σ−1
k being the determinant and the

inverse of Σk, respectively.
The estimation of the unknown parameter vector

Θ can be done using the Expectation Maximization
(EM) algorithm [7].

2.3 HMRF model
The HMRF model used in this article is de�ned us-
ing two random �elds [13]. The �rst �eld is called
observable random �eld Y = {Yi, i ∈ S} with the
events Yi ∈ Y and Y being the set of all observable
gray value vectors. Given a con�guration x ∈ Ξ,



it follows a known conditional probability function
p(yi|xi;Θ). The second is called hidden Markov
random �eld X = {Xi, i ∈ S}. It is character-
ized by a not observable labeling corresponding to
unknown tissue classes. Furthermore, local char-
acteristics of the HMRF can be de�ned using the
neighborhood of a given site i:

P (yi, xi|xNi ;Θ) = P (yi|xi;Θ)P (xi|xNi).
(8)

Thus, the marginal probability distribution of yi de-
pends on the parameter set Θ and the local neigh-
borhood xNi . It can be computed as

p(yi|xNi ;Θ) =

KX
k=1

p(yi, k|xNi ;Θ)

=

KX
k=1

p(yi|k; θk)p(k|xNi) (9)

which is the de�nition of the hidden Markov ran-
dom �eld model. Thus the posterior probability de-
pends not only on the parameter set Θ, but also on
the neighborhood xNi :

p(k|yi, xNi ;Θ) =
p(k|xNi)p(yi|k; θk)

p(yi|xNi ;Θ)

=
p(k|xNi)p(yi|k; θk)PK
j=1 p(j|xNi)p(yi|j; θj)

. (10)

In the maximization step of the EM-algorithm, the
mean of each class-conditional distribution and its
covariance matrix are updated as followed:

µ
(t+1)
k =

PN
i=1 p(k|yi, xNi ;Θ

(t))yiPN
i=1 p(k|yi, xNi ;Θ

(t))
and (11)

Σ
(t+1)
k =

PN
i=1 p(k|yi, xNi ;Θ

(t))Σ
(t+1)
k,iPN

i=1 p(k|yi, xNi ;Θ
(t))

(12)

where

Σ
(t+1)
k,i = (yi − µ

(t+1)
k )(yi − µ

(t+1)
k )T . (13)

Finally we have to de�ne the locally dependent
prior probability p(xi|xNi). In this article we use
a second-order neighborhood system. The energy
function U(X) is constructed similarly to [13],
however, the potentials V (xi) differ slightly:

U(x) =

NX
i=1

V (xi), (14)

V (xi) =
X
r∈c1i

[1− δ(xi − xr)] +X
r∈c2i

[1− δ(xi − xr)]/
√

2 +X
r∈c3i

[1− δ(xi − xr)]4x/4z, (15)

where

δ(x) =

�
1, x = 0;
0, x 6= 0,

c1
i represents the four nearest- and c2

i the four near-
est diagonal- neighbors. The neighborhood c3

i in-
cludes the two nearest neighbors in z-direction. 4x
and 4z are the pixel sizes in x/y direction and z
direction accordingly. The locally dependent prior
probability is given by

p(xi|xNi) =
e−V (xi)P

xj∈X e−V (xj)
. (16)

Thus the contribution of a neighbor is penalized
with its Euclidian distance to the central voxel. As
MRI images are usually acquired with a square
pixel size, the slice thickness is often much larger
than the pixel size (otherwise the acquisition time
would take too much time) which results in non-
isotropic voxels. This feature must be incorporated
into the energy function because a neighbor voxel in
the next slice has clearly much smaller contribution
than a neighbor voxel in the same slice. Therefore
an anisotropic 3D-neighborhood system is utilized
with a smaller weight over the slices.

3 Intensity Standardization
The goal of the intensity standardization approach
is to �nd a mapping between the intensities of a
set of images U = (U1, U2, . . . , Un), where n is
the number of images and a reference set of images
R = (R1, R2, . . . , Rn) so that an arbitrary inten-
sity vector i ∈ In describes the same tissue class
in both sets. The main idea of the contribution is
that this can be approximated by the minimization
of the distance between the joint pdfs of both image
sequences. The required pdfs have a dimensional-
ity of n, corresponding to the number of images.
The domain is ]−∞, +∞[n. In practice, however,
it can be scaled to [0, 1]n due to limited gray val-
ues observed. The pdfs of both tuples will never



be equal (at least for real datasets) as the volume of
equal tissue classes differs for inter- as well as for
intra-patient measurements (e.g. partial volume ef-
fects, positioning of the patient, ...). Thus the search
for a gray value mapping is equivalent to �nding the
deformation between the pdfs so that they are clos-
est with respect to a given distance measure. If the
joint pdfs are treated as images, this task is called
image registration or image fusion.

