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Abstract. Registration of 3D volumetric data to 2D X-ray images has many ap-
plications in image-guided surgery, varying from verification of patient position 
to working projection searching. In this work, we propose a learning-based 
method that incorporates the prior information on the expected joint intensity 
histogram for robust real-time 2D/3D registration. Jensen-Shannon divergence 
(JSD) is used to quantify the statistical (dis)similarity between the observed and 
expected joint histograms, and is shown to be superior to Kullback-Leibler  
divergence (KLD) in its symmetry, being theoretically upper-bounded, and 
well-defined with histogram non-continuity. A nonlinear histogram mapping 
technique is proposed to handle the intensity difference between the observed 
data and the training data so that the learned prior can be used for registration of 
a wide range of data subject to intensity variations. We applied the proposed 
method on synthetic, phantom and clinical data. Experimental results demon-
strated that a combination of the prior knowledge and the low-level similarity 
measure between the images being registered led to a more robust and accurate 
registration in comparison with the cases where either of the two factors was 
used alone as the driving force for registration.

1   Introduction 

Techniques for 2D/3D registration can be divided into two general groups: feature-
based methods and intensity-based methods. Feature-based methods [1-2] register 
salient features that have been segmented automatically or semi-manually. While  
this approach exhibits fast execution time and high robustness in the face of large 
misregistration, the final accuracy relies on the accuracy of the preprocessing step, i.e. 
segmentation. In comparison, intensity-based methods [3-4] use the entire image 
information for registration, and have been shown to give substantially more accurate 
and reliable results than their feature-based counterparts. 

In recent years, learning-based methods have been suggested for general medical 
registration to impose prior knowledge to achieve more robust and reliable registra-
tion. In [5] the log likelihood of the joint intensity distribution of the observed images 
was maximized with respect to the expected joint intensity distribution. In [6] it was 
shown empirically that using the Kullback-Leibler divergence (KLD) was superior to 
the log likelihood measurement. In addition, as a section of experiments in [6], the 
superiority of KLD over Mutual Information (MI) measure was demonstrated for 
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2D/3D registration. Learning-based method was further extended to 2D non-rigid 
image registration in [7] where the KLD w.r.t. a prior joint distribution was mini-
mized together with the maximization of the MI measure.  

In this paper, we propose a Jensen-Shannon divergence (JSD) based method for 
2D/3D registration. Unlike KLD, JSD is symmetric, bounded, and a true metric, 
which triggered its popularity in various applications in recent years, ranging from 
statistical language analysis [8], image edge detection and segmentation [9], to DNA 
sequence analysis [10]. We notice that JSD provides a more suitable measure than 
KLD in quantifying histogram discrepancy because some histogram bins may vanish 
for the training data but not for the observed data or vise versa, in which case KLD is 
undefined. Furthermore JSD is upper-bounded and symmetric [9], facilitating its easy 
use as one of the factors in the driving force for registration. Other advantages of our 
method include: 1) Depending on how well the a priori represents the observed data, 
the registration process is driven by a compounding effect of the statistical consis-
tency of the observed joint histogram to the learned prior and the statistical depend-
ence between the individual intensity distributions of the images being registered; 2) 
There is no requirement on image segmentation and labeling as done in [6], whose 
error can lead to further errors in subsequent registration. Instead, an automatic 
nonlinear histogram mapping is done iteratively during the matching process to han-
dle the intensity discrepancy between the observed data and the training data; 3) An 
intensity-based histogram is used, which is supposed to result in a higher registration 
accuracy than [6] where a class-based histogram was used in the argument of a higher 
computational efficiency in the generation of digitally reconstructed radiographs 
(DRRs). DRRs are the simulated projection images from the 3D volume that are itera-
tively produced and compared with the 2D X-ray images during 2D/3D registration. 
Since DRRs need to be generated a large number of times, the computational effi-
ciency in their calculation directly affects the efficiency of the whole registration 
algorithm. As will be explained in detail later our fast hardware-based DRR genera-
tion makes the utilization of intensity-based histogram totally feasible. 

