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Chapter 1

Introduction

In recent years, the interest in an area called Augmented Reality (AR) has been
increasing, in research as well as in industry. Actually, Augmented Reality
is a wide field, where different research areas found a common ground to
build integrated systems and thus to mutually profit from the gained experi-
ences. In order to get an impression of the wide area of applications for AR
techniques, some examples of AR research projects of the past few years are
given in the following.

The objective of the BMBF1 funded project Arvika [Fri04, ARV] (and also
of its successor Artesas [ART]) was to build an AR system that supports the
development, production, and service of technical products in industry. The
main area of application was the construction and manufacturing of cars and
aircrafts.

Geist [Kre01, GEI], which was also funded by the BMBF, is a project that
uses a mobile AR system as a guide to a historic sightseeing tour to cultural
heritage. Geist consists of three main parts: a tracking component that al-
lows for an estimate of the user’s position and orientation, a database query
engine to access the information about the historic sites, and an interactive
storytelling component to entertain the user by integrating her into a fictional
historic novel. A similar idea is realized in the Archeoguide [Vla02, ARC]
system (funded by the European Union and the Archeoguide consortium),
which is a mobile guide to archaeological sites supported by AR, including
the 3-D visualization of ancient buildings of which only ruins remained.

In the Vampire project [VAM], which is funded by the European Union,
a system is being developed that is capable of storing and analyzing data
acquired by cameras mounted on the user’s head. These data allow the
user to submit queries to the system (e. g., ‘where did I put my keys?’), the
system’s response being visualized by means of a head-mounted display.

1 Bundesministerium für Bildung und Forschung (German Federal Ministry for Education and
Research)

1
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Reality−Virtuality (RV) Continuum
Environment

Virtual

Augmented Reality

Real
Environment

Augmented Virtuality

Mixed Reality

Figure 1.1: Following [Mil99], the Reality-Virtuality Continuum describes the different
levels of augmentation of either a real or a virtual environment. The two
extremes are Reality on the left and Virtuality (or Virtual Reality) on the
right. Mixed Reality comprises both, Augmented and Virtual Reality, which
cover the left and right parts of the continuum excluding the end points.
This work deals with problems of Augmented Reality, i. e., augmenting real
scenes by computer generated objects or data.

Another area where AR methods are of interest is medicine [Mau01, Sal01,
Sau01, Sch02c, Kha03, Vog03b, Vog04c]. Of special interest is neurosurgery
[Lié01] and minimally invasive surgery [Sch03a, Sch03b, Tra04, Vog05]. Here,
AR can be used, e. g., for the visualization of pre-operatively recorded med-
ical data like CT or MR. In an intervention the data is rendered with correct
position and orientation and thus assists the physician during navigation.

These projects show that Augmented Reality is a diverse field of research.
As a result, this work can treat only a small part of Augmented Reality, the
emphasis being on computer vision methods needed for AR applications.

In the following a definition of the terms Augmented, Virtual, and Mixed
Reality will be given as well as a problem statement that defines the objective
of this work. After that, in Section 1.2, exemplary computer vision problems
that arise in Augmented Reality applications are described. The contribution
of this work is summarized in Section 1.3. At the end of the introductory
chapter an overview over the rest of this work is given.

1.1 Problem Statement

First, the term Augmented Reality will be clarified. We adopt the definition
as given in [Mil99], where the terms Augmented Reality and Augmented Virtu-
ality are introduced, both being considered to be part of a so-called Reality-
Virtuality Continuum, which is shown in Figure 1.1.

At the ends of this continuum we have environments that are either com-
pletely real or completely computer generated. The latter one is widely
known as Virtual Reality, which usually denotes an interactive, artificially

2



1.1 Problem Statement

created environment. Virtual Reality can be completely obtained using com-
puter graphics methods, and therefore it will not be discussed further in
this work. Augmented Virtuality denotes the part of the continuum that
describes virtual environments that have been augmented by real objects,
while Augmented Reality means that real scenes have been augmented by
virtual, i. e., computer generated, objects or data. Both, Augmented Virtu-
ality and Augmented Reality, are summed up under Mixed Reality, which
describes the whole Reality-Virtuality Continuum without the extreme cases
of a completely real or virtual environment.

Different methods exist for visualization in Augmented Reality applica-
tions: monitors, either standard or 3-D, or head-mounted displays (HMD).
A 3-D auto-stereoscopic monitor [Dod95, Dod00, SEE] has the advantage
that the user does not have to wear additional equipment to view the aug-
mented scene. There also exist 3-D monitors that are based on polarized light
[IND], where the user has to wear special glasses that separate the left and
right images. However, in contrast to a HMD a 3-D monitor is not mobile.
Two kinds of head-mounted displays are currently available; the first type
is called optical HMD (cf., e. g., [Aue99, Sal01]), the second one video see-
through HMD, e. g., [Vog04c]. The main difference between the two types
is that optical HMDs use an optical system, i. e., lenses, for combining real
and virtual, while video see-through HMDs use (one or two) cameras for
acquisition of the real environment. An example of the video see-through
system used in the Vampire project is shown in Figure 1.2. The (digital) im-
ages taken by these cameras can be combined with the computer generated
objects or data by means of software. A comparison between the two kinds
of HMDs is given in [Sch00b].

The scenario of this work is an Augmented Reality setup, where real
scenes are to be augmented with artificially generated objects that may be
occluded by real objects, and vice versa. Possible applications include archi-
tecture for a visibly correct augmentation of buildings or parts of buildings
that are yet to be built, in order to get an impression what the results will
probably look like [Kli01].

The data necessary for computing correct occlusions and a 3-D visualiza-
tion is acquired by a stereo camera system that is either mounted on the head
of the user who wears a video see-through HMD displaying the augmented
images, or from a stereo system moved by hand, where instead of a HMD
a standard or 3-D monitor is used for visualization. In the latter case, the
system may also be used off-line, i. e., without real-time restrictions.

When using stereo cameras for computing occlusions, the problem of cam-

3



Chapter 1 Introduction

Figure 1.2: This image shows a person wearing a video see-through HMD that is used
in the Vampire project. Two cameras are mounted on a helmet directly
above the HMD. These are used as stereo cameras for visualizing the (aug-
mented) scene in the HMD.

era calibration arises, which mainly means that the rigid transformation
(rotation and translation) from one camera to the other has to be known.
Usually, this transformation is determined using a calibration pattern with
known geometry, which allows for the computation of all (intrinsic and ex-
trinsic) camera parameters. The drawback of this approach is that such a
system is often not ‘plug-and-play’, i. e., the user cannot just put on the HMD
with the cameras and start working but has to take images of the calibration
pattern before and perform the calibration. This is especially a problem if a
camera system is used where either the cameras can be mounted separately
by the user (and therefore have different relative positions each time they are
mounted anew), or for systems which are fixed at the display but where the
camera positions may change slightly due to slackness. Note that the latter
is not only a problem at the beginning of the usage of the system, but also
has influence while the system is in use, as the camera positions may change
slightly when the user moves, which would result in incorrect occlusions.

Therefore it is desirable to have a system that is able to calibrate itself
without using a calibration pattern of known geometry and without explicit
user interaction, i. e., during the actual usage of the system just by ‘looking
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around’, and to update the camera calibration online and thus correct small
changes in the relative positioning of the cameras, also without user interac-
tion. This work deals with the first problem of stereo self-calibration, and the
presented algorithms can also be used for re-calibrating the system online.

1.2 Augmented Reality and Computer Vision

This section gives an overview over common computer vision problems in
Augmented Reality settings illustrated by means of examples. Since this is a
wide area with many different applications, we will restrict the overview to
methods that are related to the problems of stereo and camera calibration.

An important task in Augmented Reality is the tracking of the user’s pose
(position and orientation), which is needed for a visibly correct augmenta-
tion of the scene. There are different methods (e. g., mechanical, magnetic,
inertial, acoustic, GPS, optical) for performing this task, often using addi-
tional tracking devices. An overview can be found in [Aue00]. In many
applications a single tracking method is insufficient and different methods
have to be combined, which is called hybrid tracking [Aue00, Neu99, Rib02,
Rib03, Rib04].

A common approach for optical tracking in the Augmented Reality com-
munity is the use of markers (often called ‘fiducials’ or ‘target’) that define
a fixed reference coordinate system [Neu99, Vog02, Cha03a, Cha03b]. These
allow for the calibration of a camera (usually a single one) using standard
camera calibration techniques, which means that camera position and ori-
entation with respect to a given world coordinate system is known at any
given time. Usually, no occlusion handling is done, and the markers are still
visible in the augmented scene.

A system that also uses standard camera calibration methods, but where
the ‘markers’ used are not visible in the augmented scene any more, is de-
scribed in [Sch01b, Sch01c, Sch00b]. The basic idea of this system is to use
a small portable object of known geometry as a calibration pattern, and to
‘substitute’ that real object with a virtual one in the final augmented scene.
An example of an input image and the corresponding augmented one is
shown in Figure 1.3. The object used can be seen in Figure 1.3(a): it is a
metal cube with a side length of 6 cm, where each side is painted in a dif-
ferent color, which allows determining the cube’s pose. The cube is detected
using a color segmentation approach; after the location of the cube in the
image is known, its corners can be used for camera calibration. The com-
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(a) original image (b) augmented image

Figure 1.3: Example of an Augmented Reality system: The real color cube as shown in
the left image can be replaced by an arbitrary computer generated virtual
object like the teapot used here (images from [Sch01b])

Figure 1.4: Example of an Augmented Reality system with correct occlusion: Ideal
stereo images were used for computing dense disparity maps. The upper
row shows the left, the lower row the right images in the following order:
original, disparity map, augmentation with 1 and 3 virtual objects. The
original stereo image pair was taken from [Tsu], the results from [Vog01,
Sch02a].

puted camera parameters are used for rendering an arbitrary object in the
same position and orientation as the cube into the image using OpenGL; the
result is shown in Figure 1.3(b).

A method for the computation of dense disparity maps from stereo images
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Figure 1.5: Example of an Augmented Reality system with correct occlusion: Two im-
ages taken by a hand-held camera—interpreted as a stereo system—were
used for computing dense disparity maps. The upper row shows the left,
the lower row the right images in the following order: original images, rec-
tified images, disparity map, augmentation. The images were taken from
[Vog01, Sch02a].

and the application to occlusion handling for Augmented Reality was pre-
sented in [Vog01, Sch02a]. This algorithm is capable of determining dense
disparity maps in real-time which are consistent for left and right camera
and preserve edges. A prerequisite, however, is the exact knowledge of in-
trinsic and extrinsic camera parameters. Examples of the results generated
by this algorithm as well as augmented scenes are shown in Figure 1.4 and
1.5. In both figures the original images are shown on the left. While the
stereo pair in Figure 1.4 was taken by an ideal stereo camera system, the
original images in Figure 1.5 were obtained at two different time steps using
a single hand-held camera. In the latter case the camera parameters were
computed using a structure-from-motion approach as described in [Hei04].

1.3 Contribution of this Work

The objective of this work is to perform a self-calibration of a rigid stereo
camera system without any previous knowledge of the scene structure or
camera parameters from an image sequence taken by both cameras simulta-
neously. The stereo parameters obtained this way can be used for computing
depth maps for both images, which are necessary for rendering correctly oc-
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cluded virtual objects into a real scene.
The method described here is based on three basic ideas: First of all only

temporal feature correspondences have to be established, i. e., features are
tracked from one frame of a camera to the next frame taken by the same
camera, but not from left to right. This is advantageous because temporal
tracking in an image sequence is relatively easy due to the fact that the differ-
ences between two images taken consecutively by the same camera are small.
Left-to-right tracking, however, is often not feasible if the camera parameters
are unknown, especially if the optical axes of the cameras are nearly parallel
and the baseline is wide.

Secondly, the approach is based on two mutually independent 3-D recon-
structions of the observed scene using structure-from-motion. The results of
this step that are important here are the camera positions and orientations
for the movement of the left and right camera. However, these are given
in two different coordinate systems and with different scaling, since a 3-D
reconstruction can be obtained only up to an unknown similarity transfor-
mation if no a priori knowledge about the scene or camera is used.

Thirdly, the rigid transformation from left to right camera can be com-
puted from the two reconstructions using hand-eye calibration as known
from robotics as a basis. The main difference to the classic approach in
robotics is the additional scale factor which has to be estimated. It will be
shown how the extended hand-eye calibration problem, i. e., estimating a
similarity transformation consisting of rotation, translation, and scale, can
be formulated using dual quaternions.

An inherent problem to hand-eye calibration is that it requires at least two
general movements of the cameras in order to compute the rigid transfor-
mation. If the motion is not general enough (e. g., pure translation or pure
rotation), only a part of the parameters can be obtained, which would not
be sufficient for computing depth maps. Therefore, a main part of this work
discusses methods for data selection that increase the robustness of hand-
eye calibration. Different new approaches are shown, the most successful
ones being based on vector quantization. The data selection algorithms de-
veloped in this work can not only be used for stereo self-calibration, but also
for classic robot hand-eye calibration, and they are independent of the ac-
tually used hand-eye calibration algorithm. They were successfully applied
in the project SFB 603/B6 for hand-eye calibration of an endoscopic surgery
robot [Sch03c] as well as for calibrating an optical tracking system [Sch04a].

The stereo self-calibration method presented can also be used for robot
hand-eye calibration, where instead of a calibration pattern—which is nec-
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essary in the original approach—3-D reconstruction algorithms are applied
that use an arbitrary image sequence as input, thus making a calibration
pattern dispensable [Sch05].

