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ABSTRACT

In this paper we propose a new variational non-rigid registration method that introduces prior knowledge about
non-homogeneous deformation properties into the matching process. State-of-the-art medical image registration
approaches usually assume that the whole image domain is associated with a homogeneous deformation property,
thus bone structure and soft tissue have the same stiffness for instance. However, this assumption is not valid
in the majority of cases. In many applications the deformation properties can be estimated manually by the
physician or by segmentation, beforehand. The presented non-rigid registration method integrates knowledge
about the tissue directly into the deformation field computation. For this reason, no additional post-processing
steps, like filtering of the deformation field, are required. In order to integrate the tissue constraints the regularizer
is replaced by a novel spatially dependent smoother. Dependent on the location within the image, the smoother
is able to explicitly adjust the rigidity. Thus, different tissue classes can be treated in the registration process.
In order to pass the stiffness coefficients to the algorithm an additional mask image is used. The registration
results are illustrated on synthetic data first to give a good intuition about the effectiveness of the proposed
method. Finally, we illustrate the improvement of the registration using real clinical data. It is shown that the
mono-modal intra-patient registration of PET images yields more reasonable results using a spatially dependent
regularizer constraining the deformations of regions with high activity than using a normal curvature regularizer.
Furthermore, the method is evaluated on multi-modal PET/CT registration problems.

Keywords: Non-Rigid Registration, Spatially Dependent Regularizer, Variational Registration Approach

1. DESCRIPTION OF PURPOSE

An important application of medical imaging is the detection and quantification of lesions. For this purpose,
functional as well as morphological imaging techniques are used. Both kinds of modalities have their pros and
cons. Functional imaging has the advantage that regions with high activity, like malign lesions for instance,
are easily detected in the data-sets. However, the spatial resolution and the tissue contrast of modalities like
Positron Emission Tomography (PET) are very limited. For this reason, physicians are able to detect active
regions in the images but they cannot localize and quantify them precisely. However, this is crucial for further
treatments (e.g. ablation) and therapy control (follow-up studies). On the other hand, morphological imaging
like Computerized Tomography (CT) has a high spatial resolution and tissue contrast. With that it is possible
to do very precise measurements and to navigate easily within the volume. At the same time it is often hard to
distinguish malign and benign tumors for instance as the absorbtion coefficient does not depend on the metabolic
activity of the tissue.
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In order to solve this problem morphological and functional data-sets have to be aligned to each other and
thus structural and metabolic information can be utilized in parallel. At present the registration of the data-sets
is usually performed manually by the physician and the transformations used are kept rigid. As the acquisition
times for a CT- (15-20 seconds) and a PET-Scan (15-30 minutes) differ very much, the volumes cannot be
matched rigidly in general. CT-images are usually acquired with maximum inspiration whereas for PET the
mean of the breathing cycles is used. Furthermore, the acquisition of the CT-volume is performed in an arms-up
position and arms-down for PET. This yields non-linear deformations between the data-sets. Additionally, the
manual alignment of the volumes leads to a considerable inter– and intra–observer variability.1

A solution to this problem is non-rigid multi-modal image registration. However, state–of–the–art algorithms
imply a homogeneous stiffness in the whole image domain. This means that rigid structures, like bones, are
warped in the same way as soft deformable structures, like muscles, skin, etc. For many applications this
assumption does not yield reasonable deformation results. In PET imaging the shape of highly active regions
differs very much for inter– as well as intra–patient measurements. Furthermore, active regions are not covering
whole organs, like the heart for instance. For this reason, highly active regions have to be kept more rigidly
during the registration process than areas with lower activity. Using current non-rigid methods, that do not
utilize prior knowledge to register PET/CT images, lead to a false deformation of many areas of the moving
image. The registration approach presented in this paper solves this problem by introducing a new regularizer
that is spatially dependent. Thus, large stiffness coefficients can be assigned to regions with high activity.

