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ABSTRACT

In this paper, we propose a multi-modal non–rigid 2D-3D registration technique. This method allows a non–rigid
alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic
X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment
of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make
use of up–to–date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D
registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections.
In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler–Lagrange
equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic
reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed
radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the
algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field
is driven to minimize the “reconstruction distance” between the volumetric data and its 2D projections using
mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number
of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well.
Experimental results are presented on both artificial phantom and 3D C-arm CT images.

Keywords: Non-Rigid 2D-3D Registration, Fluoroscopic X-ray to C-arm CT Registration, Multi-Modal Regis-
tration, Computer-Assisted Surgery

1. INTRODUCTION
1.1. Clinical Motivation

The goal of 2D-3D registration is to find the 3D transform that aligns reconstructed volumes with intra–
interventional 2D images in order to make use of up–to–date information for surgical guidance and other in-
terventions. The 2D-3D non-rigid registration is a common problem that occurs for example in minimal invasive,
intra vascular and cardiac applications. One of these applications is the registration of a pre-reconstructed 3D
volume (e.g. liver or head) to angiographic or fluoroscopic 2D image sequences that are acuired during the
intervention where the patient is breathing or moving. After registration, the pre-reconstructed 3D volume can
be overlayed with fluoroscopic images to align the volume rendered 3D image with a catheter tip shown in the
fluoroscopy. The benefit of this multi-modal approach is that high contrast 3D data can be aligned with noisy
low contrast X-ray images, like fluoroscopies.

1.2. State-Of-The-Art

Many 2D-3D registration methods are proposed in literature. According to the distance measure, common
methods can be roughly classified into feature- or intensity–based. Feature–based approaches make use of
landmarks (fiducial or natural) or other anatomical features to match images. For example, Gueziec et. al.4

use surface features to align CT volume with fluoroscopy X-ray. Feldmar et al.5 presented a unified framework
for registration of curves and surfaces. Hamadeh et al.6 extended Feldmar’s method by combining segmentation
result of X-ray images. Intensity–based registration measure the similarity of intensity directly. Thus, no
feature extraction is required and the whole registration procedure can be automated. E.g., Weese et. al.7
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presented an intensity–based method for 2D-3D registration. LaRose et al8 investigate real time iterative X-
ray/CT registration techniques. Zollei et. al.9 employ mutual information as similarity measure and a stochastic
gradient ascent approach as optimization procedure in registration problems. Yao et. al.10 proposed an affine
2D-3D registration method based on a statistical model. S. Jonić, P. Thévenaz et. al.23 introduced a multi-
resolution spline-based 2D-3D alignment of CT volume and C-arm images for computer-assisted surgery.
Most of the prior work focused on parameterized transformation, such as rigid or affine transformation, i.e., the
spatial transforms are defined by a set of parameters. However, in many clinic applications, it is more reasonable
to describe the spatial transformations with a non–parameterized model, i.e., the displacement field.
The paper is organized as following: First, we introduce a mono-dimensional non–rigid registration method
and step through the world of algebraic reconstruction technique (ART). Then, we combine these two techniques
in a uniform framework to handle the 2D-3D multi-modal registration problem. Finally, we verify our approach
via experiments on two phantoms and a C-arm CT thorax image with a synthetic deformation.

2. INTRODUCTION TO NON-RIGID REGISTRATION

In this section we briefly introduce the framework of the intensity–based non-rigid registration of same di-
mensional images. Here, two volumetric data are given, template volume T and reference volume R with
R,T : Ω �→ R where Ω :=]0, 1[d and T (x ) is the intensity value at the spatial point x . For simplification, the
intensities of image data have been scaled into ]0, 1[.