1.4 Outline

This thesis is structured as follows. The next chapter is titled Computer Vision
Principles and presents the theoretical background for the remaining parts of
this work. It introduces mathematical models of cameras for the projection
from 3-D to 2-D as well as the geometric properties of stereo camera systems
(Section 2.1). Different representations of 3-D rotation and translation are
presented in Section 2.2, since they play an important role in the new stereo
self-calibration approach, which is based on a mutually independent 3-D re-
construction of scene geometry and camera movement of the two cameras.
Hence, basic reconstruction and self-calibration algorithms are introduced
also (Section 2.3). A main part of the new method is based on an extended
hand-eye calibration. Classic and state-of-the-art robot hand-eye calibration
algorithms are described in Section 2.4. At the end of the chapter, the com-
putation of dense depth maps is explained in Section 2.5. These depth maps
are used for rendering virtual objects into real scenes with correct occlusion,
which requires a calibrated stereo system as input.

Chapter 3 describes different methods for self-calibration of a rigid stereo
camera system as they can be found in literature. After an introduction to
the problem of stereo self-calibration, the chapter is split mainly into two
parts that correspond to the two main classes of self-calibration algorithms:
Those that need left-to-right feature-correspondences (Section 3.2) and those
that do not (Section 3.3).

In Chapter 4 the main contribution of this work is presented: A new al-
gorithm for stereo self-calibration that is based on mutually independent
reconstructions of camera parameters of the left and right view (Section 4.2).
This reconstruction is used for estimating the parameters of the stereo system
linearly or non-linearly (Section 4.3). Methods for the selection of well-suited
data for hand-eye calibration are presented in Section 4.4.

Experiments for the evaluation of the proposed algorithms are given in
Chapter 5. At the beginning an overview over the experiments is given
and the residual error metrics used for describing the results are explained;
in the next two sections hand-eye calibration (Section 5.2) and stereo self-
calibration (Section 5.3) are evaluated on synthetic as well as on real data.
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It is also shown how the algorithm was used for hand-eye calibration of an
optical tracking system in endoscopic surgery. Results for an Augmented Re-
ality setup are presented in Section 5.4. The chapter closes with a discussion
of the results.

The work concludes with a summary and an outlook in Chapter 6.
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Chapter 2

Computer Vision Principles

This chapter summarizes the theoretical fundamentals that are required to
comprehend this work. At the beginning, in Sect. 2.1 camera models and
camera parameters as they are frequently used in computer vision are de-
scribed. Due to the importance of rotation and translation in 3-D, Sect. 2.2
treats different representations of 3-D rotation as well as a unified represen-
tation of rotation and translation in the form of dual quaternions. One of
the first steps of the stereo self-calibration algorithm introduced in the work
at hand is a monocular 3-D reconstruction of the observed scene. Section
2.3 gives an introduction to the state-of-the-art in 3-D reconstruction from an
image sequence taken by a hand-held camera with unknown intrinsic (and
extrinsic) camera parameters. Hand-Eye calibration as described in Sect. 2.4
originated from robotics, where the task is to compute the rigid but unknown
transformation from a robot gripper (the hand) to a camera mounted on the
robot’s arm (the eye). Algorithms for hand-eye calibration can be applied as
a part of stereo self-calibration, as shown in the next chapter. After a short
introduction to algorithms for the computation of dense depth maps in Sect.
2.5, which are necessary to generate correctly augmented views for the user,
the chapter closes with a summary.

2.1 Camera Models

This section will give a short introduction to camera models commonly used
in computer vision. At the beginning, intrinsic and extrinsic camera param-
eters are introduced. Mostly, the same notation as in [Hei04] is used, where
a more detailed description on some aspects can also be found. Regarding
projection models, we will concentrate on the four most commonly used,
i. e., perspective, orthographic, weak perspective, and paraperspective. More
complicated camera models, e. g., thin and thick lens models [Hor86], which
are physically more correct, are not described here, because they are usu-
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ally not used in 3-D reconstruction due to their complexity. This is not a
drawback since the effects that can be modeled by lens models but not by a
perspective camera more often than not can be neglected for reconstruction
purposes. Numerous publications are available where those models are de-
scribed [Har03, Fau01, Fau93, Tru98]. At the end of this section the model
used for representing a rigid stereo camera system is introduced. Through-
out this work, homogeneous coordinates are used.

The 2-D projection b of a 3-D world point w (both in homogeneous coor-
dinates) is modeled using a 3 × 4 projection matrix P, which can be decom-
posed as follows:

b ∼ Pw ∼ KPMEw , (2.1)

where ∼ means “equal up to scale”, K is the so-called calibration matrix con-
taining the intrinsic camera parameters, PM is the matrix defining the pro-
jection model, and E contains the extrinsic parameters of the camera. These
three matrices are described in more detail in the following, starting with
intrinsic and extrinsic parameters followed by projection models.

2.1.1 Intrinsic Camera Parameters

Usually, the so-called intrinsic or internal parameters of a camera are defined
as those parameters that do not change when the camera moves, namely
focal length F, principal point coordinates ( pu, pv), angle between the axes
of the sensor coordinate system α, pixel size in horizontal (dx) and vertical
(dy) direction, and lens distortions. The principal point is defined as the
intersection of the optical axis and the image plane. Principal point, angle α,
and pixel sizes dx and dy define the mapping from ideal image coordinates to
sensor coordinates. The relationship between these two coordinate systems is
illustrated in Figure 2.1. In the linear pinhole camera model lens distortions
are neglected, which is done here as well for the time being. The remaining
parameters define the calibration matrix K:

K =




xF β pu
0 yF pv
0 0 1


 =




F
dx

−F tan( π
2 −α)

dx

pu

0 F
dy

pv

0 0 1


 . (2.2)

Focal length F and pixel sizes dx and dy are usually combined, resulting
in xF and yF, the so-called effective focal lengths, which are given in pixels
instead of millimeters. The parameter β is called image skew, and becomes
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Figure 2.1: Configuration of the sensor and image coordinate system. The solid grid
connects the midpoints of the sensor elements whose borders are marked
by dotted lines. Image by courtesy of B. Heigl [Hei04]

zero for an angle α of π/2, i. e., in the case where the sensor coordinate axes
are orthogonal. This assumption is usually valid for real cameras [Hei04], so
that the calibration matrix in most cases (as in this work) looks as follows:

K =




xF 0 pu
0 yF pv
0 0 1


 . (2.3)

Lens distortions are modeled separately and mainly consist of two com-
ponents, radial and tangential distortions. Radial distortions originate from
inexactly cut lenses and are symmetric with respect to the principal point,
while tangential distortions are caused during assembly of the complete lens,
if the centers of the separate lenses, which should lie on a straight line, are
aligned incorrectly. The results are distortions symmetric to a line through
the principal point [Sla80, Sch00a].

The mapping from a distorted image point db to an undistorted point b
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is given by [Sla80, Zha96a]:

b = db′ + db′
(

1 + κ1r2 + κ2r4 + . . . + κnr2n
)

+
(

(2π1
db′1 db′2 + π2(r2 + 2 db′21)) · (1 + π3r2 + . . . + πmr2(m−2))

(2π2
db′1 db′2) + π1(r2 + 2 db′22)) · (1 + π3r2 + . . . + πmr2(m−2))

)
+

(
pu
pv

)
,

(2.4)

where
db′ =

(
db −

(
pu
pv

))
(2.5)

is the image point db displaced by the principal point, and

r =
∥∥ db′

∥∥ =
√

db′21 + db′22 (2.6)

is the distance from the principal point. The coefficients κi , 1 ≤ i ≤ n are
called radial distortion coefficients, πi, 1 ≤ i ≤ m are called tangential distortion
coefficients.
In practice, (2.4) can be used for undistortion in different ways:

• often, only one or two radial distortion coefficients κi are used, while
the tangential components πi are neglected completely (as in [Hei04]),

• if tangential coefficients are used at all, their number is also restricted
to two (as in [Vog01]).

For the purpose of structure-from-motion and self-calibration, lens distor-
tions are usually either neglected completely or the images are undistorted
before applying those algorithms.

2.1.2 Extrinsic Camera Parameters

In contrast to the intrinsic camera parameters, the extrinsic or external pa-
rameters of a camera are defined as those parameters that change when the
camera moves, namely position and orientation. Both together are called
pose of the camera. The position of the camera, or, more exactly, of the opti-
cal center of the camera with respect to the 3-D world coordinate system, is
given by a 3-D translation vector t. The camera’s orientation is given by the
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axes of a 3-D coordinate system, which is rigidly attached to the camera, its
origin being the optical center. The x- and y-axes of this system are chosen
such that they are parallel to the corresponding coordinate axes of the image
plane. The z-axis can now be determined by the cross product of the x- and
y-axes, resulting in a right-handed coordinate system. Using this representa-
tion, the vectors xr, yr, and zr describing the x-, y-, and z-axis correspond to
the columns of a 3 × 3 rotation matrix R, that, together with the translation
vector, describes the mapping from 3-D world to 3-D camera coordinates.
Using the notation from (2.1), both are combined in the extrinsic parameter
matrix:

E =

(
RT −RTt

03
T 1

)
. (2.7)

Section 2.2 gives a detailed overview over different representations of ro-
tation and translation in 3-D.

2.1.3 Projection Models

Now we will take a closer look at different projection models widely used
in computer vision. More details can be found for example in [Fau01]. We
start with the commonly known perspective projection model, which can be
derived directly from the pinhole camera. All other three models result in
so-called affine cameras, which means that the complete camera matrix P is
of the form:

Paff =

(
P2×3 P2×1
03

T 1

)
. (2.8)

Figure 2.2 shows the differences in the projected image points for these four
models.

Perspective Projection

The projection model matrix for perspective projection is given by

PM =




1 0 0 0
0 1 0 0
0 0 1 0


 . (2.9)

Perspective projection preserves lines, but not angles and distances. Note
that this model leads to non-linear equations if no homogeneous coordinates
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Figure 2.2: Comparison of different projection models: Depending on the model, the
3-D point w is projected to different positions in the image plane. The goal
is to approximate perspective projection by affine models. The simplest
one (and therefore worst approximation) is the orthographic projection.
Better approximations are given by the weak perspective and paraperspec-
tive models, where an auxiliary plane is introduced which is defined by
the center of gravity gw.

are used. Perspective projection is the most accurate of the four models
presented here.

For a perspective projection model, i. e., with PM as defined in (2.9), (2.1)
can be written as

b ∼ Pw ∼ KRT (I3×3 | − t) w , (2.10)

where I3×3 is the 3 × 3 identity matrix.

Orthographic Projection

Orthographic or orthogonal projection is the least accurate and thus the sim-
plest of the four models presented here. The projection model matrix is given
by

PM =




1 0 0 0
0 1 0 0
0 0 0 1


 . (2.11)
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This simple change in the projection matrix has a strong impact. Firstly, the
projection becomes affine, which results in linear mappings for the complete
camera matrix even without using homogeneous coordinates. Secondly, or-
thogonal projection ignores the depth of 3-D points completely as well as
the distance of the points from the optical axis. As for all affine models,
parallelism is preserved.

Weak Perspective Projection

The weak perspective model takes into account the depth of the 3-D points by
using an additional parameter gw3, which is the z-coordinate of the center of
gravity gw = [ gwi]1≤i≤3 of the scene in camera coordinates. The projection
model matrix is given by

PM =




1 0 0 0
0 1 0 0
0 0 0 gw3


 . (2.12)

As can be seen, this model is still affine. Weak perspective projection can
be imagined as a two step projection: First an orthogonal projection of the
3-D points onto the plane through the center of gravity and parallel to the
image plane is performed, and afterwards a perspective projection is done as
shown in Figure 2.2. At this point the depth of all points to be projected per-
spectively is the same, namely gw3, which is the reason for the simplification
compared to perspective projection.

Paraperspective Projection

The paraperspective model is the most complicated and most accurate of the
affine models described here. In addition to weak perspective projection, the
distance of the 3-D points to the optical axis is taken into account, i. e., all
three coordinates of the center of gravity are used, resulting in the following
projection model matrix:

PM =




1 0 − gw1
gw3

gw1

0 1 − gw2
gw3

gw2

0 0 0 gw3


 . (2.13)

As shown in Figure 2.2, the projection onto the plane parallel to the image
plane is not done orthogonally as in the weak perspective case, but parallel
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Figure 2.3: Epipolar geometry (assuming K = I3×3): A 3-D point w is projected into
the left and right image plane onto the 2-D points bl and br. The epipoles
erl and elr are defined as the intersection of the line connecting the optical
centers tl and tr. The intersections of the epipolar plane and the image
planes define corresponding epipolar lines elrl and ellr . Image point
correspondences are always located on corresponding epipolar lines.

to the line of sight through the center of gravity. This means that the parap-
erspective model is a generalization of the weak perspective one in the sense
that the two are the same if the center of gravity is located on the optical
axis.

2.1.4 Stereo Cameras

Since this work is mainly about self-calibration of a rigid stereo camera sys-
tem, the geometry and notation of such a system will be introduced in the
following. Figure 2.3 depicts the stereo geometry graphically (for K = I3×3).

