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Abstract. In this work we present an approach to adapt speaker-inde-
pendent recognizers to a new acoustical environment. The recognizers
were trained with data which were recorded using a close-talking micro-
phone. These recognizers are to be evaluated with distant-talking mi-
crophone data. The adaptation set was recorded with the same type of
microphone. In order to keep the speaker-independency this set includes
33 speakers. The adaptation itself is done using maximum a posteriori
(MAP) and maximum likelihood linear regression adaptation (MLLR)
in combination with the Baum-Welch algorithm. Furthermore the close-
talking training data were artificially reverberated to reduce the mis-
match between training and test data. In this manner the performance
could be increased from 9.9 % WA to 40.0 % WA in speaker-open con-
ditions. If further speaker-dependent adaptation is applied this rate is
increased up to 54.9 % WA.

1 Introduction

Gathering training data is a time-consuming and expensive task. Therefore, most
speech recognizers are highly specialized to a single recognition task. In most
cases the data were collected using a close-talking microphone. However, in real
task environments this constraint is often not met. For example car navigation
systems often rely on hands-free speaking systems. Close-talking recognizers are
not suitable for this task.

We present two techniques in order to adjust a recognizer to a new envi-
ronment. The first one is MAP and MLLR adaptation [1] in combination with
the Baum-Welch algorithm. Therefore, new in-task-domain adaptation data has
to be collected. However, the amount of data which is needed for adaptation is
much smaller than for training. Since transliterating the new data is even more
expensive supervised and unsupervised adaptation are presented in compari-
son. This procedure is similar to [2]. The second technique is based on the idea
to reduce the acoustical mismatch between close-talking training data and the
distant-talking evaluation data by producing a “general” reverberation which is
convolved into the signal. For training and evaluation we employed the AIBO
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[3], the Verbmobil [4], and the Fatigue [5] databases which are presented in the
following.

2 Databases

2.1 AIBO database

The AIBO Database contains emotional speech of children. In a Wizard-of-Oz
experiment children in the age of 12 to 14 years were faced the task to control
a Sony AIBO™ robot [6] by voice. In total 51 pupils (21 male and 30 female)
of two different schools were recorded in German language. The whole scenery
was recorded by a video camera in order to document the experiment and a
head-mounted microphone (ct). From the sound track of the video tape a second
version of the AIBO corpus was extracted: a distant-talking version (rm) was
obtained. In this manner no second manual transliteration was necessary be-
cause the transcription of the distant-talking and the close-talking version is the
same. The distance between the speaker’s position and the video camera was ap-
proximately 2.5 m. In total 8.5 hours of spontaneous speech data were recorded.
The resulting utterances contain 3.5 words each on average. This corpus with
12,858 utterances in total was split into a training, a validation, and a test set
with 8,374, 1,310, and 3,174 utterances, respectively. The size of the vocabu-
lary is 850 words plus 350 word fragments. The category-based 4-gram language
model which was used for all evaluations was trained on the transcription of the
training set and has a perplexity of 50 on the test set.

2.2  Verbmobil (VM)

The Verbmobil (VM) database is a widely used speech collection. We use a
German subset of the whole corpus which was already investigated in [7]. The
scenario of the corpus is human-human communication with the topic of business
appointment scheduling. It contains in total 27.7 hours of continuous speech
by 578 speakers of which 304 were male and 274 were female. The size of the
vocabulary is 6825 words. On average each of the 12,030 utterances contains 22
words. The size of the training and the test set is 11,714 and 268 utterances,
respectively. In order to keep the consistency with earlier experiments the size of
the validation set was kept at 48 utterances (cf. [4]). The language model which is
employed for the recognition is a category-based 4-gram model which was trained
on the transcription of the training data. Its perplexity on the Verbmobil test
set is 152.

2.3 Fatigue (FAT)

In order to do an evaluation of the Verbmobil recognizers in acoustical mismatch
the Fatigue database which is presented in [5] was used. In this experiment the
impact of fatigue on the concentration of participants was investigated. Therefore
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3 male and 3 female persons were kept awake a whole night. Among other tasks
like playing computer games these six speakers had to read texts which were
partially taken from the transcription of the Verbmobil database. The vocabulary
and the language model stays the same as in the case of the Verbmobil database.
However, this procedure reduces the perplexity of the language model since the
test utterances were in the training set of the language model. The perplexity
of the 4-gram language model on the Fatigue test set is only 88. The position
of the speaker was in front of a microphone array with 15 microphones where
13 were arranged in a linear order. For this work only the central microphone
number 7 is used (FAT-Mic7). The distance between the speaker’s mouth and
the microphone array was approximately 70 cm. The size of the room was 4.5m
x 4.3m x 3.2m. This database serves as a reverberated version of parts of the
Verbmobil database. So no changes to the recognizer were required.