2.1. Mono-dimensional Registration

The mathematical description of the mono–dimensional registration problem is to find a displacement field
u : R

d → R
d , such that

J [u ] := D[R,T ;u ] + αS[u ] = min (1)

The distance measure D indicates the dissimilarity between the two volumes. E.g., the sum of squared
differences (SSD) is one of the most popular distance measures for monomodal registration problems. The
regularizer S in (1) is added as the remedy for the arbitrary irregularity of transformation. They are defined as:

DSSD[R,T ;u ] :=
1
2

∫
Ω

(Tu(x ) − R(x ))2 dx and Scurv [u ] :=
1
2

d∑
l=1

∫
Ω

(∆u l(x ))2 dx (2)

and Tu(x ) denotes the deformed template volume T (x − u(x )). Many regularizers have been proposed in
the literature e.g. Modersitzki,15 Fischer,15 Hermosillo,2 Chefd’ Hotel,2 Broit11 et. al.. Here, we employ the
curvature regularizer. According to the theory of variational calculus, the optimal u in (1) is characterized by
the related Euler–Lagrange equation

f u(x ) + α∆2[u ](x ) = 0. (3)

f u(x ) is so-called external force term, which is computed from the intensity of images after transformation.
It drives the algorithm to search for the optimal displacement u that aligns images. Mathematically, f u(x ) is
the Gâteaux derivative of the distance measure D in (1).

2.2. Mono-dimensional Image Distance

For the SSD distance measure, the force can be computed as following,

f u(x ) = DI
u (x ) · ∇Tu(x ) (4)

Here ∇Tu is the gradient vector field of transformed image. It contains the structure information of the
underlying objects and determines the direction of the force term. DI

u (x ) = (R(x ) − Tu(x )) is the variational
gradient of the SSD based dissimilarity functional as shown by Hermosillo, Chefd’ Hotel et. al.2 and in this case
it is the difference of two images’ intensities. It can be understood as a signed distance between [−1, 1]. If two
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mono–modal images are to be aligned, this factor DI
u (x ) will approach to 0 and the force will nearly vanish.

An O(N log N ) numerical scheme (time-marching, DCT-technique) for equation (3) was designed by Fischer15

and Modersitzki15 . For multi-modal image registration the variational gradient can easily be modified also for
statistical dissimilarity functionals like Cross Correlation and Mutual Information. A comparison of different
dissimilarity functionals for variational methods is given e.g. by Hermosillo.2

The conventional mono–dimensional non–rigid registration techniques are not applicable in 2D-3D registration
problem, because their distance measures - DI

u (x ) for SSD - fail to express the dissimilarities between a 3D
volume and 2D projections. Therefore we replace DI

u (x ) with a new 2D-3D disssimilarity measure.

3. NON–RIGID 2D-3D REGISTRATION

The 2D-3D registration can be defined as following. We have the floating volume Tu(x ) and a number of 2D
projections Rφ’s. Here φ = 0, ...,Φ and Φ is the number of projections. Given the projection model, the task of
non-rigid 2D-3D registration is to find the 3D displacement u that aligns the volume Tu(x ) to the 2D projections
Rφ’s. In order to solve 2D-3D registration under variational framework, we need to find a proper distance, let’s
say DR

u (x ), to take place the DI
u (x ) in (4), which describes the dissimilarity between the 2D-3D images. Such

a distance needs to fulfill the following criterions: DR
u (x ) must be bounded, the value of DR

u (x ) can indicate a
signed distance between Tu(x ) and Rφ’s and if the Rφ’s are the projections of the Tu(x ), DR

u (x ) = 0.
In this paper we propose 3D reconstructed residuals between 2D projections and 3D volume as this signed dis-
tance, based on statistical dissimilarity functionals. Pure intensity based residual terms are extensively used in
the iterative reconstruction approaches, e.g., Censor17 and Gordon’s16 component averaging algebraic reconstruc-
tion scheme and others can be found in Jiang20 and Wang21 . Different ARTs have different residual weighting
terms. But all the residuals satisfy the previous three criterion of DR

u (x ). In the following, we introduce the
relevant knowledge about algebraic reconstruction, then present the new 3D force term based on residuals and
give the overall algorithm finally.