The parameters of a stereo system consist of a rigid transformation, i. e.,
rotation and translation. These parameters are denoted by RS and tS, and
they define the transformation of a 3-D point w given in camera coordinates
of the left camera (denoted as cwl) to coordinates of the right one ( cwr):

cwr = RS
cwl + tS . (2.14)
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In order to distinguish the intrinsic and extrinsic camera parameters of the
left camera from the right one, the respective matrices are indexed by l (left)
and r (right), i. e.,

Pl = KlRl
T (I3×3 | − tl) , Pr = KrRr

T (I3×3 | − tr) . (2.15)

The stereo parameters RS and tS can be computed directly from (2.15) by:

RS = Rr
TRl , tS = Rr

T(tl − tr) = RSRl
T(tl − tr) . (2.16)

The stereo parameters as well as the intrinsic parameters of the left and
right camera can be written in a concise way using the fundamental matrix
Flr. The term fundamental matrix was introduced by Luong [Luo92]. It
is a generalization of the essential matrix EMlr, which contains only RS and
tS. The essential matrix was introduced into computer vision by Longuet-
Higgins [LH81], and was already well known before in photogrammetry
[Sla80]. More details on epipolar geometry and the fundamental matrix can
be found, e. g., in [Har03, Fau01, Tru98, Hei04]. Using cameras in an Eu-
clidean space defined as in (2.15), fundamental and essential matrix between
left and right camera are defined as

EMlr = [tS]× RS , F lr = Kr
−T [tS]× RSKl

−1 , (2.17)

where [x]× denotes the skew-symmetric matrix that represents the outer
vector product of x and y as a matrix multiplication:

x × y = [x]× y =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 y . (2.18)

The fundamental matrix is a 3× 3 matrix and has 7 degrees of freedom: One
is lost because of scale ambiguity in homogeneous coordinates, and another
one because of det F lr = 0, i. e., F lr is of rank 2. The epipolar constraint is
given by

bT
r F lrbl = 0 . (2.19)

For computation of F lr from given point correspondences using (2.19) cf.
[Har03, Fau01, Tru98, Zha98b]. Two cameras are called weakly calibrated if
the fundamental matrix is known [Fau01].
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Epipolar lines and epipoles can be easily computed from the fundamental
matrix. The epipolar lines ellr and elrl corresponding to the points bl and
br respectively, can be computed by:

ellr = F lrbl , elrl = FT
lrbr , (2.20)

where ellr denotes the epipolar line in the right image corresponding to
a point in the left image, and vice versa. The epipoles are defined by the
intersection of the vector connecting the optical centers of the cameras with
the image planes, which means that the epipole in the left image can be
computed by projecting the coordinates of the optical center of the right
camera into the left image, and vice versa. The result is that the epipole
is the intersection of all epipolar lines in one view. The epipoles can be
calculated by computation of the null-space of F lr and FT

lr:

F lrerl = 0 , FT
lrelr = 0 , (2.21)

where elr denotes the projection of the optical center of the left camera into
the right one, i. e., the epipole in the right image, and vice versa.

2.2 Rotation and Translation in 3D

This section gives an overview over the representations of 3-D rotation and
translation used in computer vision. Usually, the following equation is used
for the rigid transformation of a 3-D world point w:

w′ = Rw + t , (2.22)

where w′ is the image of w after applying a 3 × 3 rotation matrix R and a
3-D translation vector t. Section 2.2.1 starts with different parameterizations
of rotation matrices and clarifies the terms Cardan and Euler angles, which
are often used inconsistently or get mixed up in literature. A unified repre-
sentation of rotation and translation using dual quaternions is introduced in
Section 2.2.2.

2.2.1 Rotation

Rotations in 3-D are usually given by a rotation matrix R ∈ IR3×3 with the
following properties:

RRT = I3×3, det(R) = 1 , (2.23)
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i. e., the column (and row) vectors of a rotation matrix are orthonormal. Due
to these constraints a rotation matrix R has nine elements but only three
degrees of freedom. The set of all those matrices forms the rotation group
SO(3).

Cardan Angles

The Cardan angle representation [Mey95] is named after the Italian mathe-
matician Geronimo Cardano (1501 – 1576). In this representation an arbitrary
rotation matrix R can be decomposed into a product of three rotations by the
angles α, β, and γ about the x-, y-, and z-axis of the coordinate system, i. e.,

R = RCzRCyRCx , (2.24)

where

RCx =




1 0 0
0 cos α − sin α
0 sin α cos α


 , RCy =




cos β 0 sin β
0 1 0

− sin β 0 cos β


 ,

RCz =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 .

(2.25)

Note that in contrast to the Euler angle representation described in the fol-
lowing, the Cardan angles α, β, and γ are defined with respect to the axes of
the original coordinate system.

Euler Angles

In the Euler angle representation [Gol91, Mey95], an arbitrary rotation matrix
R is also decomposed into a product of three rotations by the angles φ, ψ,
and ϕ, where

• φ defines a rotation about the z-axis of the original coordinate system,

• ψ defines a rotation about the x′-axis, which is the image of the x-axis
of the original coordinate system after the first rotation,

• ϕ defines a rotation about the z′′-axis, which is the image of the z-axis
of the original coordinate system after the previous two rotations have
been computed.
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Thus, the Euler angle representation of R is given by

R = REz′′REx′REz , (2.26)

where

REz =




cos φ sin φ 0
− sin φ cos φ 0

0 0 1


 , REx′ =




1 0 0
0 cos ψ sin ψ
0 − sin ψ cos ψ


 ,

REz′′ =




cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


 .

(2.27)

Axis/Angle

An arbitrary rotation R can be represented as a rotation about one axis r ∈ IR3

by the angle θ. This will be denoted here as Axis/Angle representation. Since
only the direction of the rotation axis r is of importance, r has only two
degrees of freedom and thus can be normalized to one. Hence, axis and
angle can be combined into a single vector ω with three degrees of freedom,
its direction giving the rotation axis and its length the rotation angle:

ω = θr, and for θ 6= 0: θ = |ω|, r =
ω

|ω| . (2.28)

Computing a rotation matrix R from ω can be done by using the formula of
Rodrigues [Har03, Fau93]:

R = I3×3 +
sin θ

θ
[ω]× +

1 − cos θ

θ2 [ω]2×

= I3×3 + sin θ[r]× + (1 − cos θ)[r]2× ,
(2.29)

where [·]× is an antisymmetric matrix as defined in (2.18). Equation (2.29)
can be derived from the following Taylor expansion [Har03]:

R = e[ω]× = I3×3 + [ω]× +
1
2!

[ω]2× +
1
3!

[ω]3× +
1
4!

[ω]4× + . . . (2.30)

= I3×3 + θ[r]× +
θ2

2!
[r]2× − θ3

3!
[r]× − θ4

4!
[r]2× + . . . (2.31)

= I3×3 + sin θ[r]× + (1 − cos θ)[r]2× (2.32)

= I3×3 +
sin θ

θ
[ω]× +

1 − cos θ

θ2 [ω]2× , (2.33)
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where (2.31) follows from (2.30) using the identity [ω]3× = −θ2[ω]× =

−θ3[r]×. It can be observed that the addends in (2.31) represent the Tay-
lor expansions of sin θ and − cos θ, in the latter case without the leading one.
Therefore, (2.32) can be derived from (2.31) by re-substitution of the separate
addends with sin θ and 1 − cos θ.

The computation of axis and angle from a rotation matrix R is done as
follows [Tru98]: Eigen-decomposition of R yields the three Eigen-values 1
and cos θ ± i sin θ. The axis r is the Eigen-vector corresponding to the Eigen-
value 1. The angle θ is calculated from one of the remaining Eigen-values.
Note that the axis/angle representation is not unique: a rotation about an
axis r by an angle θ is the same as a rotation about the axis −r by the angle
2π − θ. Therefore, one has to check the consistency of the direction of the
axis and the angle, which can be done by inserting both into equation (2.29).
Another problem arises for a rotation angle of 0◦, i. e., if R = I3×3. In that
case all three Eigen-values are equal to one, which results in a non-unique
rotation axis. This is obvious, since for an angle of 0◦ no rotation is done at
all, which means that the axis can of course be chosen arbitrarily.

Quaternions

Quaternions are numbers1 that are in a certain sense similar to complex num-
bers: Instead of only one imaginary part, quaternions have three of them.
The concept of quaternions was introduced by Sir William Rowan Hamilton
and presented to the Royal Irish Academy in 1843 [Ham44, Ham47, Ham48].
The set of quaternions is usually denoted as IHI. Quaternions are studied in
computer vision because they can be used for representing rotations in 3-D:
Unit quaternions form the special unitary group SU(2), which can be repre-
sented as all complex unitary 2 × 2 matrices having determinant one. Since
SU(2) is a double cover of the special orthogonal group SO(3) (all real 3 × 3
rotation matrices) [Bae01], there exist two quaternions for each 3-D rotation
matrix. More details on quaternions can be found in [Kui99, Con03, Fau93].

A quaternion q is defined as follows:

q = qR + q1i + q2j + q3k, qR, q1, q2, q3 ∈ IR , (2.34)

where qR is the real part and q1, q2, q3 are the imaginary parts. Multiplication

1 i. e., they form one of the four existing normed division algebras; the others are the real and
complex numbers, and the Octonions [Con03, Bae01]. The latter have 7 complex parts and are
neither commutative nor associative w. r. t. multiplication.
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and summation are done component-wise, with

i2 = j2 = k2 = ijk = −1 , (2.35)

which is equivalent to

i2 = j2 = k2 = −1 ,

ij = −ji = k ,

jk = −kj = i ,

ki = −ik = j .

(2.36)

A quaternion is often written as a 4-tuple

q = (qR, q1, q2, q3) or q = (qR, qim) , (2.37)

where qim is a 3-vector containing the imaginary parts. In contrast to com-
plex numbers, the commutative law of multiplication is not valid (cf. (2.36)),
i. e.,

∃q1, q2 ∈ IHI, where q1q2 6= q2q1 . (2.38)

Similar to complex numbers, a conjugate quaternion is defined as

q∗ = qR − q1i − q2j − q3k . (2.39)

The norm of a quaternion q is given by

|q| =
√

qq∗ =
√

q∗q =
√

qR
2 + q2

1 + q2
2 + q2

3 . (2.40)

The multiplicative inverse of q is

q−1 =
1

qq∗
q∗ . (2.41)

This means that for unit quaternions (|q| = 1), the inverse of multiplication
equals the conjugate, i. e., q−1 = q∗.

Multiplication of two quaternions q and q′ can be written as a matrix-
vector product as follows [God97]:

qq′ = Mlq
′ =




qR −q1 −q2 −q3
q1 qR −q3 q2
q2 q3 qR −q1
q3 −q2 q1 qR


 q′ ,

q′q = Mrq′ =




qR −q1 −q2 −q3
q1 qR q3 −q2
q2 −q3 qR q1
q3 q2 −q1 qR


 q′ .

(2.42)
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2.2 Rotation and Translation in 3-D

Just as the multiplication of two unit complex numbers defines a rotation
in two dimensions, a multiplication of two unit quaternions yields a rotation
in 3-D. Let w be a 3-D point to be rotated, r a rotation axis with |r| = 1, and
θ the angle of rotation about this axis. Define the following two quaternions:

q =

(
cos

θ

2
, sin

θ

2
· r

)
,

w′ = (0, w) .
(2.43)

Then
w′

rot = q w′ q−1 = q w′ q∗ (2.44)

since q is a unit quaternion. w′
rot is the quaternion corresponding to the

rotated point.
Since a quaternion representing a rotation is computed from axis and an-

gle, it is also not unique, because the two quaternions q1 =
(

cos θ
2 , sin θ

2 · r
)

and q2 =
(

cos 2π−θ
2 , sin 2π−θ

2 · (−r)
)

=
(
− cos θ

2 ,− sin θ
2 · r

)
define the same

rotation. Which one of the two quaternions is used does not matter, but one
has to be careful when measuring the distance of two rotations (e. g., for de-
scribing rotation errors) by the distance between quaternions. In contrast to
the axis/angle representation, however, where R = I3×3 results in an unde-
fined rotation axis r, the corresponding quaternion is defined and equals 1
(i. e., (1, 0, 0, 0)).

The computation of a quaternion from a rotation matrix is done using the
axis/angle representation as described in equation (2.43). The computation
of a rotation matrix R from a quaternion can be done as follows [Fau93]:

R =




qR
2 + q2

1 − q2
2 − q2

3 2(q1q2 − qRq3) 2(q1q3 + qRq2)
2(q1q2 + qRq3) qR

2 − q2
1 + q2

2 − q2
3 2(q2q3 − qRq1)

2(q1q3 − qRq2) 2(q2q3 + qRq1) qR
2 − q2

1 − q2
2 + q2

3


 .

(2.45)

Discussion of the Different Representations

The different representations for rotation matrices introduced in this section
model 3 × 3 rotation matrices, which have 9 elements but only 3 degrees of
freedom, with less than 9 parameters.

In [Hor99] the term fair parameterization was introduced by Hornegger and
Tomasi. A parameterization is called fair if it does not introduce more nu-
merical sensitivity than is inherent to the problem itself. This is guaranteed
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if any rigid transformation of the space to be parameterized results in an or-
thogonal transformation of the parameters. Since this is a rather general def-
inition, it is not restricted to parameterizing rotations. However, in [Hor99]
the parameterization of camera motion is treated as well, and it can be con-
cluded that quaternions and the axis/angle representation are fair, while
Cardan and Euler angles are not.

Cardan and Euler angles are probably the most well known parameter-
izations for rotations in 3-D. These two representations sometimes get
mixed up in literature, e. g., [Fol96, Wat92, Sch01a], but usually the conclu-
sions drawn for Cardan and Euler angles stay the same. One of the main
drawbacks (besides not being fair) is that since matrix multiplication is not
commutative, the Cardan/Euler angle representation is not unique, mean-
ing that a permutation of the order of the rotations about the coordinate-
system axes yields different Cardan/Euler angles. Probably the most impor-
tant drawback of these parameterizations is the existence of so-called gimbal
lock singularities, where one degree of freedom is lost, i. e., two of the three
angles belong to the same degree of freedom. For a more detailed discussion
see [Wat92].