3 Applied Methods

3.1 Artificial Reverberation

Artificial reverberation is used to create disturbances which resemble those
caused by reverberation in a real acoustic environment. It is applied to the
signal directly before the feature extraction. So the robustness of the features to
reverberation can be improved. The idea is to convolve the speech signal with
impulse responses characteristic for reverberation in typical application scenarios
e.g. a living room. Thus a reverberated signal can be computed. These impulse
responses can be measured in the proposed target environment or generated ar-
tificially. For the case of this paper impulse responses have been measured in a
specific environment. In current research the artificial reverberation was found
to improve the robustness of speech recognizers to acoustic mismatches [5] [8].
In both papers the training data is reverberated using the same twelve impulse
responses from assumed speaker positions shown in Fig. 1. The responses differ
in the distance, the angle, and the reverberation time 7Tgy. The reverberation
time is defined as the time that passes until the signal decays to 1076 of its
initial sound energy. This corresponds to a reduction of 60 dB. Each response is
applied to 1—12 of the training data. In this manner training data is created which
covers a broad variety of possible reverberation.

3.2 Recognizer specifications

The acoustic models of this work are state-tied polyphone models, which are also
called semi-continuous Hidden Markov Models (SCHMM). 500 mixture compo-
nents are shared between all states in the codebook. In addition each state has a
weight for each density. In the training the codebook is initialized by the identifi-
cation of Gaussian mixtures. The transition probabilities between the states are
determined by ten iterations of the Baum-Welch algorithm. Then the codebook
is re-estimated. The Baum-Welch algorithm and the codebook re-estimation is
repeated in an alternating manner for ten times.
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O T, =250 ms
B T, =400 ms

Fig. 1. Recording positions for the impulse responses used in this work (black
dot: microphone; squares: assumed speaker positions)

As features the commonly used Mel Frequency Cepstrum Coefficients (MFCC)
are employed. We use 12 static features: the spectral energy and 11 cepstral fea-
tures. Furthermore 12 dynamic features are calculated as an approximation of
the first derivative of the static features using a regression line over 5 time frames.
The time frames are computed for a period of 16 ms with a shift of 10 ms.

3.3 Adaptation Method

For the adaptation to the new acoustical environment we propose a method
using standard codebook adaptation methods — MAP and MLLR - in com-
bination with the Baum-Welch algorithm in order to interpolate the transition
probabilities and weights of the acoustic models. As in the case of the training an
iterative procedure is applied. First the codebook is adjusted using MAP adap-
tation. This is followed by MLLR adaptation. Then the transition probabilities
and state weights are interpolated using the Baum-Welch algorithm. The exper-
iments showed that three iterations are sufficient in most cases. For this kind of
adaptation a transliteration of the adaptation data is necessary and hence the
method is supervised. In order to do unsupervised adaptation a transliteration of
the adaptation data was generated using the recognizer before each adaptation
iteration.
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word accuracy

MAP+MLLR adaptation

training set baseline|supervised| unsuper-
vised

close-talking (ct) 9.9% 29.6 % 22.1%
reverberated (ct rv) || 19.4% 32.9% 28.4%
ct + ctrv 16.0 % 33.5% 27.7%
3ct+ 3 ctrv (ct-2)] 184%| 343% 29.7%

Table 1. Recognition rates with different sets of artificially reverberated train-
ing data with the AIBO recognizer using half of the room microphone data
for adaptation

4 Experiments and Results

4.1 AIBO database

Since the distant-talking data of the AIBO database is very noisy and the dis-
tance is quite far the recognition on this data set is poor. The plain close-talking
recognizer achieves only 9.9 % word accuracy (WA) on the distant-talking eval-
uation set although the accuracy on the ct test set was 79.0% WA. Training
with the distant-talking data achieves 51.1 % WA. This can be seen as an upper
boundary for this recognition task. First the effect of artificial reverberation on
the adaptation was investigated. Table 1 shows the results which were obtained
using only codebook adaptation with MAP followed by MLLR. In this experi-
ment half of the room microphone training data was used for adaptation. ct de-
notes the plain AIBO close-talking recognizer while ct rv denotes the recognizer
which was trained using only artificially reverberated data. The combination
of both was beneficial especially when supervised adaptation was performed.
The best results were achieved when half of the training data were reverberated
while the other half stayed as is (ct-2). Unsupervised adaptation could achieve
reasonable recognition rates.

