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Abstract

We present various kinds of variational PDE based
methods to interpolate missing sinogram data for to-
mographic image reconstruction. Using the observed
sinogram data we inpaint the projection data by diffu-
sion. To overcome the problem of contour blurring we
consider nonlinear and anisotropic diffusion based reg-
ularizers and include optical flow information in order
to preserve the sinuodal traces corresponding to object
contours in the reconstructed image. We compare our
results to a spectral deconvolution based interpolation
and show that the method can easily be extended to 3D.

1. Introduction

Tomographic image reconstruction is applied in var-
ious fields of medical imaging. Conventional CT scan-
ners and C-arm systems e.g. allow a tomographic re-
construction of a 2D or 3D image of a patient. For the
reconstruction, a rotating X-ray device is used to ac-
quire a sequence of angiographic X-ray images. During
the rotation around the humans body the attenuated
X-ray intensities are observed that are subjected under
the condition of the exponential attenuation law. Al-
gorithms like filtered-backprojection (FBP) introduced
by Feldkamp, Davis and Kress (FDK) [6] allow a 2D
or 3D reconstruction using the observed X-ray image
sequence. These kind of algorithms underlie the theory
of the fourier-slice-theorem that implies that at least an
acquisition angle of 180 degree – using parallel beam
and angle steps as small as possible – is necessary for
providing a high image quality of the reconstructed im-
age and avoid streak artifacts. Since the acquisition
trajectory of the X-ray source is circular all attenua-

tion coefficients inside the reconstructed image plane
– that lies orthogonal to the rotation axis – describe
a sinusoidal trace (see Figure 1) in the projection im-
age sequence. The amplitude of the sinusoidal trace of
an attenuation coefficient is determined by its distance
to the rotation axis. Therefore this projection image
sequence is also called sinogram. Using a 1D X-ray de-
tector, the horizontal axis in the sinogram corresponds
to the projection angle and the vertical axis to the pixel
position of the observed X-ray intensity inside the de-
tector.

Unfortunately in some clinical applications like lim-
ited angle tomography or cardiac CT the sinogram data
is sparse and the reconstructed image will observe vari-
ous kinds of artifacts. The more uniformly spread along
a half or full circular scan the sinogram data is given
in small angular steps, the better the image quality of
the reconstruction will be.

In this paper we present a new variational approach
for sinogram data interpolation prior to reconstruc-
tion based on the work of Weickert [12]. In contrast
to interpolation prior to reconstruction there are algo-
rithms like Gerchberg-Papoulis (GP) [10] that are iter-
ative procedures for band-limited extrapolation. Hap-
ponen [7] performed sinogram extrapolation based on
Stackgrams. A hierarchical approach using geometry
information can be found in [9]. We see the sinogram
as a partial incomplete 2D or 3D image.

2. Interpolation methods

Our key idea comes from video inpainting (cf.
e.g. [5]) where several key frames of an image sequence
are given and new frames are interpolated in-between.
For a 2D CT slice reconstruction we have a 2D sino-
gram with missing samples along lines (gaps) where the
gap positions are exactly known. Using the observed



projection data we use diffusion to inpaint the missing
sinogram data. High frequencies along the X-ray de-
tector line correspond to structure in the reconstructed
object. If we blur the sinuodal traces along the detector
line we will also blur the contour of the reconstructed
object. Since the shape information of the object is dis-
tributed in the whole sinogram image it is preferable
to consider all the observed sinogram data for the in-
terpolation. Therefore we regularize additionally along
the projection angle axis and use different kind of dif-
fusivity functions that allow us to achieve a smooth
interpolation along the sinuodal trace while preserving
edges along the detector lines.

The variational approach is compared to the spec-
tral deconvolution (SD) algorithm introduced by Til
Aach [1],[2] for defect pixel interpolation of flat panel
detectors. In our case the defect pixel correspond to
the known gaps in the sinogram image.

2.1. Spectral Deconvolution

We have two sets of input: an observed sinogram
g(n) (of size N×Φ) - where N is the number of detector
pixel and Φ the scan angle - and a gap image mask
w(n) that has zero lines at projection angles φ where
no data is given otherwise it is one. And therefore we
can formulate an incomplete sinogram image as follows:

g(n) = f(n)w(n), (1)

where f(n) is the ideal sinogram that we want to find.
It would seem easy that all we need is to divide the
incomplete sinogram g(n) by the gap mask w(n) in or-
der to obtain f(n). However, a division is not possible
as the mask is constituted of zero values of the gaps.
Therefore we apply a spectral deconvolution introduced
by Til Aach [1],[2].