2. METHODS

Image registration can be summarized as the problem of finding a deformation between a reference image R and
a template image T so that the deformed template image Tϕ is similar regarding a certain distance measure
D. The used distance measure depends on the application, the most common ones are the sum of squared
differences (SSD), the normalized cross correlation (NCC) and mutual information (MI). SSD is mainly used for
mono-modal registration purposes whereas NCC and MI are used for multi-modal matching applications. In this
article we use SSD to demonstrate the applicability of the proposed registration method with artificial data-sets.
Furthermore, the registration of the CT and PET volumes utilizes NCC and MI. However, the minimization of
the proposed distance measures yields an ill-posed optimization problem. For this reason, further regularization
terms have to be added to smooth the objective function. These so-called smoothers restrict the deformation of
the template image in general. Mostly either elastic, fluid, curvature or diffusion approaches are utilized. State–
of–the–art methods usually punish the deformation in every region in an equal manner. This, however, does
not use prior information about certain tissue properties needed to find the correct minimum of the objective
function. That leads either to a false deformation of rigid tissue if the influence of the regularizer is too small or
an incorrect transformation of non-rigid tissue if it is too strict. In order to incorporate prior knowledge into the
registration process some authors do adaptive filtering of the deformation field. Filtering of the deformation field
is equivalent to the restriction using a curvature based smoother. Others include rigid regions into the non-rigid
registration approach. With that it is possible to simulate bone structures like the spine for instance. Similar
to the proposed method Bernd Fischer et.al. add a mask image containing the stiffness of the tissue into the
registration process. They extended an elastic regularizer for this purpose. Christoph Gütter et.al. utilize prior
knowledge for the registration of CT and PET images by adding a further smoother to the objective function.2

This smoother corresponds to the Kullback Leibler (KL) distance of the joint histogram of both volumes to a
previously learned reference joint histogram.

2.1. Segmentation

In this article we use a similar method to Bernd Fischer et.al.. The proposed algorithm can be separated into
two distinct steps. First, a probability map is created that contains the information about the rigidity of the
different tissue classes in the moving image. Usually the metabolic active regions contain the relevant medical
information, thus these areas have to be kept more rigidly in the adaption process. With that the probability
of being an active region correlates with the stiffness constraints. In order to gain the map, we are using a
fuzzy-c-means approach.3 There the volume is divided into Nc classes with the class centers ci with 1 ≤ i ≤ Nc.
Furthermore each sample yk (here voxel) has a membership probability ai,k to the class i . This means, that a



single voxel belongs to every class with a certain probability. Thus the objective function J can be formulated
as

J =
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2 (1)
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ai,k = 1 and ai,k ≥ 0, (2)

where p controls the fuzzyness of the result and n = n1n2n3 is the number of the samples (here voxels), with
(n1,n2,n3) being the dimensionality of the regarded volumes. The goal is to find the class centers ci and the
partition matrix ai,k that minimize J . In the following the voxels are ordered in a lexicographic way in a
vector Y = (y1, y2, . . . , yn )T .4 The proposed algorithm has the disadvantage that all voxels are treated in an
independent manner and spatial coherency is not used for the classification. For this reason, we use a modified
fuzzy-c-means approach introduced by Ahmed, Yamany, et.al. which includes the neighborhood of a voxel in the
optimization process. The new objective function for clustering the PET image can be written as
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with λ representing the influence of the neighborhood NR and NR being the cardinality of NR. The membership
of the voxels to the class corresponding to the active regions is used as probability map. As metabolic highly active
regions have large intensity values within the PET volume, the class κ can be computed with κ = arg maxi ci .

2.2. Spatially dependent registration

In the second phase, the data–sets are registered using the mask image to constrain the deformation in certain
regions of the PET volume. The method used is based on the variational registration approach introduced by
J. Modersitzki.4 Hence the optimization problem can be formulated as

J [~u;T ,R] = D[~u ;T ,R] + αS[~u ], (5)

where the function ~u : R
d 7→ R

d corresponds to the deformation field, d is the dimensionality of the data (we
just use 3-d volumes, thus d = 3), T is the template image and R the reference image. Furthermore, D is
the distance measure and S represents the smoother. The factor α defines the influence of the regularizer to
the objective function. As both images can be seen as functions f : R

d 7→ R, the deformed image Tϕ can be
computed as Tϕ(~x ) = T ◦ ϕ(~x ) with ϕ(~x ) = ~x − ~u(~x ).

In order to compute the similarity of the CT and the PET volumes, we use NCC and MI as distance measures.
For the registration of artificial data-sets, we use SSD that is defined as

DSSD [~u;T ,R] =
1

2

∫

Ω

(Tϕ(~x )−R(~x))2d~x . (6)

It calculates the distance between the volumes related to their intensity values, with Ω representing the image
domain. Thus it is only suited for mono-modal cases. The similarity measure

DNCC [~u;T ,R] = −

∫

Ω

< R(X (~x )),Tϕ(X (~x )) >
√

< R(X (~x )),R(X (~x )) >< Tϕ(X (~x )),Tϕ(X (~x )) >
d~x (7)



computes the linear dependence of the data-sets,5 with X being a local neighborhood around the vector ~x .
Therefor, it is applicable to mono-modal aswell as for multi-modal applications. The last distance measure

DMI [~u;T ,R] =

∫

R2

−pR,Tϕ
(r , t) log

pR,Tϕ
(r , t)

pR(r)pTϕ
(t)

drdt , (8)

maximizes the statistical dependence between the CT and PET volume.6 Here pR,Tϕ
(r , t) is the joint histogram

of the reference and the deformed template image pR(r) =
∫

R
pR,Tϕ

(r , t)dt and pTϕ
(t) =

∫

R
pR,Tϕ

(r , t)dr are
its marginalizations.