2   Methods

Assume we are given a pair of correctly-registered training images },{ fr llL =  with a 

join intensity distribution ),( frl iip . In the framework of Bayesian inference, the prob-

lem of registering a novel pair of images },{ fr ooO =  can be formulated as retrieving 

the transformation T  that maximizes the conditional probability of observing the 
image pair },{ T

fr
T ooO =  ( T

fo  is the floating image fo  after transformation T ) given 

the training pair L  and the initially observed pair O :

)|(),|(),,|(),|,( OOpOOTpOOTLpLOOTp TTTT ∝ (1)

The three terms on the right-hand side of Eq.(1) represent the three factors that drive 
the matching process. The first term indicates the consistency between the observed 
pair TO  and the training pair L . The second term specifies the apriori-probability of 



230 R. Liao et al. 

the transformation T . In the case of rigid-body transformation where all combina-
tions of translations and rotations are considered equally likely, this term can be 
dropped in maximization. The third term measures the similarity between the two 
observed images ro  and T

fo . Hence our method maximizes the compounding effect of 

the first and the third factors, whose modeling will be articulated in following sec-
tions. In comparison, the method in [6] relied only on the first factor for registration, 
implying that any correspondence between ro  and T

fo  was uniformly favored for 

registration. This assumption in essence ignores the important fact that two images 
should have high mutual dependence when registered, which, as will be shown in our 
experiments, can lead to less robust registration, especially when the observed data 
deviates from the training data.  

2.1   Consistency with Learned Distribution  

Assume the observed pair },{ T
fr

T ooO =  for a given transformation T gives rise to a 

joint histogram ),( fr
T
o iip , the first factor in Eq.(1) is modeled by the (inverse) JSD 

between T
op  and lp , stating that independent of the transformation T  and the initial 

observation O , the statistically more coherent the observed histogram to the learned 
histogram in terms of JSD, the more likely the observed images are registered:   

)||()|(),,|( T
ol

TT ppJSDOLpOOTLp −∝= (2)

)||(
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T
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1 T
olM ppp += (3)

and frii frfrfrKL didiiipiipiipppD
fr

]),(),([log),()||(
, 21121 = (4)

is the well-known KLD measure. It can be shown that unlike KLD, )||( T
ol ppJSD  in 

Eq.(3) is upper-bounded by )2log( (see [9] for proof), and therefore can be easily nor-

malized to be on the same order of magnitude of the third term in Eq.(1). Further-
more, JSD is the square of a true metric that is equivalent to Hellinger metric [9], 
therefore it is symmetric and removes the nuisance in the use of KLD arising from its 
asymmetry. We will show that the ordering of the arguments in KLD can yield sub-
stantially different values. More importantly, JSD is well-defined even when there 
exists fr ii ,  such that 0),( >fr

T
o iip but 0),( =frl iip , in which case KLD is undefined. 

The superiority of JSD over KLD on handling the non-continuity in the learned distri-
bution was demonstrated in [8] via a set of experiments aiming at statistical language 
analysis. 

2.2   Dependence Between the Two Images Being Registered 

To model the third factor in Eq.(1), we choose to implement, among numerous simi-
larity measures proposed in the literature, two similarity measures. One is the well-
known Mutual Information (MI) and the other is Pattern Intensity (PI), which was 
reported in [4] to perform the best among six similarity measures tested. Therefore: 

),()()|( T
fr

TT ooMIOpOOp ∝=  or ),( T
fr ooPI∝ (5)
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 are the marginal distributions for ro  and T

fo  respectively, and 
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,
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Where do = T
fr oo −  is the difference image, ),( yxod denotes the intensity value of do

at pixel ),( yx , and 222 )()( Rywxv <−+− defining the region centered at ),( yx  with 
radius R . When two images are registered, there will be a minimum number of struc-
tures in the difference image do . Pattern intensity considers a pixel to belong to a 

structure if it has a significantly different intensity value from its neighboring pixels. 
Good working parameters were shown to be σ = 10 and R = 3 in [4]. 

2.3   Nonlinear Marginal Histogram Mapping 

The marginal intensity distribution of the observed data can differ from that of the 
training data for many reasons. For example, the window-level for X-ray images are 
often adjusted during the operation to provide optimal visualization. In digitally sub-
tracted angiography (DSA), the injected contrast agent flows during the sequence, 
resulting in the difference in the intensity contrast in the subtracted images. In order to 
maximize the effective range of the learned prior for registration purpose, we suggest 
a monotonic nonlinear mapping technique to align the marginal intensity distribution 
of the observed image to that of the training image.  