In order to avoid these drawbacks the axis/angle representation or quater-
nions should be used for a numerically stable estimation of rotation in com-
puter vision. Axis/Angle is a minimal parameterization having the draw-
back that for rotations with small angles the rotation axis is not well-defined.
This problem does not occur when using unit quaternions; however, these
are a non-minimal parameterization, because they have four elements with
three degrees of freedom. This causes problems when using quaternions for
unconstrained non-linear optimization (cf. [Sch01a]). Both axis/angle and
quaternions are non-unique, i. e., there are always two different representa-
tions for the same rotation. However, this causes only slight problems in
practice, which are not comparable to the non-uniqueness of Cardan and
Euler angle representations.

Additionally, when quaternions are used, many problems can be formu-
lated as linear systems of equations instead of non-linear ones. In [Fau93],
e. g., it is shown how the rotation can be computed linearly from the essen-
tial matrix using quaternions. In Section 3.3 hand-eye calibration methods
are discussed that also apply quaternions for a linear estimation of rotation.
In computer graphics quaternions are applied for interpolation between two
given rotations, as the use of quaternions yields smooth movements, while
Cardan/Euler angles do not [Wat92].

In order to conclude, due to their advantages, the rotation representation
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of choice for estimating rotations in computer vision is either axis/angle or
quaternions, depending on the application.

2.2.2 Rotation and Translation

Up to now, rotation and translation were treated separately as given in (2.22).
This section will give an introduction to a unified representation of rotation
and translation using dual quaternions. These will be used in one of the hand-
eye calibration methods in Section 3.3, and also for stereo self-calibration in
Section 4.

This section starts with a short description of the screw representation of
a rigid motion and the Plücker or Grassmann representation for 3-D lines,
both being the basis of the following sections. After that, the concept of dual
numbers and dual quaternions is introduced. The section closes with the dual
quaternion representation of a rigid motion.

Screw Representation and Plücker Coordinates

In order to comprehend the dual quaternion representation of rigid motions,
the so-called screw representation is introduced here. The screw transforma-
tion, which is described in the following, is shown in Figure 2.4.

Any rigid motion, i. e., rotation followed by translation, can be modeled by
a rotation about a screw axis and a translation along this axis, where the screw
axis is parallel to the rotation axis r in axis/angle representation and passes
through point p, where p is the orthogonal projection of the origin of the
coordinate system onto r. The rotation angle θ is the same as in axis/angle
representation [Har03, Dan99, Che91]. The amount of translation along the
screw axis is given by l, where

l = rTt , (2.46)

i. e., l is the length of the projection of t onto the screw axis r.
For the following calculations, the screw axis will be represented by its so-

called Plücker or Grassmann coordinates [Fau93, Fau01, Har03, Dan99], which
can be used in general as a representation of a 3-D line by six coordinates
with four degrees of freedom. These coordinates are defined by (r, m), where
r is the direction of the axis as defined above, and m is the moment of the line,
i. e., in this case of the screw axis, which is given by

m = p × r =
1
2

(
t × r + r × (t × r) cot

θ

2

)
. (2.47)
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r

θ

p t

l

O

Figure 2.4: Screw representation of a rigid motion: An arbitrary rigid motion can be
represented as a rotation by θ about the screw axis r, which intersects p,
and a translation in the direction of r with length l. The plane is defined by
the axis r and intersects the origin O of the coordinate system. The moment
vector m is the normal vector of that plane.

It can be seen that the moment m is the normal vector to a plane that contains
the axis r and intersects the origin of the coordinate system. The norm of m
equals the distance of the screw axis to the origin. The Plücker line coordi-
nates only have four degrees of freedom, because the following constraints
hold:

rTm = 0, |r| = 1 . (2.48)

In order to sum up, the screw parameters defining a rigid motion are r, θ, m,
and l, with a total of six degrees of freedom.

Dual Numbers

Dual numbers were proposed by Clifford in the 19th century [Cli73] and
were introduced into robotics some time ago already [Pen85, McC86, Gu87,
Wal88]. A dual number z̃ is defined by

z̃ = a + εb, where a, b ∈ IR, ε2 = 0 . (2.49)
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Calculations with dual numbers can be done very similarly to complex num-
bers, with the difference that ε2 = 0 instead of i2 = −1. An interesting effect
is that since all powers of ε greater than one vanish, Taylor expansions of
functions do not have to be approximated but are exact. The Taylor expan-
sion of a function f is given by [Gu87, Dan99]:

f (a + εb) = f (a) + εb f ′(a) . (2.50)

Applying this Taylor expansion on (a + εb)−1, the inverse of a dual number
z̃ with respect to multiplication can be computed easily, and is given by

z̃−1 =
1
a

+ ε
b
a2 . (2.51)

Note that the inverse exists only for dual numbers with a non-dual part a
not equal to zero. In the dual quaternion representation introduced in the
next section, the sine and cosine of a dual angle have to be computed. Using
(2.50), these functions are given by:

sin(z̃) = sin(a) + εb cos(a), cos(z̃) = cos(a) − εb sin(a) . (2.52)

The conjugate of a dual number is given by:

z̃∗ = a − εb . (2.53)

When using vectors for a and b instead of real numbers, the result is a dual
vector. These can be used for representing 3-D lines [Gu87, Dan99, Dan01],
where the real part is the direction of the line, and the dual part the line
moment:

l̃ = r + εm , (2.54)

where (r, m) are the Plücker coordinates of the line as defined above. The
inner product of two such lines results in the dual skew angle θ̃l:

θ̃l = θl + εdl , (2.55)

where θl is the cosine of the angle and dl the distance between the lines.
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Dual Quaternions

A dual quaternion q̃ is defined as a quaternion where the real and imaginary
parts are dual numbers instead of real ones,

q̃ = (q̃r, q̃im) , (2.56)

or equivalently as a dual vector where the dual and the non-dual part are
quaternions:

q̃ = qnd + εqd . (2.57)

Both representations will be used in the following, depending on the appli-
cation.

The conjugate q̃∗ of q̃ is given by

q̃∗ = q∗nd + εq∗d . (2.58)

The (squared) norm of q̃ is a dual number with non-negative real part and
can be calculated as

|q̃|2 = q̃q̃∗ = qndq∗nd + ε(qndq∗d + qdq∗nd) . (2.59)

The multiplicative inverse of q̃ is

q̃−1 =
1

q̃q̃∗
q̃∗ (2.60)

and exists only if the real part of the squared norm is not zero. Dual quater-
nions having a norm of 1 (= 1 + ε0) are called unit dual quaternions. These
will play an important role later on. From (2.59) the following conditions for
unit dual quaternions can be derived directly:

qndq∗nd = 1, qndq∗d + qdq∗nd = 0 . (2.61)

When qnd and qd are interpreted as 4-D vectors the conditions given in (2.61)
can be formulated as [Dan01, Dan99, God97]

qnd
Tqnd = 1, qnd

Tqd = 0 . (2.62)

Dual quaternions are not new to computer vision. They have been used
before in robotics and in computer vision [Pho95, God97].
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Dual Quaternions: A Unified Representation of Rotation and Translation

Just as unit quaternions represent rotations, unit dual quaternions encode
rotation and translation. In this section, only the results will be given; the
complete derivations for the formulas can be found in [Dan01, Dan99]. A
dual quaternion q̃ representing R and t is given by an equation very similar
to (2.43):

q̃ =

(
cos

θ̃

2
, sin

θ̃

2
· r̃

)
, (2.63)

where θ̃ = θ + εl is a dual angle as in (2.55) and r̃ a dual line vector rep-
resenting the screw axis as in (2.54). Therefore, (2.63) can also be written
as:

q̃ =

(
cos

(
θ + εl

2

)
, sin

(
θ + εl

2

)
(r + εm)

)
(2.64)

=

(
cos θ

2
sin θ

2 · r

)
+ ε

(
− l

2 sin θ
2

sin θ
2 · m + l

2 cos θ
2 · r

)
(2.65)

= q + ε
1
2

tqq . (2.66)

The quaternion q in (2.66) is the same as for pure rotation (cf. (2.43)), while
tq denotes a quaternion defined by the translation vector t as tq = (0, t).
Using these definitions, an equation similar to (2.44) can be derived:

l̃rt = q̃ l̃dq q̃∗ , (2.67)

with the difference, that not points but lines l̃dq = (0, l̃) are transformed.
Recovery of rotation and translation from q̃ is easy: The rotation matrix R

can be computed directly from the non-dual part qnd of q̃ using (2.45), and
the translation vector t can be computed as

(0, t) = tq = 2qdqnd
∗ . (2.68)

2.3 3D Reconstruction and SelfCalibration

This section gives an overview over 3-D reconstruction of scene geometry
and camera parameters from image sequences (structure-from-motion), as far
as it is necessary to comprehend the stereo self-calibration parts of this work.
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This area is covered extensively in [Har03, Fau01, Hei04]. After giving an
overview in Section 2.3.1, the reconstruction method proposed by Heigl
[Hei04] with extensions by Scholz [Sch07] is described in more detail, as
this method is going to be used in the first stage of the stereo self-calibration
algorithm presented in this work (cf. Section 4.2).

2.3.1 3D Reconstruction

While there are reconstruction algorithms using special features (e. g., lines,
vanishing points) for reconstruction, commonly point features are used. Each
feature has to be tracked over a sequence of images to allow for a 3-D recon-
struction. Therefore, point trackers have to be applied which are the first cru-
cial step towards a good result, because all following steps depend highly on
the quality of the tracked points. Usually, those trackers rely on the fact that
changes from one image to the next in a given sequence are small, and thus
they apply a differential approach. Many trackers of this kind are available
[Bur82, Woo83, Ana89, För91, Tom91b]. In [Hei04] it was decided to use the
Tomasi-Kanade approach [Tom91b], together with the Shi extension [Shi94],
which takes into account affine distortions of the feature window. Note that
a different tracker than the one used by [Hei04] was applied in this work,
namely a modified more robust and faster version of the Tomasi-Kanade-
Shi tracker that can also deal with illumination changes [Zin04, Zin07]. The
result of tracking is a so-called trail for each feature point, which contains
all image coordinate positions of a certain feature in all frames where that
feature could be tracked.

After point features are tracked, the actual 3-D reconstruction step starts.
Generally, two main classes of algorithms can be distinguished: Those that
rely on the fact that differences between neighboring frames are small (also
called differential methods), and those where wide baselines between frames
are desirable (e. g., factorization methods). In each class, one can distinguish
again between algorithms working with a fixed number of views (usually
two, three or four), and multiple-view methods. A good overview over those
algorithms is given in [Oli00], details can also be found in [Har03, Fau01].
Differential methods (e. g., [Jep92, Oli94, Oli99, Oli01]) will not be treated in
this work, as the reconstruction algorithm used here is the one of [Hei04],
which uses factorization methods.

Algorithms relying on wide baselines between the views can roughly be
divided into two classes: Those that describe the relationship between the
views using algebraic methods, namely fundamental matrix (two views),
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trifocal tensor (three views) and quadrifocal tensor (four views), and factor-
ization methods (multiple views).

The fundamental matrix is described in Section 2.1.4. It can be estimated
using the 8-point algorithm introduced by Longuet-Higgins [LH81] together
with a normalization proposed by Hartley [Har97a]. The trifocal tensor re-
lates three views, and its roots date back to the publications of Spetsakis and
Aloimonos [Spe90, Spe91] and Weng, Ahuja, and Huang [Wen88, Wen92].
In [Har97b] a linear algorithm for the computation of the trifocal tensor was
presented. The quadrifocal tensor was introduced by Triggs [Tri95], but it
can be shown [Fau01] that it contains no more information than the funda-
mental matrices and the trifocal tensors of the four views combined, which
is why it is usually not used. It can also be shown [Fau01] that no similar
tensor concepts exist for more than four images.

The concept of factorization methods is a different one: They make use
of the fact that the observed point features in the image originate from 3-D
scene points that were projected into the views using a projection matrix
that was multiplied by a 3-D point as in (2.1). Combining all projection
matrices into a motion matrix Ψ and all 3-D points into a shape matrix Φ, the
multiplication results in a measurement matrix Γ containing the corresponding
image points for each frame:

Γ = ΨΦ (2.69)

Factorization methods try to solve the inverse problem: Given a measure-
ment matrix Γ, compute motion and shape. The first factorization method
assumed orthographic projection and was developed by Tomasi and Kanade
[Tom91a, Tom92]. It was later extended by Poelman and Kanade for the
paraperspective and weak perspective model [Poe97]. An iterative method
for Euclidean reconstruction based on either one of these algorithms was
presented by Christy and Horaud [Chr96]. Sturm and Triggs finally pub-
lished a factorization algorithm for the perspective case [Stu96]. However,
this method still suffers from the weakness that weighting factors (namely
projective depths) for the entries of the measurement matrix have to be com-
puted, which is usually done using the fundamental matrix of pairs of views,
thus scattering the idea of treating all frames equally. Note that this is done
differently in [Hei04], where the projective depths are initialized from a pre-
viously performed weak perspective factorization step.

The factorization is done by applying a singular value decomposition on
the measurement matrix, which results in non-unique estimates of motion Ψ

and shape Φ , the product giving an estimate Γ̂ of the measurement matrix.
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For any non-singular 4 × 4 matrix D the following equation holds2:

Γ̂ =
(
Ψ D

) (
D−1

Φ

)
(2.70)

This means that the reconstruction after factorization is unique up to an
unknown projective transformation, and thus is called projective reconstruc-
tion. Table 2.1 gives an overview over the different reconstruction types.
The process of updating a projective reconstruction to a metric one is called
self-calibration.