2.2. Variational Interpolation Approach

In the variational setting the ideal and the incom-
plete sinograms are considered as functions f, g : Ω →
R in the sinogram domain Ω ⊂ R2 (or Ω ⊂ R3). f is
obtained by minimizing the energy functional

E(f) =
∫

Ω

w(x)(g − f)2 + (1− w(x))Ψ(s2) dx , (2)

where x ∈ Ω, s2 = |∇kf |2 and k ∈ {1, 2}. The first
term ensures the equivalence of g and f at positions,
where the sinogram data is known, and Ψ : R → R is
a regularizing term filling in the missing information.
This leads to the Euler-Lagrange equations

−L(f) = 0 if w(x) = 0
f = g if w(x) = 1

∂f
∂n = 0 on ∂Ω

, (3)

with x ∈ Ω and the elliptic differential operator L(f) =
∇k ·(Ψ′

(s2)∇kf). This system of PDEs with Neumann
boundary conditions is discretized by finite differences
in space and for the nonlinear variants additionally by
an explicit Euler forward scheme in time. Afterwards it
is solved by either a simple Gauss Seidel iteration or if
necessary (to enable a fast transport of the information
through large gaps) by a multigrid solver (cf. [11]).

We have implemented various linear regularizers
with Ψ(s2) = s2 such as isotropic harmonic dif-
fusion (IH) L(f) = ∆f , biharmonic diffusion (BI)
L(f) = ∆2f , and anisotropic harmonic diffusion
(AH) L(f) = ∇ · (D∇f). The idea for AH is
that we try to smooth mainly in the direction of
the optical flow (cf. [8]). Therefore the tensor D =(

(u/v)2 + α1 u
u (1− (u/v)2) + α2

)
with α1, α2 > 0

was constructed using motion information from the left
to the right side of a gap approximated by the normal-
ized optical flow vector (u/v, 1)T . v is the size of a gap
measured in number of pixels. For 1D optical flow we
approximate the spatial resp. temporal derivative gx

and gt of g by finite differences, where gt is computed
between the two sides of a gap. We have

u = 0 if gx = 0
u = − gt

gx
if gx 6= 0 . (4)

In higher dimensions we get the optical flow vector by
solving a system of PDEs using multigrid.

Note that in 1D the harmonic diffusion would corre-
spond to linear and biharmonic diffusion to cubic spline
interpolation, in higher dimensions to using radial basis
functions ([3]). In addition to these we tried isotropic
nonlinear diffusion (IN) L(f) = ∇ · (Ψ′

(s2)∇f) with
a Charbonnier diffusivity Ψ

′
(s2) = 1

1+s2/λ2 and a con-
trast parameter λ > 0. More informations about PDE
based interpolation methods and their properties can
be found in [4], [12], [13].

3. Results

In 2D we implemented the interpolation algorithms
using matlab. As a test image we used a slightly mod-
ified Shepp-Logan head phantom (size 128x128) de-
picted in Figure 1. In the incomplete sinogram 66.2%
of the points were missing.

For computing the sinogram and the reconstruction
we used the matlab functions radon and iradon do-
ing parallel beam projections. As reconstruction er-
ror Er we measured the L2-norm per pixel between
the original and the reconstructed image in order to
compare the different methods. All subsequent errors
values have to be scaled by 10−4.



Figure 1. Phantom (top left (TL)), its sinogram
(bottom left (BL)), reconstructed image using
full sinogram data (top right (TR)) and sino-
gram with gaps (bottom right (BR)).

The reconstruction error of the original sinogram
without gaps was 9.41, the gapped sinogram without
interpolation gave 16.0. Simple linear interpolation
leads to an error of 9.61. Table 1 shows the errors
for different interpolation methods. The parameter
α is used to weight the smoothing in different direc-
tions, e.g. (0, 1) would be linear interpolation only in
y-direction. Note that the time for the reconstruction
is 3.45 seconds (on a Pentium M 1400Mhz Laptop).

In Figure 2 some of the interpolated sinograms are
shown. One can observe that edges along a detector
line is preserved while smoothing along the sinuodal
traces. Reconstructed images for different interpola-
tion methods with corresponding magnified image re-
gions can be found in Figures 3 and 4.

For the 3D experiments we used C++. Fig-
ure 5 shows the volume rendered 3D phantom (size
64x64x64) and the center slices of some reconstructed
volumes. Again about 60% of the sinogram data
(N = 256 × 128, Φ = 225) was missing. Since the
different interpolation methods can easily be extended
to 3D and gave qualitatively similar results to the 2D
case, we show here only the results for BI interpolation
that took 1.5 minutes.

We have seen that it is possible to interpolate miss-
ing sinogram data using fast variational techniques to

Method # Iter. Er α Time (sec.)
IH 200 9.60 (0.01,0.99) 0.67
BI 1000 9.54 (0.1,0.9) 6.48
IN 300 9.58 (0.1,0.9) 61.39
AH 300 9.52 (0.1,0.9) 2.23
SD 1000 9.93 - 21.02

Table 1. L2-norm of the reconstruction error
Er for different interpolation methods.

Figure 2. Interpolated sinogram using linear
diffusion (TL), SD interpolation (TR), AH in-
terpolation (BL) and BI interpolation (BR).

reduce streak artifacts without blurring important de-
tails in the reconstructed images. The next step will
be to use this method for real medical datasets.
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Figure 4. Reconstructed images using SD in-
terpolation (top) and AH interpolation (bot-
tom).

Figure 5. 3D phantom (TL) and center slices
of reconstructed volumes using full sino-
gram (TR), sinogram with gaps (BL) and sino-
gram interpolated with BI interpolation (BR).