3.1. Algebraic Reconstruction Technique
For the ease of presentation we serialize Tu(x ) into a vector tu according to lexicographical ordering. The
projections Rφ’s are also serialized into one vector in following way:

r = (r1, r2, . . . , rΦ) = (r1
1 , . . . , r1

m , · · · , rΦ
1 , . . . , rΦ

m)� ∈ R
mΦ (5)

Each rφ is the lexicographical ordering vector of projection image φ with the ith pixel intensity rφ
i . And m

is the number of observed intensities in each projection image. The task of algebraic image reconstruction is to
solve the equation system

At = r (6)

(with unknown t) where the (mΦ×N )-matrix A = (aΦ
i,j ) defines the projection geometry of a C-arm system or

CT-scanner.

i−th X−ray source

rφ
i

aφ
i,j

tj Each aΦ
i,j element represents the contribution of the jth

voxel to the ith ray during the casting of an X-ray through
the human body. For each X-ray we get one of the following
equations (so called hyperplanes):

aφ
11t1 + aφ

12t2 + · · · + aφ
1N tN = r1

aφ
21t1 + aφ

22t2 + · · · + aφ
2N tN = r2

...
aφ
M1t1 + aφ

M2t2 + · · · + aφ
MN tN = rM .

Several projector models18’22 are proposed in literature to
determine the aΦ

i,j coefficients.
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Since A is large, sparse and unstructured it is not direct invertible. Several (block-)iterative solvers like Kacz-
marz, Cimmino, Censor and Gordon (a convergence study and survey of the different iterative solvers is given
by Jiang21 and Wang20) were introduced in the past. For Kaczmarz it is shown that even in the inconsistent case
of (6) the iterative solution scheme can converge towards the least square solution between all 2D projections of
the reconstructed image and the observed X-ray images. In these reconstruction techniques, the intensities in
image t are updated corresponding to a relaxation residual. The reconstruction process stops when

‖Atk − r‖ < ε (7)

this means that the relaxation residual becomes small enough. The relaxation can be seen as a driving force in
the reconstruction, whose value indicate scale signed “distances” between 3D image and observed projections.
Ideally, when the observed 2D images are exactly the projections of the volume, the residuals on every voxels
vanish. This strike property inspires us to use residuals to build up the external force for the 2D-3D registration
equation.

3.2. 2D-3D Distance Measure using Mean Relaxation
To tackle the multi-dimensional distance problem of DI

u (x ), we use the idea of “reconstructing” the 2D dissimi-
larity between all corresponding projections of the floating template volume tu

hφ
u := Aφtu (8)

and X-ray images rφ into a 3D dissimilarity DR
u (x ) that comes from algebraic reconstruction theory. We use

Censor and Gordon’s17 component averaging (CAV) technique (here, also other block-iterative ART schemes,
e.g. Cimmino, are possible as well) to compute for each voxel a dissimilarity value to define the signed distance
DR

u (x ) ∈ R and x ∈ Ω.
The common idea of all algebraic reconstruction techniques like ART, SART and CAV is “minimizing” the
weighted back-projection of the pure intensity based 2D residual

d I
φ,u := rφ − hφ

u (9)

between all projections of the intermediate reconstruction result tu - in our case the floating template volume
- and the observed X-ray images r , whereas Aφ only contains the ray equations from projection φ. d I

φ,u is a
vector that contains for the projection angle φ the difference image between the observed X-ray image rφ and the
projection of the deformed 3D template image with deformation u . The i th element d I

i,φ,u denotes the intensity
difference of the i th X-ray in the difference image for projection angle φ. If we serialize all 3D spatial points
(voxel) x from j = 1, · · · ,N , the j th reconstructed signed distance DR

u (x ) using mean relaxation, as introduced
by Prümmer, Han et. al.,1 is defined as:

DR
u,j :=

1
Φ

Φ∑
φ=1

m∑
i=1

aφ
i,jd

I
i,φ,u

n∑
l=1

sφ
l |aφ

i,l |2
. (10)

where sφ
l is the number of non-zero elements (X-ray intersections of voxel l) in the l th column of Aφ. The

pure intensity based residual d I
φ,u in the nominator of (10) between the projection of the deformed template and

the observed reference image is averaged by the components (aφ
i,j ) and back-projected into 3D. DR

u (x ) is then
the 2D-3D mean relaxation distance between tu and r for all given reference images. Therefore we denote this
2D-3D distance with MRCAV. The new relaxation force is then defined as

f R
u (x ) = DR

u (x ) · ∇Tu(x ). (11)