Note that the terms Euclidean and metric are often used inconsistently in
literature. For example, in [Har03] and [Hei04] Euclidean denotes a transfor-
mation consisting of rotation and translation only, while [Fau01] uses this
term for similarity transformations. Pollefeys [Pol99] uses the term Euclidean
like Hartley [Har03], and metric for similarity transformations. This work fol-
lows [Pol99], i. e., similarity transformations are denoted by metric, because
the well known Euclidean group preserves absolute distances and angles,
and consists of rotation, translation, and reflection, but not scaling. The
transformations get more special starting from projective, i. e., each trans-
formation is a sub-group of the predecessor. Of course, the computation of
motion and shape from estimates of fundamental matrix, tri- or quadrifocal
tensor also leads to a projective reconstruction.

After self-calibration (which is described in Sect. 2.3.2) it is advisable to
perform a non-linear optimization on camera parameters and 3-D points.
The optimal solution can be determined by simultaneous optimization of
motion and shape, a process called bundle-adjustment, which is described in
more detail in [Sla80, Sch00a, Fau01, Har03].

2.3.2 SelfCalibration

The term self-calibration denotes the process of updating a projective recon-
struction to a metric one, i. e., such that the matrix D in (2.70) is of type
metric (cf. Table 2.1). This means that the reconstruction is unique up to an
unknown similarity transformation at the end, which is equivalent to the fact
that the world coordinate system can be chosen arbitrarily and that there is
still an unknown global scale factor, i. e., the absolute size of objects remains
unknown. Thus, a transformation TPM has to be found that updates the
projection matrices Pt and 3-D points w h from a projective to a metric

2 the following description is based on projective factorization; for affine models, a 3 × 3 matrix is
sufficient.
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Type Ambiguity Example DOF Preserved Properties

Projective
(

A t

xT x

)
15 cross ratio, tan-

gency, intersection,
collinearity

Affine
(

A t

03
T 1

)
12 parallelism, centroids,

area ratio, volume ra-
tio, plane at infinity
m∞

Metric
(

sR t

03
T 1

)
7 angles, relative dis-

tances, absolute conic
aC, absolute quadric
aQ

Euclidean
(

R t

03
T 1

)
6 absolute distances,

area, volume

Table 2.1: Types of transformations common in 3-D reconstruction [Pol99, Har03,
Fau01]: From projective to Euclidean the degrees of freedom (DOF) decrease
while more properties are preserved. Note that for a given transformation
all properties specified for a transformation with more DOF are preserved as
well. The elements of the matrices given above have to be chosen such that
the complete matrix is still invertible and are defined as follows: A ∈ IR3×3

is an arbitrary matrix, x ∈ IR3 is an arbitrary vector, x ∈ IR is an arbitrary
scalar value; R ∈ IR3×3 is a rotation matrix, t ∈ IR3 a translation vector, and
s ∈ IR is a non-zero scale factor.

reconstruction, resulting in estimations of the real camera matrices and real
scene points:

Pt ≈ P̂t = Pt TPM, wh ≈ ŵh = TPM
−1w h . (2.71)

An overview over the techniques commonly used for self-calibration is given
here; the topic is covered thoroughly in literature [Pol99, Har03, Fau01]. Note
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that self-calibration is only possible if at least weak assumptions concerning
the intrinsic camera parameters are made. If no assumptions can be made at
all, a projective reconstruction is all that can be achieved.

Stratified SelfCalibration

The stratified self-calibration approach can be derived directly from the re-
construction ambiguities shown in Table 2.1: In order to get a metric recon-
struction from a projective one, a possibility is to first determine the plane
at infinity m∞, resulting in a transformation that updates from projective to
affine. For an update from affine to metric knowledge of the absolute conic
aC, or more exactly of the image of the absolute conic cC (or its dual cC⋆),
is necessary, which allows determining the intrinsic camera parameters K.
This means that the transformation from projective to metric is decomposed
into two parts as follows:

TPM = TPATAM , (2.72)

where

TPA =

(
I3×3 03

−m∞
T m∞

)
, with m∞ = (m∞

T, m∞)
T

(2.73)

is the update matrix from projective to affine and

TAM =

(
K 03

03
T 1

)
(2.74)

is the update matrix from affine to metric. TPA is exactly the transformation

that maps m∞ to its canonical form, namely m∞ =
(
0 0 0 1

)T.
Details on the computation of the plane at infinity m∞ can be found in

[Pol99, Har03, Fau01], and will not be given here. Determining the plane at
infinity usually is the most complicated part of the stratified approach. In
Section 3.2.2 a method is described that uses the plane at infinity for stereo
self-calibration, and a way to determine it in that context will also be given.

For determining the intrinsic camera parameters K, the image of the ab-
solute conic cC or its dual cC⋆ has to be computed first. These are given
by:

cC = (KKT)
−1

, cC⋆ = KKT . (2.75)

The intrinsic camera matrix K can now be obtained by a Cholesky decompo-
sition (cf. [Gol96, Tre97, Pre92] for details on Cholesky decomposition).
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SelfCalibration Using the Absolute Quadric

While the self-calibration method shown in the previous section consists of
two steps for the update from projective over affine to metric, the absolute
quadric is a one-step approach that performs a direct update from projective
to metric. Self-calibration using the absolute quadric was first formulated by
Triggs [Tri97].

The absolute quadric is a symmetric 4 × 4 matrix of rank 3, and can be
described as the set of all planes that are tangential to the absolute conic aC.

In [Tri97] the concept of the absolute quadric is introduced for doing self-ca-
libration. In a metric reconstruction, the absolute quadric has the following
form:

aQ =

(
I3×3 03
03

T 0

)
. (2.76)

The absolute quadric incorporates both the plane at infinity m∞ and the dual
image of the absolute conic cC⋆. The plane at infinity can be computed from
the null space of aQ, while the dual image of the absolute conic is contained
in the following equation, which is also the one used for self-calibration with
the absolute quadric:

Pt
aQPt

T ∼ KtKt
T ∼ cC⋆ (2.77)

As already depicted in Table 2.1, the absolute quadric is invariant with re-
spect to similarity transformations, i. e.,

aQ ∼
(

sR t

03
T 1

)(
I3×3 03
03

T 0

)(
sRT 03
tT 1

)
∼
(

I3×3 03
03

T 0

)
∼ aQ (2.78)

Self-calibration with the absolute quadric means direct estimation of TPM
without an intermediate affine step. With (2.71), (2.77) can be written as

Pt
aQPT

t ∼ P tTPM
aQTPM

TP
T
t ∼ P t

aQ P
T
t . (2.79)

If TPM is a projective transformation, which will be the case in general if a
projective reconstruction has been obtained, aQ and aQ are different. Thus,
self-calibration can be formulated as the problem of finding a transformation
TPM that maps an arbitrary absolute quadric to the canonical form given by
(2.76).

Methods for estimation of the absolute quadric can be found in [Pol99,
Pol98], an overview based on that literature is also given in [Hei04]. The
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Condition Min. # Frames

zero skew (β = 0) 8

zero skew (β = 0), aspect ratio
yF
xF fixed but unknown 5

zero skew (β = 0), aspect ratio
yF
xF known 4

all parameters ( xF, yF, pu, pv, β) fixed but unknown 3

Table 2.2: Examples of common constraints on intrinsic parameters for self-calibration
and the minimum number of frames required [Pol99]. In particular, the last
case where all parameters are assumed to be the same for all frames is often
used, since this assumption yields more stable reconstruction results due to
the fixed focal length, usually combined with the zero-skew assumption.

question of how much knowledge is required for self-calibration is also an-
swered in [Pol99], where a proof is given for the fact that the class of simi-
larity transformations preserves the absence of skew in projection matrices.
This means, that β = 0, i. e., that pixels are rectangular, is the only assump-
tion necessary for self-calibration, while all other intrinsic parameters may be
unknown and also varying from frame to frame. Table 2.2 gives an overview
over possible combinations of assumptions about intrinsic parameters and
the minimum number of frames required in order to allow for self-calibration
[Pol99]. Note that those constraints can also be used for self-calibration with
the absolute conic, a similar table can be found in [Har03].

2.3.3 Complete Reconstruction Process

In the following an overview over the reconstruction method used in the first
step of the stereo self-calibration algorithm is given. The method shown here
was developed by Heigl [Hei04] with extensions by Scholz [Sch07].

One of the main drawbacks of the factorization methods is that all point
features have to be visible in all frames. In practice this means that there is
a trade-off between the number of frames (length of camera path) and the
total number of point features (detail of reconstructed scene). In general,
one should use many frames and many features. In [Hei04] a method is
described that circumvents the above disadvantage by starting with an initial
reconstruction using a factorization algorithm, where not all available images
are used yet. This initial reconstruction is then extended by calibrating the
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2.3 3-D Reconstruction and Self-Calibration

remaining frames subsequently.
The complete process is shown in Table 2.3 and will be described now in

more detail. The algorithm starts with the factorization of an initial image
sequence, where all point features have to be visible in all frames. It can be
seen that the algorithm does not use the factorization described in [Stu96] for
the perspective camera model at the beginning, but rather an affine method.
In the original work of Heigl the weak-perspective factorization was used,
which was extended by Scholz [Sch07] to the paraperspective case; both fac-
torization methods were published in [Poe97]. Of course, the weak- or para-
perspective model does not resemble reality as good as the perspective one,
but it was found that an affine factorization is much more robust against out-
liers than the perspective method. Additionally, the problem of estimating
projective depths as weighting factors for the measurement matrix is elimi-
nated. Optionally, an outlier detection step can be made, which is based on
a least median squares (LMedS) approach [Rou87], and was first applied to
weak-perspective factorization by [Kur00]. The reconstructed affine cameras
are now converted to perspective ones by assuming a reasonable value for
focal length and by choosing the center of the image as the principal point.
These perspective cameras can be used as an initialization for a non-linear
optimization step, where camera matrices and 3-D points are optimized al-
ternatingly.

All steps up to now can be seen as an initialization for a perspective fac-
torization, where the main problem was the computation of the projective
depths, which was done using fundamental matrices in the original pub-
lication [Stu96]. These projective depths can now be computed from the
initial affine and optimized reconstruction just by using the actual depths
of the 3-D points in camera coordinates, which is a natural and consistent
choice. Applying the perspective factorization yields a projective reconstruc-
tion. Hence, a self-calibration step is necessary, which can be done either
as described in Section 2.3.2 using the absolute quadric, or by estimating
the projective transformation that maps the reconstructed 3-D points of the
affine factorization step to the 3-D points obtained by perspective factoriza-
tion. Up to now the intrinsic camera parameters were assumed to be varying
from frame to frame. In many applications this is not the case, and thus an
additional step for refining the estimations of the intrinsic parameters based
on [Har94] can be applied that exploits this assumption and thus improves
the reconstruction considerably. The reconstruction of the initial image se-
quence is concluded by a non-linear optimization, either similar to the one
after the affine factorization, or bundle-adjustment, which gives better results
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Step Description

1: Apply an affine factorization method (weak- or paraperspec-
tive) to initial subsequence

2: optionally: eliminate outliers using LMedS

3: Create a reconstruction of perspective cameras with a
roughly estimated focal length and with the image center as
the principal point

4: Do a non-linear optimization of this solution by alternatingly
optimizing the camera parameters and the coordinates of the
scene points

5: Use this reconstruction to determine projective depths and
apply the perspective factorization method

6a: Perform self-calibration either using the absolute quadric . . .

6b: . . . or by estimating the projective transformation between the
weak-perspective and the perspective reconstruction

7: If more or less constant intrinsic parameters can be assumed,
improve the self-calibration by exploiting this constraint

8a: Apply a non-linear optimization of scene points and camera
parameters either similar to step 4. . .

8b: . . . or by bundle-adjustment

9: Extend the sequence: Reconstruct a new camera matrix by
using already triangulated 3-D points as a calibration pattern

10: optionally: Do a final non-linear optimization using bundle-
adjustment

Table 2.3: Steps for calibrating a long image sequence [Hei04]: First the initial sequence
is reconstructed by using factorization (steps 1 - 8b), then it is extended by
calibrating new frames using already reconstructed 3-D scene points (step
9). The reconstruction is complete after a final bundle-adjustment (step 10).
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but takes longer to compute.
The initial sequence is now extended by performing the following steps

for each frame that is to be added: First, 3-D scene points are triangulated
from already reconstructed camera matrices. The important point is that
exactly those feature points are used that are also visible in the new image.
This way it is possible to use the triangulated points as a calibration pattern
and apply standard camera calibration techniques [Tsa87, Har03, Tru98]. In
fact, since differences from one camera pose to the next will usually be small,
it is sufficient in practice to skip the linear standard calibration methods and
initialize the new camera pose with the parameters of the neighboring one.
Non-linear optimization of this camera will yield the desired result. These
two steps are repeated until all frames are processed.

Optionally, the whole reconstruction can be optimized non-linearly by a
final bundle-adjustment step.

2.4 HandEye Calibration

As this work presents a stereo self-calibration approach that makes use of
temporal feature point correspondences only and is based on an enhanced
hand-eye calibration algorithm as one of the central points, this section gives
an overview over the state-of-the-art in hand-eye calibration.