For the case of the ct-2 training set more investigations concerning the size of
the adaptation data and the number of iterations during the adaptation process
were done. Fig. 2 shows the results obtained with different sizes of the adaptation
data and an increasing number of iterations. As can be seen three iterations of
this process seem to be enough. Furthermore 1—10 of the training data — approxi-
mately 30 minutes of speech data — are enough to estimate the new parameters
robustly. So the recognition rate can be increased to 40.0 % WA. The best result
was obtained with half of the room microphone training data (41.0% WA). If
this method is applied in an unsupervised manner 36.5% WA can be achieved.
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Fig. 2. Supervised Baum-Welch adaptation in combination with MAP and
MLLR adaptation of the AIBO ct-2 recognizer with the AIBO rm training
set. The word accuracies were obtained with a 4-gram language model.

4.2 Verbmobil and Fatigue database

A similar experiment was done with the Verbmobil database for training and
the Fatigue database as test set. The recognizer’s accuracy on the close-talking
version of the Fatigue test set is 86.9% WA. Then training was done using
the close-talking microphone data (ct) and artificially reverberated data (ct rv).
These recognizers were evaluated using the Fatigue database distant-talking cen-
ter microphone. Since only six speakers are available in the Fatigue database the
adaptation was done in a leave-one-speaker-out (LOO) manner. So adaptation
was done using five speakers while evaluation was done with the respectively
missing sixth speaker. Thus adaptation data and test data were disjoint. The
results displayed in Table 2 show the effect of artificial reverberation in combi-
nation with MAP and MLLR adaptation. As can be seen that the adaptation
improves the baseline recognizer. However, neither the ct rv nor the ct-2 recog-
nizers can be improved by this speaker-independent adaptation technique.
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word accuracy
training set baseline MAP + MLLR
supervised
close-talking (ct) 474 57.9
reverberated (ct rv) 71.4 68.8
Lot + 1ctrv(ct-2)]]  69.2 66.7

Table 2. Recognition rates with different sets of artificially reverberated train-
ing data with the Verbmobil recognizer on the FAT-Mic7 test set

5 Discussion

Using MAP and MLLR adaptation and artificial reverberation in a difficult task
can improve the recognition a lot. However, many speakers are required. In case
of the AIBO database the recognition could be improved from 18.4% to 40.0 %
with the proposed adaptation method using just about 30 minutes of adaptation
data (ct-2 recognizer). However speaker-independent adaptation is not always
sensible. The adaptation of the recognizers which were trained using artificially
reverberated training data could not achieve further improvement. This is due to
the lack of speaker-independency. The five adaptation speakers could not provide
speaker-independent adaptation data superior to the artificial reverberation. In
addition the respective sixth left out speaker was always of the opposite gender
than the majority of the adaptation speakers (3 male and 3 female speakers). So
environmental adaptation could only be provided with the plain close-talking (ct)
recognizer. The use of artificial reverberation, however, was always beneficial.

Further experiments showed that additional speaker-dependent adaptation
yields even more improvement on both recognition tasks. In this manner the up-
per boundary of 51.1 % WA on the AIBO rm task can be broken. So 54.9 % WA
on the AIBO database are achieved with the previously adapted recognizer. The
speaker-dependent adaptation of the AIBO rm recognizer — and hence the the
new upper boundary — is only slightly better with 57.9% WA. For the Verbmo-
bil database no upper boundary can be determined. Again speaker-dependent
adaptation improves the recognition further to 76.1 % WA.

6 Summary

In this paper we showed that speaker-independent adaptation to a certain acous-
tical environment is possible using a small set of in-task-domain training data.
We used three databases in our experiments: the AIBO, the Verbmobil, and the
Fatigue database.

Furthermore we added artificial reverberation to the close-talking signal in
order to reduce the acoustical mismatch between training and test data. For the
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adaptation of the codebook we used MAP and MLLR adaptation. The transi-
tion probabilities and the state weights were adjusted using the Baum-Welch
algorithm.

On the AIBO distant-talking recognition task a total improvement from 9.9 %
WA to 40.0% WA could be done using only about 30 minutes of adaptation
data in supervised condition. In unsupervised condition 36.5% WA could be
achieved. However, this kind of speaker-independent adaptation is only sensible
if the adaptation set includes enough speakers to keep the constraint of speaker-
independency as could be shown with the Fatigue test set. The reverberated
version could recognize 71.9 % WA while the speaker-independent adaptation
yielded only 68.8% WA. Speaker-dependent adaptation is suitable for further
processing. So 54.9 % WA on the AIBO database and 76.1 % WA on the Fatigue
database could be achieved.
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