The modified Euler–Lagrange equation becomes

f R
u (x ) + α∆2[u](x ) = 0. (12)
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With such a relaxation force term, this equation characterizes the optimal 3D displacement field that mini-
mizes the relaxation distance. At the same time, it has the same form as the original Euler-Lagrange equation of
a 3D-3D registration problem. Thus, we apply the same direct DCT-technique introduced by Fischer15 to solve
the equation (12). The non–rigid 2D-3D registration algorithm is summarized as follows:

Initialization: k ← 0, u(k) ← 0
Time Marching: k < maxIterations

Compute DMI
u,(k)(x ) using (10) and (13)

Compute f MI
(k),u(x ) using (14).

Compute u(k+1) via solving (12) using f MI
(k),u(x ).

k ← k + 1

Figure 1. Non-rigid multi-modal 2D-3D registration

3.2.1. Sum Of Squared Difference (SSD)

For the new 2D-3D distance we replace the Gâteaux derivative f u(x ) of distance measure D in (1) with an
approximation (11). According to the convergence theorie of the block-sequencial CAV scheme16 the computed
relaxation for each voxel during the algebraic image reconstruction tells the solver the amount of intensity
correction to converge overall towards (7). But in our case instead of applying this intensity correction step we
deform the 3D template image tu to minimize the “reconstruction“ distance in (10).
In practice different kind of 3D reconstruction algorithms for C-arm CT images are applied. Some of them apply
a tissue intensity mapping from the reconstructed image intensities to real Hounsfield units. If we compute the
forward projection of the deformed and previously intensity scaled 3D image, the d I

φ,u residual between the
observed fluoroscopies and the computed projections would not become zero although the images look similar
even with a perfect 2D-3D alignment. The reason is that the intersection point in the consistent case of (6)
of the hyperplanes - defined by the observed X-ray images - is not close to the solution of the pre-operatively
3D reconstructed C-arm CT image. This means a 2D-3D distance offset is observed and therefore the MRCAV
distance will not be zero even if the 2D-3D alignment is perfect. If the SSD based 2D residual d I

φ,u is used in
(10), a proper scale of the intensities in tu is essential such that with perfect alignemt d I

u becomes zero.

3.2.2. Mutual Information (MI)

To overcome the mono-modal restriction of the 2D intensity based residual (9) - which corresponds to the
variational gradient functional for SSD between the computed projections of the deformed template image tu

and the observed low contrast X-ray images - we replace it with the variational gradient functional for MI. As
shown by Hermosillo, Chefd’ Hotel et. al.2 the variational gradient for MI is given by

dMI
i,φ,u := − 1

m

(
∂2Pu(i)
Pu(i)

− p′
u(i2)

pu(i2)

)
. (13)

i ∈ R
2 is a pair of the corresponding intensities (rφ

i ,hφ
i,u), P the smooth discrete joint density function, its

marginals pu(i1) =
∑

R Pu(i)di1 and pu(i2) =
∑

R Pu(i)di2 and ∂2Pu denotes the partial derivative of Pu with
respect to its second variable. We also ”reconstruct” dMI

φ,u into 3D using (10) and replace for MI d I
φ,u with dMI

φ,u .
The dissimilarity measure dMI

φ,u is signed and becomes zero if the intensity distributions of rφ and hφ
u∀φ become

equal. The reconstructed dissimilarity DMI
u (x ) using (10) is used for the computation of the 3D force

f MI
u (x ) = DMI

u (x ) · ∇Tu(x ). (14)

The reconstruction of the 2D MI based dissimilarity functional to 3D provides also a solution to the Euler–
Lagrange equation (12) of a common 3D-3D registration problem.
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3.2.3. Generalization of Mean Relaxation