Hand-eye calibration has its origins in the robotics community, where the
following problem arose: Given a robot arm and a camera mounted on that
arm, compute the rigid transformation from arm to camera, which is called
hand-eye transformation. Knowledge of this transformation is necessary, be-
cause usually the pose of the robot arm is provided by the robot itself, while
the pose of the camera is unknown but necessary for visual guidance of the
arm. If the hand-eye transformation is known, however, the camera pose can
be computed easily from the pose information provided by the robot.

The first hand-eye calibration methods were published by Shiu and Ah-
mad [Shi89], and Tsai and Lenz [Tsa89]. An early comparison of the methods
available at that time was given in [Wan92]. The hand-eye calibration prob-
lem was formulated by [Shi89] as a matrix equation of the form

TETHE = THETH , (2.80)

where TH is the robot arm (hand) movement, TE the camera (eye) movement,
and THE is the unknown hand-eye transformation, i. e., the transformation
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from gripper to camera3. This equation can be directly derived from the
following diagram4:

H j
THE−−−−→ Ej

TH

x
xTE

H i
THE−−−−→ Ei

(2.81)

H i and H j denote the gripper poses, Ei and Ej the camera poses at times i, j.
Equation (2.80) can be written explicitly as:

(
RE tE
03

T 1

)(
RHE tHE
03

T 1

)
=

(
RHE tHE
03

T 1

)(
RH tH
03

T 1

)
. (2.82)

The usual way to solve (2.82) is to split it into two separate equations, one
that contains only rotation, and a second one that contains rotation and trans-
lation:

RERHE = RHERH , (2.83)

(RE − I3×3)tHE = RHEtH − tE . (2.84)

Thus, the rotational part RHE of the hand-eye transformation can be deter-
mined first from (2.83), and, after inserting it into the second equation (2.84),
the translational part tHE can be computed. This is the way hand-eye cali-
bration is done, e. g., in [Shi89, Tsa89, Wan92, Cho91]. Different parameter-
izations of rotation have been applied. The original works of [Shi89, Tsa89]
use the axis/angle representation, quaternions were used by [Cho91, Hor95],
and dual quaternions were introduced by [Dan99, Dan01]. In contrast to the
former approaches, it was suggested in [Che91] that rotation and transla-
tion should be solved simultaneously, and not separately. This approach
is also followed by [Hor95], where a non-linear optimization of rotation
and translation is performed. Daniilidis [Dan99, Dan01] introduced a hand-
eye calibration algorithm based on dual quaternions that is also capable of
treating rotation and translation simultaneously, but, in contrast to the for-
mer approaches, a linear solution is given. The dual quaternion algorithm
[Dan99, Dan01] will be described in more detail in Section 2.4.1, since it
forms the basis of the stereo self-calibration approach presented in this work.

3 in some publications THE is the transformation from camera to gripper. The other formulation
is used here, because in an application usually the gripper pose is known while the camera pose
is unknown.

4 note that the transformations have to be written from right to left
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All these hand-eye calibration methods usually rely on the fact that the
movement of the robot manipulator arm is provided by the robot itself, while
the camera movement is computed using a calibration pattern and classic
camera calibration methods, e. g., [Tsa87]. Andreff, Horaud, and Espiau pre-
sented an approach [And99, And01] that obtains the camera movement not
by using a calibration pattern, but from a structure from motion technique.
In this case a scale factor has to be estimated additionally, thus making the
problem very similar to stereo self-calibration. Therefore, this method is
described in more detail in Section 2.4.2.

Note that one constraint is valid for solving the general hand-eye cali-
bration problem, regardless of the algorithm actually used: At least two
movements of the robot manipulator are necessary, where the axes of the ro-
tations are non-parallel. This was already shown algebraically by [Tsa89], a
geometrical reason for this constraint was given by [Che91]. The influence of
this constraint on the applicability of hand-eye calibration in practice will be
discussed later in Section 4.4, where methods for the selection of well-suited
data will be presented. An overview over the parameters that can be deter-
mined in the case of non-general motions of the gripper is shown in Table
2.4 on page 47.

2.4.1 The Dual Quaternion Approach

This section gives an overview over the hand-eye calibration approach using
dual quaternions developed by Daniilidis [Dan99, Dan01]. The main ad-
vantage of this method is that it treats rotation and translation in a unified
way—and not separately as most earlier works—while a linear algorithm is
available that is easy to implement.

With dual quaternions (cf. Sect. 2.2.2), the original hand-eye equation
(2.80) can be formulated as (cf. (2.67))

q̃E = q̃HEq̃Hq̃∗HE , (2.85)

where q̃HE is the dual quaternion coding the unknown hand-eye transfor-
mation, and similarly q̃H codes the hand, and q̃E the eye transformation. It
is shown in [Dan99, Dan01] that the real parts of q̃H and q̃E are equal, which
means that the angle and pitch of hand and eye movement are the same
(cf. (2.63)) and thus have no influence on the computation of the unknown
hand-eye transformation. Therefore, the real parts of q̃H and q̃E are chosen
as zero, which results in a simpler form for (2.85):

(0, q̃Eim) = q̃HE(0, q̃Him)q̃∗HE . (2.86)
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This equation can be split into two equations, one for the non-dual and one
for the dual part of q̃E, resulting in

qEnd = qHEndqHndq∗HEnd , (2.87)

qEd = qHEndqHndq∗HEd + qHEndqHdq∗HEnd + qHEdqHndq∗HEnd . (2.88)

After a multiplication of (2.87) and (2.88) by qHEnd (being the inverse of
q∗HEnd due to the norm one constraint) from the right, we get:

qEndqHEnd = qHEndqHnd , (2.89)

qEdqHEnd = qHEndqHndq∗HEdqHEnd + qHEndqHd + qHEdqHnd . (2.90)

By exploiting the fact that the norm of a unit dual quaternion is a real num-
ber, i. e., the dual part is zero (cf. right equation of (2.61)), the following
equation holds:

qHEndqHndq∗HEdqHEnd = −qHEndqHndq∗HEndqHEd . (2.91)

Using (2.89) this can be further simplified to

−qHEndqHndq∗HEndqHEd = −qEndqHEndq∗HEndqHEd = −qEndqHEd .
(2.92)

Thus, (2.87) and (2.88) can be written as

qEndqHEnd − qHEndqHnd = 0 , (2.93)

(qEdqHEnd − qHEndqHd) + (qEndqHEd − qHEdqHnd) = 0 . (2.94)

It can be seen that these equations are linear in the non-dual and dual parts
qHEnd and qHEd of q̃HE, which results in a linear system of equations. Due
to the fact that the real parts of hand and eye are equal, two of the eight
equations in total can be omitted. For one movement of gripper and camera,
the result is a linear system consisting of six equations for eight unknowns
(but only six degrees of freedom):

(
X Y

) (qHEnd
qHEd

)
= 0 , (2.95)

where

X =

(
qEndim − qHndim [qEndim + qHndim]×
qEdim − qHdim [qEdim + qHdim]×

)
,

Y =

(
03 03×3

qEndim − qHndim [qEndim + qHndim]×

)
.

(2.96)
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Taking a closer look on this equation system, one can derive the well-known
fact that for hand-eye calibration at least two motions with non-parallel ro-
tation axes are necessary: Actually, if only one movement is available, the
coefficient matrix of (2.95) is of rank 4, not of rank 6. This is due to the fact
that the non-dual parts of gripper and camera motion are orthogonal to their
dual parts (cf. (2.62)), because they are represented by unit dual quaternions.

Using at least two motions, a coefficient matrix of rank 6 (not consider-
ing noise) can be built, which is sufficient for solving the system for the
unknowns by SVD. Since we have eight unknowns and only six degrees of
freedom due to the norm one constraint, the nullspace is two-dimensional.
The final solution is determined by solving two quadratic equations, which
are derived from the norm one constraint and consist of the two vectors
spanning the nullspace. Details are given in [Dan99].

2.4.2 HandEye Calibration Using StructurefromMotion

In the following, a hand-eye calibration method based on structure-from-
-motion is described, which was published by Andreff, Horaud, and Espiau
[And99, And01]. As with classic approaches, the gripper poses are obtained
from the robot; instead of using a calibration pattern for determining the
camera poses, however, a structure-from-motion algorithm is applied for this
purpose. The main problem that arises with structure-from-motion is that
an additional parameter—a global scale factor—has to be estimated. While
this is not possible without additional knowledge of the observed scene if
we look at structure-from-motion alone, in the case of hand-eye calibration
robot data are available which allow for the reconstruction of the scale factor.

The additional scale factor sE is integrated into the hand-eye equations
(2.83), (2.84) as a scaling of the camera translation vector as follows:

RERHE = RHERH , (2.97)

(RE − I3×3)tHE = RHEtH − sEtE . (2.98)

Note that only (2.84) is modified, the scaling has no influence on the rota-
tional part of the equations. The equations (2.97) and (2.98) are now refor-
mulated using the following identity:

vec(XYZ) = (X ⊗ ZT)vec(Y) , (2.99)

where X , Y , and Z are arbitrary matrices having correct dimensions, ⊗ is the
Kronecker tensor product, and vec(·) is an operator that transforms a matrix
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into a vector by re-ordering the matrix elements row-wise, i. e., the rows are
transposed and concatenated to a vector.

Re-writing (2.97) as
RERHERH

T = RHE , (2.100)

and, using the vec(·) operator on left and right hand side of (2.100) and
applying the identity (2.99), we get:

(RE ⊗ RH)vec(RHE) = vec(RHE)

(I9×9 − (RE ⊗ RH))vec(RHE) = 0 .
(2.101)

Likewise, (2.98) can be written as

(RE − I3×3)tHE = I3×3RHEtH − sEtE , (2.102)

and, again using (2.99):

(I3×3 ⊗ tH
T)vec(RHE) − sEtE + (I3×3 − RE)tHE = 0 . (2.103)

The equations (2.101) and (2.103) can now be combined into a linear sys-
tem of equations, where the unknowns are the nine elements of the rotation
matrix RHE, the three elements of the translation vector tHE, and the scale
factor sE:

(
I9×9 − (RE ⊗ RH) 09×3 09

I3×3 ⊗ tH
T I3×3 − RE −tE

)


vec(RHE)
tHE
sE


 = 0 . (2.104)

Two possibilities for solving (2.104) are suggested in [And01]. The first pos-
sibility is the obvious one: Solve the system of equations simultaneously for
rotation, translation, and scale by determining the null-space, e. g., by SVD.
The correct solution is the one where the first nine entries of the solution
vector are normalized such that they conform with the unity constraint of a
rotation matrix. The problem is that the orthogonality of the rotation matrix
is not guaranteed automatically and thus has to be enforced afterwards by a
non-linear optimization step, because it has to be consistent with translation
and cannot be considered separately.

Therefore, it is suggested in [And01] to use a two-step method as in the
classic approach (cf. Equations (2.83), (2.84)) that solves for rotation first, and
then for translation and scale using the following equations:

(
I9×9 − (RE ⊗ RH)

)
vec(RHE) = 0 , (2.105)

(
(I3×3 − RE) −tE

) (tHE
sE

)
= −RHEtH . (2.106)
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Second MotionFirst Motion
pure Translation pure Rotation general Motion

pure
Translation

RHE, sE RHE, sE, tHE(sax) RHE, sE, tHE(sax)

pure
Rotation

RHE, sE, tHE(sax) RHE, tHE (up to scale sE) RHE, sE, tHE

general
Motion

RHE, sE, tHE(sax) RHE, sE, tHE RHE, sE, tHE

Table 2.4: This table shows which parameters can be recovered using a hand-eye
calibration algorithm for different kinds of motions of the robot gripper
[And01]. The notation tHE(sax) means that the translation can be deter-
mined only up to an unknown component in the direction of the rotation
axis of the rotational motion. For details cf. [And01].

Note that (2.105) is the same as (2.101), and (2.106) is a reformulation of
(2.98). The solution is obtained by first solving (2.105) for RHE, where the
orthogonality constraint on the resulting rotation matrix can be enforced by
an orthogonalization using SVD. The orthogonalized RHE is then inserted
into (2.106), which can then be solved for translation tHE and scale sE.

As for all hand-eye calibration algorithms, of course again at least two
motions are necessary for solving (2.105), (2.106).

The main drawback of the second method is certainly that rotation and
translation are computed separately, which is not the case for the dual quater-
nion approach discussed previously. Therefore, this thesis will introduce an
algorithm in Chapter 4 based on a combination of structure from motion
and simultaneous computation of rotation, translation, and scale, which was
developed for the purpose of stereo self-calibration, but can of course also
be used for robot hand-eye calibration without using a calibration pattern.

In [And01] an overview is given as well that answers the question which
parameters can be recovered if the motion is not general enough. As men-
tioned before, hand-eye calibration requires at least two motions with non-
parallel rotation axes. Table 2.4 shows what can be recovered for different
kinds of motions for first and second movement of the robot gripper.

2.5 Computation of Depth Maps

Since the aim of this work is to augment a real scene recorded by a rigid
but uncalibrated stereo camera system, we will now discuss how to compute
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dense depth maps after the stereo system is self-calibrated. These depth
maps are required for rendering artificial objects into the real scene with
correct occlusions. Many different approaches have been published already
[Hor81, Ira99, Alv00a, Alv00b, Alv02, Vog01, Sch02a], an overview can be
found in [Alv00a]. For an Augmented Reality setup, one has to distinguish
mainly between two kinds of algorithms: those that are suited for real-time
computation and those that are not. Real-time is especially important for
a setup where a person is wearing a head-mounted display, while the non-
real-time algorithms can be applied only for off-line augmentation. Usually,
there is a trade-off between computation time on the one side and quality or
robustness with respect to unreliable calibration on the other.