In order to find the minimum of the objective function J , a variational problem of first order has to be
solved. Therefor, the Gâteaux derivative has to be applied to J . Thus the proposed distance measures yield

(see Modersitzki et.al.,? Hermosillo et.al.7)

f SSD (~x , ~u(~x)) = dDSSD [~u;T ,R] = (R(~x )− Tϕ(~x ))∇Tϕ(~x ), (9)

f NCC (~x , ~u(~x)) = dDNCC [~u;T ,R] =
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with γ1 = < R(X (~x )),Tϕ(X (~x )) >,

f MI (~x , ~u(~x)) = dDMI [~u;T ,R] =
1

‖Ω‖

(

∂2pR,Tϕ
(r , t)

pR,Tϕ
(r , t)

−
p′
Tϕ

(t)

pTϕ
(t)

)
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where the operator dD is the Gâteaux derivative and ∂2pR,Tϕ
(r , t) denotes the partial derivative of pR,Tϕ

(r , t)
with respect to its second variable.

In order to constrain the deformation according to the stiffness coefficients the standard regularizers were
replaced by a novel spatially dependent smoother. However, the used regularizer bases on the curvature smoother.
The spatial dependency is realized by integrating a continuously differentiable function b : R

d 7→ R that depends
on the position in the template image. This function includes the prior information about the membership of
a voxel to an active region gained by the fuzzy-c-means segmentation step beforehand. The spatial dependent
regularizer can be formulated as

Sspatial [~u] :=
1

2

d
∑

l=1

∫

Ω

b(ϕ(~x ))(4ul )
2d~x . (12)

where the operator 4 represents the Laplace operator 4f =
∑d

i=1 ∂xi ,xi
f . With that, the curvature of

the deformation field is regularized stronger in regions with high function values of b, thus in areas with high
metabolic activity within the PET volume. Nevertheless, affine linear transformations of these regions are still
possible.

In order to solve the variational problem the Gâteaux derivative dS spatial has to be computed. This results
in

Aspatial [~u] = dSspatial [~u] = b(ϕ(~x ))42~u. (13)

Using one of the similarity measures (eqn 9, 10 and 11) and the proposed smoother (eqn 13) the solution to the
variational optimization problem can be found by solving the Euler Lagrange equation

Aspatial [~u]− f (~x , ~u(~x )) = 0, for all ~x ∈ Ω, (14)



Initialization: R ← CT, T ←< PET, U ← 0

Segmetation: Compute ci and ai,k using eqn. 3

Compute probability map aκ,i

Registration: i < Imax

Compute γ using eqn. 16

Update U using eqn. 15

i ← i + 1

return Tϕ

Figure 1. Spatially dependent non-rigid registration

2.3. Implementation

The discrete version of the spatially dependent function b is defined as bdis(~x ) = α + γaκ,j , with α being the
initial stiffness of the tissue, γ controlling the influence of the spatial coherency and aκ,j being the probability
of the membership of the voxel yi to an active region of the PET image. With that the differential operator
Aspatial (eqn. 13) can be discretized as the matrix product Aspatial = BAcurv , where B is a diagonal matrix that
inherits the values of bdis in lexicographic order and Acurv equals the discrete version of the curvature differential

operator (see Modersitzki?). In the discrete version of the optimization problem, the deformation field is stored
in U = ( ~u1, ~u2, . . . , ~un), where ~ui represents the i-th position in the deformation field in lexicographic ordering.
Hence, the optimization problem of equation 14 can be formulated as

BAcurvU = F , (15)

with F being the force vector F = (~f1, ~f2, . . . , ~fn ), fi = f (yi , ui). However, due to the spatial dependency the
solution to the partial differential equation optimization problem cannot be found using the discrete cosine
transformation, like for the curvature registration for instance, but an explicit solution scheme has to be used.

One problem of the integration of spatial coherencies is that strongly constrained areas yield a very bad
convergence property. For this reasen, we splitted the registration process in three different phases. First a
unconstraint registration is performed, after half of the iterations the spatial dependency is increased linearly to
its maximal extend. The actual factor γ can be computed by

γ = γmax

4(i − Imax/2)

Imax

, (16)

with γmax being the maximal influence, i representing the actual iteration and Imax describing the maximal
nuber of iterations. Finally, the spatial dependent registration is performed. Furthermore, it is difficult to find
an appropriate stop criteria, as for the spatial regularization, there is always a difference between the images -
otherwise standard smoothers can be used. Therefor, we performed a fixed number of iterations. The overall
spatially dependent non-rigid registration algorithm is summarized in figure 1.