In our experiments we used the mutual information dissimilarity functional dMI
φ,u for the residual between the

observed X-ray images rφ and the projections hφ
u of the deformed template image. The proposed residuals d I

φ,u

and dMI
φ,u can also be replaced in the multi-dimensional case with the variational gradient of other dissimilarity

functionals like Cross Correlation as shown for mono-dimensional registration by Hermosillo, Chefd’ Hotel et.
al..2

3.3. Implementation Aspects

For the computed forward and backward projection, applied during the “mean relaxation” distance computation,
several types of projectors are known. A fast, but in the sense of sampling theorem not optimal, projector is
known from volume rendering techniques, the so called alpha clipping19 (AC). Here, a voxel is by definition cubic
and the contribution from the j th voxel to the i th X-ray is the linear intersection length of the ray and the
voxel. Since we have a cone-beam projection the sampling rate of voxels that are closer to the X-ray source is
higher than the one that are more distant. Using linear interpolation leads to aliasing artifacts in the computed
projection image. Since our computed mean relaxation distance consists of the residuals between the observed
X-ray images and the computed projections, artificial introduced 2D residuals effect the mean relaxation distance
(MRCAV) by introducing ring-like artifacts. This leads to a non-smooth MRCAV distance measure.
A more sophisticated projector model is based on interpolation kernels (IK) like Kaiser-Bessel kernel. The
spherical kernels overlap each other and can be adapted in their size corresponding with increasing X-ray source
distance. These flexible interpolation kernels allow a adequate voxel sampling and provide a much smoother
projection image compared to the AC method. But the aliasing-artifact reduction is in trade of to the computa-
tion time of the forward and backward projection. In this work we apply both the IK algorithm introduced by
Müller18 and fast AC.

4. EXPERIMENTS

First, we demonstrate the alignment of a simulated 3D cube phantom with DRRs of a sphere (Sphere-Cube).
Second, we align a simulated, synthetic deformed 3D phantom (SphereHelix) to its DRRs. The DRRs are
computed before the deformation. Third we use a real 3D thorax C-arm CT image , apply an artificial non-rigid
deformation, and align the deformed thorax to noisy DRRs acquired before deformation.
For comparison we define the distance εdis between the ground truth (GT) tGT - with intensity mean t̄GT and
standard deviation σGT - and the aligned 3D image tu as

εdis :=
1

σGT

√√√√ N∑
j=1

(t j ,u − tGT
j )2 and σGT > 0 (15)

For the description of the shown experiments we introduce the following abbreviations: Volume Rendering
Technique (VRT), Multiplanar Reconstruction (MPR), feed-, head-, left-, right-, anterior-, posterior-aligned
MPR (MPR-F, MPR-H, MPR-L, MPR-R, MPR-A, MPR-P).
For practical application it is most important that the 2D-3D registration algorithm is robust against noisy
projection images. During intervention like catheterisation only low contrast fluoroscopic images are observed to
keep the X-ray dose for the patient as low as possible. A histogram equalization is applied to each single DRR and
afterwards all DRRs are disturbed by Poisson noise to simulated more realistic fluoroscopies. The equalization
is a non-linear intensity transformation of each single DRR. After the transformation the algebraic equation
system (6) becomes highly inconsistent and makes a standard algebraic reconstruction nearly impossible. For
the Sphere-Cube (Fig. 2), HelixSphere (Fig. 3, 4) and C-arm CT data (Fig. 5, 6) are several experimental cases
(Table 1), e.g. different number of used X-ray images and noise level, applied.
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4.1. 2D-3D Sphere-Cube Phantom
We start the evaluation of the multi-modal 2D-3D non-rigid registration algorithm with a simple 2D-3D sphere-
cube phantom (SCP) with a homogeneous background (no soft tissue simulated) and analyse the robustness of
the reconstructed dissimilarity DR

u (x ) against different Poisson noise level. The result of the deformed cube after
registration and corresponding noisy DRRs (disturbed by different noise levels) is shown in Fig. 2.