Image registration can be summarized as the
problem of �nding a deformation between a refer-
ence image A and a template image B so that the
deformed template image Bϕ is similar regarding
a certain distance measure D. Here the reference
image A corresponds to the pdf pR representing
the multi-dimensional density function of R and re-
spectively B = pU the density of U .

The used distance measure depends on the ap-
plication. The most common ones are the sum
of squared differences (SSD) for mono-modal ap-
plications, the normalized cross correlation (NCC)
and mutual information (MI) for multi-modal prob-
lems [14, 15]. Because the function values of the
pdfs have equal meaning the usage of SSD is suf�-
cient in this article. However, the minimization of
the proposed distance measures yields an ill-posed
optimization problem. For this reason, further regu-
larization terms have to be added to smooth the ob-
jective function. These so-called smoothers restrict
the deformation of the template image in general.
Mostly either elastic, �uid, curvature or diffusion
approaches are utilized. Here the deformation �eld
shall not change very fast, thus we chose a curvature
based regularizer.

As we have to register density functions varia-
tional registration methods are chosen. These have
the advantages that the images to be aligned are
treated as functions f : IRn 7→ IR. The method
used is based on an approach introduced by J. Mod-
ersitzki [16]. The minimization problem to be
solved can be formulated as

J [pR, pU ; u] = D[pR, pU ; u] + αS[u], (17)

where the function u : IRn 7→ IRn corresponds to
the deformation �eld and n is the dimensionality of
the pdfs. Furthermore, D is the distance measure
and S represents the smoother. The factor α de-
�nes the in�uence of the regularizer on the objec-
tive function. The deformed density function pUϕ

can be computed as pUϕ(i) = pU ◦ ϕ(i) with

ϕ(i) = i− u(i). (18)

As mentioned before we use a similarity measure
based on SSD to compute the distance between the
pdfs. In our context this can be formulated as

DSSD[pR, pU ; u] =
1

2

Z
Ω

(pUϕ(i)− pR(i))2di.

(19)
It calculates the distance between the functions re-
lated to their function values at a position i, with
Ω = [0, 1]n representing the image domain.

The curvature based regularizer used in this arti-
cle can be formulated as

Scurv[u] :=
1

2

nX
l=1

Z
Ω

(4ul)
2dx, (20)

with 4 being the Laplacian operator. In order to
�nd the minimum of the objective function J , a
variational problem of �rst order has to be solved.
Therefore, the G�ateaux derivative has to be applied
to J . Thus the variational gradient for the proposed
distance measure yields [16]

fSSD(i, u(i)) = dDSSD[pR, pU ; u]

= (pR(i)− pUϕ(i))∇pUϕ(i), (21)

where the operator dD is the G�ateaux derivative.
The derivative dScurv with respect to Neumann

boundary conditions results in

Acurv[u] = dScurv[u] = 42u. (22)

Using the introduced similarity measures (eqn 21)
and the proposed smoother (eqn 22) the solution to
the variational optimization problem can be found
by solving the Euler Lagrange equation

Acurv[u]− fSSD(i, u(i)) = 0, for all i ∈ Ω.
(23)

The result of the optimization problem is the de-
formed density function pUϕ and much more im-
portant the deformation function u : IRn 7→ IRn.
In the case of the registration of multi-dimensional
pdfs it describes how to transform the gray values of
one set of images U such that the intensity distribu-
tion matches a reference distribution best regarding
DSSD and the restriction Scurv . Hence the inten-
sity standardization can be done by

icorr = iU + u(iU ). (24)



Figure 1: Images from left to right: The �rst two images show the used reference FLAIR image including
the lesion and with the lesion extracted. The third and forth image show the template FLAIR images with
and without lesion. All images are from the same patient and approximately same slice.