For simplicity, we explain how the reference images ro  and rl  are mapped to each 

other. The floating images are mapped in the same manner. In the ideal case, intensity 
i  for ro  should be mapped to intensity 'i  where )'()( iCiC

rr lo = . Here )(⋅
roC  and 

)(⋅
rl

C denote the cumulative density function (CDF) of ro  and rl  respectively. For 

discrete histogram distribution perfect mapping typically can not be achieved and the 
following algorithm is proposed to achieve an optimal approximation: 

kii =→ ' : )()(min
21

kpip
rr lo

tkt
−

≤≤
with 1t  and 2t  defined by: 

)()1()1( 11 tCiCtC
rrr lol ≤−<− and )()()1( 22 tCiCtC

rrr lol ≤<−
(8)

Here )(⋅
rop and )(⋅

rl
p denote the marginal histogram of ro  and rl  respectively. The 

proposed mapping is similar to the well-known image processing technique called 
histogram equalization (HE) with two major differences: 1) unlike HE whose targeted 
distribution is the uniform distribution, our targeted distribution is the marginal histo-
gram of the training image which can be arbitrary; 2) In HE, the mapping is essen-
tially kii =→ '  where )()()1( kCiCkC

ro ≤<− and )(⋅C denotes the CDF of the uniform 

distribution. In contrast, there is a local histogram difference minimization step in our 
proposed mapping to optimally align the histogram of the observed image to that of 
the training image, which is crucial for the robust measurement of the similarity be-
tween the expected and mapped joint histograms in registration. 
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2.4   Implementation  

The transformation relating points in the 3D volume to points on the projected X-ray 
image consists of six extrinsic rigid-body parameters },,,,,{ zyxzyx tttT ϑϑϑ= that are 

estimated by the iterative registration algorithm, and four intrinsic perspective projec-
tion parameters that are determined by the X-ray imaging system based on pinhole 
cameral model as depicted in Fig.1. DRRs are generated using the 2D texture-based 
volume rendering technique on the graphics processing unit (GPU), which yields 
better computational efficiency than software-based DRR generation technique such 
as ray-casting. It takes about 20ms to generate 256 × 256 DRRs from a 256 × 256 × 253 
volume with an NVidia Quadro FX Go1400, resulting in a typical registration time in 
the range of 10~30s. At each iteration the X-ray image and the generated DRRs are 
taken as the observed pair },{ T

fr oo  and are mapped to the training pair },{ fr ll through 

nonlinear histogram mapping articulated in Section 2.3. In order to estimate the cor-
rect pose T  of the 3D volume, Hill-climbing optimization method is implemented to 
maximize the following variational formulation: 

),()[1())||(1( T
fr

T
oltotal ooMIppJSDSM αα −+−=  or )],( T

fr ooPI (9)

X-ray Source 

3D Volume 
DRR 

Projection Ray  y 
 x 

z Volume Pose },,,,,{ zyxzyx tttT ϑϑϑ=

Fig. 1. Diagram for the generation of digitally reconstructed radiographs (DRRs) 

3   Experiments 

The first experiment compares the performance of JSD and KLD on simulated data. 
In this simplified experiment the reference and floating images in the training pair 
(Fig.2.a) were exactly the same. The reference image in the testing pair was slightly 
different from the training reference image in angulations, and the floating image was 
the horizontally-translated version of the reference image (Fig.2.b). Fig.2.c plots the 
several measures versus the displacement. We notice that JSD produced a smoother 
curve than both of the KLD measures, which differed significantly in values due to 
the switch of the order of the training and testing pairs. The (one minus) MI measure 
is also plotted as a reference.  