Figure 2. Sphere-Cube phantom (from top left): VRT of GT, MPR-F of GT, VRT and MPR-F of the template before
alignment, DRR of GT; 2nd row (result of case 1.1): VRT with u , MPR-L with u , MPR-F with u , one of the noisy
rφ (DRRs) used for alignment, corresponding DRR after alignment; 3rd row (result of case 1.2): VRT, MPR-L with u ,
MPR-F with u , noisy rφ (DRR) used for alignment, corresponding DRR after alignment; 4th row (result of case 1.3):
VRT, MPR-L after alignment, VRT before alignment, MPR-F with computed u and DRR after alignment. In case 1.1
the deformed 3D cube becomes very close to the GT sphere. In case 1.2 leads the stronger Poisson noise compared to
case 1.1 to a less curved deformation of the cube. The missing corner of the cube template (4th row) is also well aligned
to a sphere like in case 1.1.

4.2. SphereHelix Phantom
The SphereHelix phantom (top left image in Fig. 3) consists of spheres (constant intensity of 0.9) aligned along
a helical trajectory with decreasing sphere and helix radius. Soft-tissue (intensity range [0, 0.3]) is simulated
via uniformly distributed noise in the image background. The phantom is finally filtered with a gaussian kernel.
The non-rigid deformed phantom, shown in Fig. 3 (left image in 2nd row), is aligned with its DRRs computed
before the deformation. The experimental cases and results are shown in Fig. 3 and Fig. 4.
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Figure 3. SphereHelix phantom: The ground truth phantom via VRT, MPR-L, MPR-F and one of the computed DRRs
(rφ, no noise) is shown in the 1st row. The VRT, MPR-L, MPR-F with ground truth deformation field u and DRR of
the deformed GT (t) is shown in the 2nd row. In the 3rd, 4th and 5th row is respectively case 2.1, 2.2 and 2.3 shown
via VRT, MPR-L, MPR-F with computed u and one of the used DRRs (rφ, with noise). The deformed stick along the
center axis of the phantom is moved back to the center after the alignment in each of the three cases. In the MPR-F
is respectively the computed non-rigid squarish looking u shown. In case 2.2 is the IK projector used which provides a
smoother alignment where the center stick is less deformed along its outer contour compared to the cases 2.1 and 2.2
where the AC projector is used. The histograms of all computed and for the alignment used DRRs are equalized and
scaled to the range [0, 1024].
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Figure 4. SphereHelix phantom: Case 2.4 and 2.4 is respectively shown in the 1rd and 2nd row via VRT, MPR-L,
MPR-F with computed u and one of the used DRRs (rφ, with noise). In case 2.4 a less curvatured u is allowed compared
to case 2.5 (see Table 1) and also stronger Poisson noise is added to the computed DRRs used for the alignment.

Figure 5. C-arm CT thorax image. The GT thorax image is deformed via non-rigid sinuodal deformation that actually
shrinks the thorax image before alignment. From left to right: computed DRR without noise, noisy DRR of case 3.1
and case 3.2, difference image of the center volume slice (CVS) between the GT and the deformed thorax image before
alignment, difference image of CVS of case 3.1 and case 3.2 after alignment. In case 3.2 is stronger Poisson noise added
to the DRRs used for the alignment. The backbone and chest is moved back close to its location before the artificial
deformation.

4.3. C-arm CT Image

Two test cases are shown (Fig. 6 and Fig. 5) using a real C-arm CT thorax image. A non-rigid (sinuodal)
synthetic deformation was added to the thorax image to simulate breathing of a patient. The GT thorax image
represents the thorax after breath in and the template image after exhalation. The computed projection images
used for alignment are also histogram equalized and disturbed by Poisson noise.

5. SUMMARY AND DISCUSSION

A new multi-modal non-rigid 2D-3D registration technique is presented. It allows the registration of pre-
operatively reconstructed 3D C-arm CT images with intra-intervetionally acquired noisy X-ray images (fluo-
roscopies). The benefit of this 2D-3D registration approach is its scalability in the number of used 2D reference
images. Although it makes less sense to register the volume with only one X-ray image, the registration algorithm
can already be started with one X-ray image. Subsequently acquired intraoperative X-ray reference images can
be added successively during the intervention. The more reference images, uniformly spread around 180 degree,
are used for registration the more accurate and smooth the non-rigid transformation will be.