Besides the classic approaches for establishing correspondences between
two images, which are feature- and area-based matching, other techniques
such as phase- and energy-based ones have been developed [Alv00a].

Augmented Reality applications using disparity maps can be found, e. g.,
in [Kau01, Mul00]. Other approaches do not compute disparity maps, but
use contour-based methods for resolving occlusions, as in [Ber97]. In [Kau01]
a recursive approach for computing disparity maps for video-conferencing
scenarios is presented. The topic of obtaining disparity for tele-presence
applications by combining optical flow techniques and block-matching is
addressed in [Mul00].

A depth-map computation algorithm that is to be used in an Augmented
Reality application has to meet the following requirements [Vog01, Sch02a]:

Consistency of Depth Maps: For a stereoscopic Augmented Reality system
it is necessary to have depth maps for both left and right, camera im-
ages. It is important to get consistent maps in both images, i. e., oc-
clusions in the left image must correspond to occlusions in the right
image and vice versa.

Dense Depth Maps: The depth-maps should be dense, i. e., they should con-
tain a depth value for each pixel, otherwise the occlusion of virtual
objects by real ones will be insufficient.

Sharp Edges: Edges of real objects should be extracted very well since ex-
actly at these locations virtual and real objects meet each other, and
smooth transitions would lessen the immersion into the augmented
scene.

Detection of Occlusions: In the case of occluding objects in the real scene
no corresponding points can be detected for some areas of the two
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Figure 2.5: Data-flow for computing consistent depth maps for the left and right image

images. The correspondence algorithm should be able to detect these
locations in the images so that gaps in the depth maps can be filled in
a post-processing step.

Since the actual algorithm used for depth map computation can in general
be chosen independently of the previous (self-)calibration step, only one ex-
ample of such an algorithm will be given here, namely the real-time method
described in [Vog01, Sch02a].

In [Vog01, Sch02a] it is proposed to use block-matching by exploiting the
advantages of a similarity accumulator resulting in a very efficient computa-
tion scheme for consistent dense disparity maps. 3-D accumulator concepts
have been developed previously, e. g., see [Müh02] and [Zit00]. The algo-
rithm described in [Vog01, Sch02a] was also used in non Augmented Reality
applications already [Sch02b].

In fact, the algorithm computes disparity-maps which can be converted
to depth-maps afterwards. This means that before the matching process is
done, the two input images have to be rectified. The term rectification de-
notes a transformation of a given stereo image pair such that corresponding
epipolar lines are collinear and parallel with one of the image axes, usually
the horizontal one. This rectified image pair, also called normalized stereo
image pair, can be considered as images taken by a stereo camera system
that can be derived from the original one by rotating the cameras about the
optical center. The main advantage of using rectified images is that corre-
sponding points can be found on the same scanline in both images which
makes searching much easier and faster since no resampling of the images
along the epipolar lines has to be done. Algorithms for rectification can be
found, e. g., in [Aya88, Fus00, Tru98].

Figure 2.5 shows the processing steps of the algorithm. As input, two
rectified images are used; the camera parameters of the stereo system are as-
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Figure 2.6: Schematic representation of an accumulator layer and strategy for deter-
mining the respective row in the left and right disparity map. The gray-
value of an accumulator cell reflects the similarity between left and right
image of a certain pixel when the disparity is given. Dark means strong,
bright means weak similarity (from [Vog01, Sch02a]).

sumed to be known, since these are necessary for rectification. For each pixel
(respectively a block), the similarity to all pixels (blocks) of the correspond-
ing epipolar line in the other image is computed. The amount of similarity
is stored in the 3-D similarity accumulator, i. e., one similarity value for each
pixel coordinate in x- and y-direction and for each disparity. As a similarity
measure, the sum of absolute differences is used, because it allows for an ef-
ficient computation of the 3-D similarity accumulator. Here, it is only shown
how to use the accumulator for disparity computation. One of the main ad-
vantages of this concept with respect to speed is the efficient way to fill the
accumulator, which is described in [Vog01, Sch02a] and will be omitted here.
The similarity accumulator allows telling which disparity is the most likely
one for each pixel, after all accumulator cells were computed.

Figure 2.6 shows an example of one accumulator layer that allows comput-
ing the corresponding row in the left and right disparity map. The entries
of the accumulator are painted in different shades of gray; the darker the
gray-value the more likely is the assignment of the corresponding disparity
value. In order to get the optimal disparities of an arbitrary row for the left
disparity map, a vertical search is done in the accumulator. It is assumed
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that smaller accumulator entries give a higher similarity, which is true when
using the sum of absolute differences as a similarity measure. The row of
the right disparity map is computed by a diagonal search in the accumulator
layer. In order to get the complete maps these searches are performed for all
rows, i. e., all accumulator layers.

The synchronization step checks the confidence and consistency of disparity
values computed by vertical and diagonal search. This is especially impor-
tant if there are occluded objects in the images, since no left/right correspon-
dences are available in that case. Nevertheless these wrong correspondences
are found during the search. If the maps are to be used for a stereoscopic
augmentation of a real scene, it is important that each scene point has match-
ing disparities in the left and right map, otherwise we would get different
occlusions of virtual and real objects in the two images.

Two assumptions were introduced by Marr and Poggio [Mar76, Mar79]
when computing dense disparity maps from stereo images: uniqueness and
continuity of the disparity map. Uniqueness means that each pixel in the
two images can have exactly one disparity and thus exactly one depth in
the scene. This problem is illustrated in Figure 2.6 in the accumulator cells
(x=1, d=0) and (x=3, d=2) that give the best values for the vertical search
in the left map. Since both cells lie on a diagonal, the uniqueness assumption
is violated, because the diagonal search for the right map has to decide for
the better one of both values, i. e., cell (x = 3, d = 2) and thus a disparity
value of 2. The result is that two pixels in the left image are matched to
the same pixel in the right image, which is illustrated in Figure 2.6 by the
arrows below the rows of the computed disparity maps. The consistency
check is done for each accumulator entry of left and right map separately. If
the uniqueness constraint is violated, the entry in the disparity map is set to
undefined. In Figure 2.6 undefined disparities are parenthesized.

The next step is the post-processing of both maps, where the undefined
entries are filled in order to get dense disparity maps. Most methods for
computing dense disparity maps (e. g., [Kau01]) fill gaps in the maps by
simple linear interpolation in the direction of the epipolar lines. The draw-
back is that neighboring lines are treated independently of each other and
thus often violate the postulated continuity criterion in the disparity map
in vertical direction. In [Vog01, Sch02a] a technique is proposed for using
the available disparity information near the gap to be filled. First, a Median
filter with a small mask size (3×3 or 5×5) is applied to the map in order
to fill small gaps. Additionally, the Median filter suppresses noise while
maintaining edges in the disparity map. A morphological closing operator

51



Chapter 2 Computer Vision Principles

(i. e., dilation followed by erosion) is used for filling larger gaps, resulting in
foreground objects consisting of contiguous disparity regions.

At the end, large undefined regions are filled along the scanlines (which
are the epipolar lines since the images are rectified) using the smaller of the
two disparities at the left and right end of the gap. The reason for this is
that undefined regions are mainly caused by occlusions where objects far
away (having small disparities) are occluded by near objects (having large
disparities).

In a last step, the disparities are converted to depth values, and mapped
from the rectified to the original images.

2.6 Summary

This chapter described basic computer vision methods as far as they are used
in this work. At the beginning, the notion of a camera projection matrix was
introduced, which consists of the intrinsic and extrinsic camera parameters
as well as the projection model. Different projection models were presented,
namely orthogonal, weak perspective, paraperspective, and perspective. For
describing stereo camera systems the epipolar geometry was introduced. It
defines the relationship between two views using the fundamental matrix.

Another important part of this chapter was about the representation of
rotation and translation in 3-D. First, different rotation representations were
shown, and the terms Cardan and Euler angles, axis/angle, and Quaternions
were clarified. The advantages and disadvantages of the different represen-
tations were discussed. Dual Quaternions are a method for describing 3-D
rotation and translation in a unified way. Since they are going to play an im-
portant role in the self-calibration of stereo cameras presented in this work,
dual quaternions were described in detail.

In the next section methods for 3-D reconstruction of scene geometry and
camera parameters using a single hand-held camera were introduced. First,
an overview over various 3-D reconstruction methods was given. Important
for this work are the factorization methods that form the basis of the com-
plete reconstruction process. After factorization, often a projective recon-
struction is available that can be updated to a metric one by self-calibration,
if weak assumptions about the intrinsic camera parameters can be made. In
the following, a method was described that is capable of reconstructing 3-D
scene points and camera parameters from long image sequences even if not
all point features are visible in every frame. It consists mainly of a combi-
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nation of affine and perspective factorization, where the former one can be
used as an initialization of the latter one. Factorization is used to reconstruct
an initial image sequence, which is afterwards extended by triangulation of
scene points and calibration of the remaining frames using standard calibra-
tion algorithms, until all images are processed.

The next section was about hand-eye calibration. The classic application
of Hand-Eye calibration is in robotics, where it is used for the computation
of the unknown rigid transformation from a robot manipulator arm to a
camera mounted on it. Hand-Eye calibration can be applied for stereo self-
calibration as well, actually it is a main part of the new method described
later in this work.

The goal of Augmented Reality is to render virtual objects into a real scene.
In order to get correct occlusions, it is important to compute dense depth
maps for each view. The last section of this chapter treated that topic, and
one method which is capable of computing depth maps in real-time was
described exemplarily.
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Chapter 3

SelfCalibration of a Rigid Stereo System

3.1 Problem Statement

In this chapter methods for self-calibration of a stereo rig are discussed. In
contrast to the structure-from-motion algorithms described in the previous
chapter, two cameras are used now instead of only one. The cameras are
attached rigidly to each other, i. e., they move simultaneously, and thus will
be called stereo rig in the following.

Following [Luo93], the most general definition of self-calibration of a stereo
rig refers to the computation of the rigid transformation, i. e., rotation and
translation, between the two cameras as well as the intrinsic camera param-
eters, where the latter may change over time. The method is automatic, does
not need a model of the observed scene, and uses no a priori knowledge
about the movement of the cameras.

Usually, this definition is restricted such that the intrinsic parameters re-
main constant over time or are known in advance because a calibration pat-
tern was used. Note, however, that the new self-calibration algorithm de-
scribed in Chapter 4 is capable of solving the general problem stated above.

In order to sum up, the following parameters are to be computed: the
extrinsic parameters of the rigid stereo system (RS and tS as defined in
(2.14) and (2.16)), which are constant over time, and the intrinsic camera
parameters for the left (Klt) and right camera (Krt), which may in general
be time-variant. The index t identifies the frame number, 0 ≤ t < Nt. Note
that without further knowledge about the scene, similar to monocular ap-
proaches, it is only possible to obtain a metric 3-D reconstruction, i. e., there
is still an unknown scale factor involved. This usually means that the trans-
lation tS is reconstructed up to scale and therefore normalized to one. For
the computation of depth maps from the stereo images this information is
sufficient.

Stereo self-calibration algorithms can be classified into two main groups.
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The first group contains methods that use correspondences between left and
right frame as well as temporal correspondences, while the second one re-
lies totally on temporal monocular correspondences. Both types will be de-
scribed in more detail in the following sections.

Early papers [Bro87, Bro88] about self-calibration of a stereo rig date back
to the 1980’s, where the application was the calibration of a rig mounted on
a mobile robot. Because of this scenario a planar motion could be assumed,
and the method was a direct result of the originating stereo geometry. The
calibration was based on the matching of lines between the two images of
one stereo pair using dynamic programming.

A general approach for stereo self-calibration was presented by Zhang,
Luong, and Faugeras in [Zha93, Zha96b]. Here, a combination of left-right
and temporal point correspondences is applied by using four fundamental
matrices between left and right frame before and after movement of the rig
as well as fundamental matrices between temporally related frames of the
same camera. This approach was generalized by [Enc97]. More details will
be given in Section 3.2.1.

Another approach that also needs both kinds of correspondences was
presented by Zisserman, Beardsley, and Reid [Zis95]. The same method
is used by Devernay and Faugeras [Dev96] and by Horaud and Csurka
[Hor98b, Hor98a, Hor00] with different parameterizations. It was developed
further by giving a closed form solution [Csu98a]. Various ways for estimat-
ing the unknowns are given in [Csu98b, Csu99]. This method is described in
more detail in Section 3.2.2.

Only a handful approaches exist that use only temporal correspondences
[Luo93, Luo01, Dor01], although these are much easier to obtain in an uncal-
ibrated stereo system. The method by Luong and Faugeras [Luo93, Luo01] is
based on hand-eye calibration and will be discussed in detail in Section 3.3.
In [Dor01] a method is presented that also uses only temporal correspon-
dences and applies epipolar constraints between images of the same camera
taken at different times. This approach assumes that the principal point of
each camera and one rotational degree of freedom of the stereo system is
known in advance. The remaining two parameters of rotation and the intrin-
sic camera parameters are recovered using two pairs of stereo images. This
approach is not discussed any further, since it is not general enough for the
application intended in this work.

Of course there are areas of application where especially the case of planar
motion of a stereo rig is of interest, namely rigs mounted on autonomous
systems moving on a planar surface. Publications discussing self-calibration

56



3.2 Left-to-Right and Temporal Correspondences

for planar motion of a stereo rig are, e. g., [Bea95a, Bea95b, Csu98a, Li04].
In [Bro96] a method based on [Zha93, Zha96b] is presented that is used
for the calibration of a stereo head mounted on a mobile robot moving on
a plane. An error analysis of self-calibration of a stereo head is given in
[dA98], which also presents experimental results for planar motion based on
[Bro96]. In [Bro01] a stereo system is used for automatic car driving. Even if
this article claims to do self-calibration of a stereo vision system in its title, it
uses markers with known world-coordinates and is more of a re-calibration
than a self-calibration approach.