3. RESULTS

We evaluated our approach with three different registration problems. First, we showed that the spatial dependent
registration algorithm is applicable on synthetic data-sets using SSD as similarity measure. Therefor, we created
a reference data-sets inheriting two cubes and a template data-set with two spheres. The centers of the cubes and
spheres differ. With that the registration approach has to translate the centers and deform the spheres to the
cubes. In the first experiment we used a standard curvature based regularizer. That yielded a correct translation
and deformation of both spheres as expected. In the next step we regularized one of the spheres to be nearly
rigid. That yielded one correctly registered sphere (unconstrained). The constrained sphere was translated and



Figure 2. Registration result of artificial data-sets using SSD. Top row, from left to right: reference image, template
image, mask image. Middle Row: the registration results before applying the spatial dependend smoother (i = Imax/2).
From left to right: deformed template image without spatial constraints, Tϕ with spatial constraints, deformed mask
image. Bottom Row: result of he registration i = Imax (images are the same as in the middle row).

Figure 3. Korrespondierende Schichten eines zur Evaluierung verwendeten Datensatzes und das Ergebnis der Reg-
istrierung: Original CT Volumen (oben links), original SPECT Volumen (oben mitte), verwendete Wahrscheinlichkeit-
skarte (oben rechts), deformiertes Volumen ohne ortsabhngige Regularisierung (unten links) und mit ortsabhngiger Reg-
ularisierung (unten rechts).

.



Figure 4. Korrespondierende Schichten eines zur Evaluierung verwendeten Datensatzes und das Ergebnis der Reg-
istrierung: Original CT Volumen (oben links), original SPECT Volumen (oben mitte), verwendete Wahrscheinlichkeit-
skarte (oben rechts), deformiertes Volumen ohne ortsabhngige Regularisierung (unten links) und mit ortsabhngiger Reg-
ularisierung (unten rechts).

.

Figure 5. Korrespondierende Schichten eines zur Evaluierung verwendeten Datensatzes und das Ergebnis der Reg-
istrierung: Original CT Volumen (oben links), original SPECT Volumen (oben mitte), verwendete Wahrscheinlichkeit-
skarte (oben rechts), deformiertes Volumen ohne ortsabhngige Regularisierung (unten links) und mit ortsabhngiger Reg-
ularisierung (unten rechts).

.



scaled, but was not deformed too much anymore. Slight deformations were expected, as the second sphere was
just regularized more strictly. The results of the registration using artificial data-sets are illustrated in figure 2.
Then we did a mono-modal non-rigid PET/PET registration, labeling the regions with high activity as almost
rigid. This yielded a smooth deformation field with little deformations in the labeled areas only. Finally, we
used the approach to register PET/CT images with the focus to keep the deformations of high active regions
reasonable. For instance, one serious problem is the alignment of the heart between the CT and the PET scan.
Without a spatial dependency of the deformation field, it tends to a non-reasonable deformation in that area
of the PET image. The results of the PET/CT registration are illustrated in figure 1. Here, the deformations
of the heart were constrained. As expected the high active region and the heart itself did just slightly deform
compared to the unconstrained case.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

The adapted regularizer for variational non-rigid registration enables differentiation of rigidity of different tissue
classes by integrating prior knowledge into the alignment process. Thereby, it is not required to perform additional
post-processing of the gained deformation field after each iteration. This means, that in comparison to other
approaches that use prior knowledge for registration, the properties of all tissue classes are treated democratic
and not iteratively. The knowledge is gained by a previous segmentation step (manually or automatically) and
is then passed to the registration algorithm as a mask image that inherits the different stiffness coefficients.

5. CONCLUSIONS

We showed in this article that it is possible to integrate prior knowledge into the registration. With that, problems
that occur during the alignment of PET/CT data-sets, like false deformations of the heart, can be solved. As
the formulation of our approach is not designed for a specific problem, it can be used for many registration tasks
where a classification of the stiffness coefficients of the tissue can be performed.8941011 1271314
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14. E. Suárez, C.-F. Westin, E. Rovaris, and J. Ruiz-Alzola, “Nonrigid registration using regularized matching
weighted by local structure,” in MICCAI ’02: Proceedings of the 5th International Conference on Medical

Image Computing and Computer-Assisted Intervention-Part II, pp. 581–589, Springer-Verlag, (London, UK),
2002.