Proc. of SPIE Vol. 6144  61440X-9



Using component averaged back-projection of the variational gradient functional of MI generates a signed 3D
distance that can be introduced into the 3D-3D registration framework to compute a smooth non-rigid 3D trans-
formation.
The non-rigid registration can only deal with small deformations, e.g. breathing of a patient. If the orientation of
the high contrast 3D image is unknown a rigid 2D-3D registration should be applied before the 2D-3D non-rigid
alignment. Using interpolation kernels for the projector provides a much smoother MRCAV distance with less
artifacts in the 3D reconstructed variational gradient functional.
This 2D-3D registration approach allows an efficient implementation. Mapping e.g. a mean relaxation of the
SART18 algorithm on graphics hardware to back-project the dissimilarity into 3D and using a fast DCT-technique
introduced by Fischer, Modersitzki et. al.15 to solve the Euler-Lagrange equation (3), the algorithm becomes
capable for clinical applications. Furthermore the forward and backward projector for MRCAV does not have
necessarily the same. For the forward projection of the deformed volume tu a fast volume rendering technique
using transfer functions can be applied. The parameters of the transfer function are used to identify the voxel
intensities that are considered for registration as introduced by Hahn3 et. al.. The existing 2D-3D non-rigid reg-
istration algorithms are not runtime optimized and only part of a scientific framework available at the University
of Erlangen-Nuremberg, Germany.
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Case Iterations Φ µ Proj . α τ BINS εdisbef . εdisaft. time (min)
1.1 20 9 10 AC 0.6 1.7 25 0.943928 0.310622 2
1.2 40 9 500 AC 0.1 3.0 30 0.943928 0.399099 4
1.3 40 10 5 AC 0.01 6.0 25 0.967389 0.475514 4
2.1 30 12 50 AC 2.5 150 25 0.651297 0.454372 3
2.2 90 13 1200 IK 0.09 400.0 25 0.651297 0.435077 120
2.3 60 19 1500 AC 3.0 100.0 25 0.651297 0.407933 7
2.4 40 45 1000 AC 2.0 35.0 25 0.651297 0.386791 12
2.5 80 45 500 AC 0.9 20.0 25 0.651297 0.378900 24
3.1 30 16 800 AC 15.0 20.0 25 1.053216 0.583662 10
3.2 40 16 1300 AC 15.0 20.0 25 1.053216 0.543920 15

Table 1. Parameter setting and results of the Sphere-Cube phantom (case 1.x; 2D: 256×256×Φ, 3D: 64×64×64), Sphere-
Helix phantom (case 2.x; size 2D: 256×128×Φ, 3D: 64×64×64) and C-arm CT data (case 3.x; size 2D: 256×256×Φ, 3D:
128×128×128). The table shows the result in dependency of the number of used X-ray images Φ, Poisson noise strength
µ, used projector for MRCAV, curvature regularization α, time-step τ , used BINS for the joint-histogram and the error
distance εdis(15) between the aligned 3D image and the GT before and after alignment. Hardware: Intel Pentium 3GHz.
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Figure 6. C-arm CT thorax image. 1st row: GT thorax image shown via VRT, MPR-L and MPR-A. 2nd row: artificial
deformed thorax image with non-rigid sinuodal deformation that shrinks the thorax image. Shown via VRT, MPR-L and
MPR-A with ground truth deformation field u . 3rd row: result of case 3.1 shown via VRT, MPR-L and MPR-A with
computed deformation field u after alignment. 4th row: result of case 3.2 shown via VRT, MPR-L and MPR-A with
computed deformation field u after alignment. The computed deformation u represents in both cases the shown ground
truth deformation in the 2nd row. In case 3.2 the backbone is less curved after alignment compared to case 3.1 applying
more iterations, but also stronger Poisson noise disturbed DRRs.
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