4 Experiments and Results

4.1 Experimental Setup
For the evaluation basically T1- and T2/FLAIR im-
ages were used. The T2-weighted FLAIR datasets
were acquired on a Siemens Symphony 1.5 T scan-
ner with 408x512x19, pixel size of 0.43 mm2 and
7.2 mm slice thickness and TE = 143 and TR =
9000. The T1-weighted images had a resolution of
208x256x19 with 0.86 mm2 and 7.2 mm slice thick-
ness and TE = 14 and TR = 510. All images used
were real patient data including evolving lesions.

All algorithms used were implemented in C++
and integrated in the medical software package In-
Space3D.

4.2 Results
In order to evaluate the intensity standardization the
mean distance of the reference and the template vol-
umes of one patient was chosen. Hence a good stan-
dardization result has a much smaller bias between
the reference and the corrected than the unprocessed
images. Furthermore, the variance of both distances
is given by:

µ =
1

N

X
i

(xi − yi) and (25)

σ2 =
1

N

X
i

(xi − yi − µ)2, (26)

with N being the number of used voxels, xi be-
ing a voxel in the template and yi a corresponding
voxel in the reference volume. However, the eval-
uation method has the drawback, that real patient
data with evolving structures was used and thus the
anatomy of the brain slightly changed. The lesions
were removed by a segmentation step beforehand

(just for evaluation, not for the intensity standard-
ization step!). Only those voxels that are classi�ed
as healthy brain tissue in both volumes are consid-
ered. In Figure 1 slices including and excluding le-
sions are shown. Here it is obvious, that even after
extraction, the surrounding tissue changed. Further-
more, a rigid registration using normalized mutual
information [17] as distance measure and interpola-
tion had to be utilized for evaluation, so that the ref-
erence and template volumes match each other. The
mean µ using the corrected images yielded 0.33 and
σ2 = 180 without the standardization the mean dif-
ference was 4.56 and σ2 = 183 for the FLAIR im-
ages. In both cases the number of used voxels N
was about 106. The difference for the T1 images
resulted in µ = −0.96 and σ2 = 134 for the cor-
rected and µ = −2.51 and σ2 = 147 for the uncor-
rected images with N ≈ 3 · 105.

The motivation of the introduced method is to ad-
just the image statistics so that a learned model can
be utilized for classi�cation. The performance dif-
ference of training and standardization are very sig-
ni�cant (about one min for standardization and clas-
si�cation; about 30-45 min for training and classi-
�cation). In Figure 2 the classi�cation results of
two different volume pairs (FLAIR and T1) of dif-
ferent patients are shown. The standardization for
both sets was done using the same reference vol-
ume and statistics. It is apparent that the classi�-
cation yielded better results using learned statistics
and intensity classi�cation. Especially in the lower
row, without previous standardization everything is
classi�ed as lesion (white). In the upper row the
small lesion on the righthand side is still feasible.
In Figure 3 the marginals of the joint pdf before and
after the standardization are shown. The marginals
of the joint pdfs correspond to the pdfs of the sin-
gle volumes. The standardization and classi�cation
was tested on seven image pairs.



Figure 2: Images from left to right: In the �rst column FLAIR images of two newly acquired volumes is
shown. Middle column: classi�cation result using the learned statistics and intensity standardization. Right
column: Classi�cation result of the newly acquired images using the learned statistics without standardiza-
tion.

5 Summary
Intensity standardization of MRI images is an im-
portant task as it highly in�uences the performance
and quality of segmentation algorithms. In this arti-
cle we presented a new method relying on the non-
rigid registration of joint probability densities. Thus
the introduced approach is independent of the appli-
cation, protocol, region of interest and even of the
acquisition modality. Furthermore, we showed that
the corrected data offers a great bene�t for segmen-
tation algorithms, as it can adapt the image statis-
tics to reference ones. As it uses information of all
sequences equally more complex intensity distribu-
tions can be dealt with. This was shown with ap-
plication to fast classi�cation of brain tissue using
a statistical approach called hidden Markov random
�eld.

6 Conclusion
The presented standardization method is a reliable
way to adjust image statistics of multiple series of
MRI images. However, the results have to be ver-
i�ed in a broader range and evaluated for different
body regions as well. After standardization statis-
tical classi�cation methods can be used more eas-

ily in other regions of interest with more complex
statistics as well.

The method is independent according to the ac-
quisition protocol and body region, thus it is useful
for other modalities, too. In future there is a SPECT
normalization planned.
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