The second experiment investigates the effectiveness of the proposed monotonic 
nonlinear histogram mapping technique. The training pair was the same as that used 
in the first experiment, while the testing pair was window-leveled to an apparently 
different intensity range (Fig.3.a). Fig.3.b plots the marginal histograms of the testing 
pair, training pair and mapped pair. As shown in Fig.3.c, without mapping, the 
learned joint histogram could no longer effectively drive registration and the JSD 
curve became almost uniform across displacements. In contrast, a similar curve as 
that in the first experiment was achieved after the monotonic nonlinear mapping. 
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Fig. 2. Comparison of four measures versus horizontal displacement: mutual information, JSD, 
and two KLDs with different orders of the training data and testing data 

Fig. 3. Nonlinear histogram mapping to align the marginal histograms of the testing pair with 
that of the training pair 

We further applied our technique to registration of 3D DynaCT to 2D fluoroscopy 
acquired by a Siemens Axiom Artis System. The object was a chest phantom and the 
3D data (256 × 256 × 223, 0.8×0.8 × 0.8mm) was perfectly aligned with the 2D fluoro-
scopies from two angles. The 2D image from the first angle and the corresponding 
DRR were used as the training pair (Fig.4.a), and the artificially-moved 3D DynaCT 
was then registered to the 2D fluoroscopy from the second angle (Fig.4.b). Different 
types of driving force were tested: prior only (JSD); MI or PI only; and MI + JSD or 
PI + JSD with α = 0.5 in Eq.(9). The whole registration process took about 20s for 
MI measure and 40s for PI measure on a Pentium®M 2.13G Hz computer. Using 
prior did not noticeably increase the computational time, partially due to the faster 
convergence and hence fewer number of iterations. Using PI alone or PI + prior 
achieved relatively accurate and comparable registration for this data. However, using 
MI alone resulted in a largely wrong result (Fig.4.). Prior only also did not lead to 
acceptable registration. In contrast, when combining the prior information with the 
dependence between the images being registered, much more accurate registration 
was achieved, suggesting that these two factors provided complimentary information 
to each other that boosted the robustness of the algorithm. 
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Fig. 4. Registration results of chest phantom using different types of driving force. The outline 
of the rendered VRT image of the registered 3D volume is overlaid onto the 2D X-ray. Regions 
pointed by arrows show prominent differences in the accuracy of alignment. 

Fig. 5. Registration results of in vivo neuro-vascular using different types of driving force  

A similar experiment was finally applied to in vivo neuro-vascular data acquired 
during an aneurism operation by a Siemens Axiom Artis dBC biplane system. One 
frame of the digitally subtracted angiography (DSA) sequence highlighting the con-
trast agent-filled vessels and the DRR generated from the 3D angio (256×256×253, 
0.3×0.3×0.3mm) after manual alignment were used as the training pair, and the 3D 
angio without manual alignment was registered to a second frame of the DSA se-
quence with substantially different contrast intensity (Fig.5.b). It is interesting to 
notice that there was a wrong global maximum for PI measure, possibly due to the 
simplicity of the vessel structures present in the image, so that when using PI only the 
registration was so off as to the outline of the volume did not appear on the 2D image 
in the result. However, the added factor of the prior information eliminated this wrong 
global maximum and achieved highly accurate registration when used together with 
PI. Again prior alone did not produce as accurate registration because of the apparent 
intensity difference between the two DSA frames used for training and testing. In this 
experiment MI measure and MI + prior produced comparably accurate results that are 
not shown. In addition, the fact that the intensity range of the testing DSA frame was 
substantially different from that of the training frame demonstrated the effectiveness 
of our histogram mapping technique.  

(a) Training Pair  (b) Testing Pair  

Initial Position MI  MI + Prior Prior 

(c) 3D DynaCT 

(a) Training Pair  (b) Testing Pair  (c) 3D Angio  

Initial Position PI Prior PI + Prior 
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4   Discussion and Conclusion 

It has been demonstrated that registration driven by the combined factors of the prior 
information and the dependence between the images being registered was more robust 
than when either one of the two factors was used alone. In essence, the learned prior 
enhanced the registration performance by ruling out the highly unlikely registration 
that were very different from the training images, and achieved equally good registra-
tion in the cases that the conventional similarity measures alone were able to drive a 
successful registration. The property of being upper-bounded for JSD made the com-
bination of the two factors readily controllable. The nonlinear histogram mapping 
technique greatly expanded the effective range of the learned prior. More comprehen-
sive experiments are needed to quantitatively evaluate the robustness and accuracy of 
the proposed method on data from different organs and modalities. 
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