In [Zom01] a method is presented that is strictly speaking no self-cali-
bration approach for a stereo camera system, but rather a method for re-
calibrating a stereo rig, or more generally an omni rig consisting of two or
more cameras. This method needs an already calibrated system as a starting
point that is in [Zom01] obtained from a calibration pattern, which means
that the update transformation from projective to metric is known at the be-
ginning. The main question treated by [Zom01] is whether the system can
be re-calibrated if the camera configuration varies because of slight changes
in relative position or because intrinsic parameters such as focal length vary.
The relative orientation of the cameras is assumed to be constant, thus not
subject to changes, and therefore not re-calibrated. The result is that re-
calibration of the intrinsic parameters and optical center (which is the posi-
tion of the camera) is possible with two cameras if the skew is zero and the
principal point is known.

3.2 LefttoRight and Temporal Correspondences

3.2.1 Stereo SelfCalibration from Fundamental Matrices

This section describes shortly the stereo self-calibration method published
by Zhang, Luong, and Faugeras in [Zha93, Zha96b]. One rigid displacement
of the stereo camera is used, i. e., four views taken at two different times.
The method is based on the usage of left-to-right as well as temporal cor-
respondences between the views. The result of the algorithm is an estimate
of the intrinsic parameters Kl, Kr of the left and right camera, the extrinsic
stereo parameters RS, tS, and the movement of left and right camera from
time step i to time step j, denoted by Rl ij, tl ij and Rr ij, tr ij, respectively (cf.
Fig. 3.1). The intrinsic camera parameters are assumed to be constant over
time, having zero skew, and a known principal point, which is assumed to
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Pl j
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Figure 3.1: One rigid displacement of the stereo rig, with cameras given at time step i
(before movement) and time step j (after movement)

be located at the image center. Under these assumptions, four views, i. e.,
one displacement of the rig, is sufficient. Only a metric reconstruction can
be obtained, i. e., an unknown global scale factor remains, which is fixed by
the assumption of ‖tS‖ = 1.

The transformation from left to right camera as well as the temporal dis-
placements are modeled according to (2.14) and (2.16). W. l. o. g. the world
coordinate system is chosen such that it coincides with the coordinate system
of the left camera Pl i at time step i.

The authors first compute 2-D point correspondences between the four
images, and use those correspondences to estimate the fundamental matri-
ces, namely F̂lri, F̂lrj, F̂lij, and F̂rij. Note that F̂lri and F̂lrj are identical in
the noise free case, as the two cameras are attached rigidly to each other.
The goal now is to compute the stereo parameters from those four funda-
mental matrices. This is done by first estimating the intrinsic parameters
(without skew and principal point) using the self-calibration method pro-
posed in [May92], which is essentially based on solving the so-called Kruppa
equations1. After the intrinsic camera parameters are recovered, the essential
matrices can be computed from the fundamental matrices using (2.17). Ex-
tracting rotation and translation from the essential matrices is relatively easy,
details can be found in [Fau93, Fau01, Har03].

The computed parameters are then used as an initialization for a non-

1 for details on those equations cf., e. g., [Har03, Fau01]
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Stereo Self-Calibration from Fundamental Matrices

Advantages
one relative movement of the cameras is sufficient
Disadvantages
left-to-right and temporal feature tracking
Kruppa equations for self-calibration
hard-to-implement constraints needed because of additional scale factors

Table 3.1: Advantages and disadvantages of the stereo self-calibration method from
fundamental matrices of [Zha93, Zha96b].

linear optimization step, where the following criterion is minimized:

min
K̂l,K̂r,R̂S,t̂S,R̂l ij ,t̂l ij ,R̂r ij ,t̂r ij

(
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∑
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rj,kFrijbri,k

)2
)

,

(3.1)

where Nc · is the number of corresponding points between two frames.
Note that the self-calibration step yields a metric reconstruction only, i. e.,

there are still unknown scale factors involved in tl ij and tr ij. A constraint on
these translations can be derived from (2.16), which is basically the computa-
tion of the determinant of a 3 × 3 matrix. In [Zha93, Zha96b] it is stated that
this constraint is very complex to implement, and thus ignored, since their
experiments showed that it is nearly fulfilled during optimization, anyway.

An extension of this method to varying intrinsic parameters and the ad-
ditional use of two more fundamental matrices (the diagonal ones, i. e., F̂lirj

and F̂rilj) is described in [Enc97].
In the following the advantages and disadvantages of this approach are

discussed; these are summarized in Table 3.1. One of the main disadvan-
tages is that both, left-to-right and temporal correspondences of point fea-
tures are used. Finding correspondences between the two views taken by
an uncalibrated stereo camera system automatically is very hard, which is
probably one reason why the authors used an interactive program for es-
tablishing these correspondences. For temporal correspondences, either the
same problem arises if the translation is large, or, if it is very small, the es-
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D

Φi Φj

R, t

Figure 3.2: Establishing left-to-right correspondences for the first frames allows for
a projective reconstruction Φi of the scene. After the stereo system has
been moved, another projective reconstruction Φj of the same scene can
be obtained. The homography D can be computed from correspondences
between reconstructed 3-D points.

timate of the fundamental matrices becomes unstable. Another drawback of
the method is the use of only four views, even if more data are available. The
authors state that the extension to more views is easy, but was not done. For
updating the fundamental matrices from projective to metric, the Kruppa
equations have to be solved. This could be done better with state-of-the-art
self-calibration methods. Also, due to the fact that the result of a reconstruc-
tion between two views is a metric reconstruction, additional scale factors
are involved that have to be considered during optimization.

An advantage of the method is that one relative movement of the cameras
is sufficient for determining the parameters of the stereo system.

3.2.2 Homography between Projective Reconstructions

The method described in the following for computing the parameters of a
stereo system was originally developed by Zisserman, Beardsley, and Reid
[Zis95], with modifications given by [Dev96] as well as [Hor98a, Hor98b,
Hor00, Csu98a, Csu98b, Csu99]. A description can also be found in [Har03,
Fau01].

The general idea is again to start with a projective reconstruction of camera
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parameters and scene points and to compute an update to affine and metric
afterwards using scene point correspondences of 3-D points in a projective
reconstruction. This is done as follows (cf. Fig. 3.2): A pair of images is taken
by the stereo system at a certain time step i, left-to-right correspondences
are established and the fundamental matrix is estimated using the 8-point
algorithm [LH81, Har97a]. These are used for computing a projective recon-
struction yielding left and right projection matrices Pl i, Pri and scene points
wi, which form the matrix Φi, where

Φi =
(

w1 w2 . . . wNw

)
. (3.2)

After moving the stereo rig, feature points are tracked between the right im-
ages before and after the motion and between the left images before and
after the motion, thus indirectly establishing correspondences between left
and right camera after the motion. Again a projective reconstruction Φj of
the same scene points after the motion can be computed. For triangulation
the same camera matrices Pl i, Pr i as before the movement can be used, since
the two cameras are attached rigidly to each other. Additionally, correspon-
dences between the projective 3-D scene points before and after the move-
ment have thus been established. Note that the images are the only way to
get those 3-D correspondences in a projective reconstruction, because meth-
ods like the Iterative-Closest-Point (ICP) algorithm (see Sect. 4.3.5) need a
distance measure between points, which does not exist in a projective space.

The correspondences can now be used for estimating a 4 × 4 homography
D between the two point sets Φi and Φj, where

Φi = DΦj . (3.3)

An estimate D̂ of D can be obtained from a linear system of equations if
five or more 3-D correspondences are available, each correspondence giving
three equations resulting in 15 equations for the 15 degrees of freedom of
D, which is defined only up to scale. Linear and non-linear methods for
estimating D are described in [Csu98b, Csu99]. If more than one movement
of the stereo rig is available, more than one homography can be computed,
thus resulting in a more stable self-calibration.

Starting from the homography D̂, a stratified self-calibration can be done,
computing first the plane at infinity m∞ from D̂, and then the image of the
absolute conic cC (or its dual cC⋆). From these, the update matrices from
projective to affine and from affine to metric can be derived as given by
(2.73) and (2.74), respectively. After a metric reconstruction is obtained, the
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stereo parameters can be computed directly from the left and right projection
matrices using (2.15) and (2.16).

The plane at infinity may be computed from the Eigen-vector of DT corre-
sponding to the (double) real Eigen-value 1 (cf. [Har03, Fau01, Hor98a] for
details). The intrinsic camera parameters K are assumed to be the same for
both cameras and invariable over time; an idea for varying parameters is
given in [Har03]. In order to determine K the image of the absolute conic
cC has to be computed first, which can be done by solving a linear system
of equations that involves the so-called infinity homographies H∞ j between
the reference view Pref =

(
I3×3 03

)
(usually the first frame) and the view

having projection matrix P j.
The infinite homography H∞ j is a homography between images (i. e., a

regular 3 × 3 matrix) that maps vanishing points to vanishing points. It is
given by

H∞ j = Xj − xjm∞
T , (3.4)

where
P j =

(
Xj xj

)
. (3.5)

W. l. o. g. all matrices H∞ j are normalized such that det
(

H∞ j

)
= 1 in the

following computations. This can be done because these are homogeneous
equations and thus a scale factor is involved.

The image of the absolute conic cC can now be computed by solving the
following linear system of equations:

cC = H∞ j
−T cCH∞ j

−1 , (3.6)

or, alternatively, the dual image of the absolute conic cC⋆ may be computed
from

cC⋆ = H∞ j
cC⋆H∞ j

T . (3.7)

The intrinsic camera matrix K can be obtained from a Cholesky decom-
position of (2.75). This decomposition is exactly one of the main drawbacks
of this method, because cC (or cC⋆) has to be positive-definite in order to
obtain K, which is often not the case since cC is estimated from noisy data.
If no positive-definite matrix can be computed the self-calibration fails.

Another problem is again the use of left-to-right correspondences for esti-
mating the fundamental matrix between left and right view, as was already
the case for the method described in the previous section.

A summary of the advantages and disadvantages of this self-calibration
approach is given in Table 3.2.
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Self-Calibration with Homography between Projective Reconstructions

Advantages
linear method
usage of more than one relative movement is easy
one relative movement is sufficient
Disadvantages
left-to-right and temporal feature tracking
cC (or cC⋆) often not positive-definite

⇒ Cholesky decomposition impossible

Table 3.2: Advantages and disadvantages of the stratified stereo self-calibration ap-
proach using the Homography between projective reconstructions.

3.3 Temporal Correspondences

This section describes the stereo self-calibration algorithm developed by Lu-
ong and Faugeras [Luo93, Luo01] that uses only temporal monocular cor-
respondences, i. e., no point correspondences are necessary between the left
and the right frames. This method is also described in [Fau01].

Luong and Faugeras start by establishing the temporal point correspon-
dences between images taken by the left camera at different times, and the
same for the images of the right camera. Tracking those features in image
sequences taken by a moving stereo rig is much easier than finding left-to-
right correspondences, because the differences in the images are small and
the features can thus be tracked using methods as described at the begin-
ning of Section 2.3.1. The features are used to estimate fundamental matri-
ces between the frames taken by a single camera, and the monocular self-
calibration is done using Kruppa equations and the image of the absolute
conic to obtain the intrinsic camera parameters. Note that besides the un-
used left-to-right fundamental matrices this is up to now very similar to the
method by Zhang from Section 3.2.1. At this point, a mutually independent
metric reconstruction of the left and right camera movement (and of course
of the 3-D points as well, which are not used here) is possible by updating
the fundamental matrices to essential matrices using the intrinsic camera pa-
rameters obtained from self-calibration, and decomposition of the essential
matrices into rotation and translation.

The task from this point on can be described as follows: Given rigid dis-
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placements between the frames taken by the left camera and the same for the
right one, compute the unknown rigid displacement from left to right, which
is the same for all image pairs. Due to the fact that the two reconstructions
have been obtained independently from each other, the left and right camera
movements are known in different coordinate systems. This problem was in
fact already well studied in the area of hand-eye calibration in robotics (cf.
Sect. 2.4), where an unknown rotation and translation between a robot arm
and camera mounted on that arm have to be computed. The main difference
is that in stereo self-calibration an additional scale factor is involved due to
the metric reconstructions. Note that in contrast to the methods described
previously, hand-eye calibration algorithms need at least two movements of
the rig, one is not sufficient.

The transformations from the frame at time step i to the frame at time
step j within one camera path are chosen similar to equation (2.14) and are
denoted by Rlij, tlij and Rrij, trij for left and right camera path, respectively.
This is shown graphically in the following commutative diagram for one
relative movement:

Pl j
RS,tS−−−−→ Pr j

Rl ij ,tl ij

x
xRr ij ,tr ij

Pli
RS,tS−−−−→ Pri

(3.8)

The rigid displacements from frame i to frame j can be computed from
the camera matrices Pli and Pl j by decomposition according to (2.15) and
analogous usage of (2.16):

Rl ij = Rl j
TRl i, Rr ij = Rr j

TRr i (3.9)

for rotations and

tl ij = Rl j
T(tl i − tl j) = Rl ijRl i

T(tl i − tl j),

tr ij = Rr j
T(tr i − tr j) = Rr ijRr i

T(tr i − tr j)
(3.10)

for translations.
The stereo parameters RS and tS can be recovered from the following

equation induced by the commutativity of diagram (3.8): Starting at Pli and
using first the path to Pl j and then to Pr j is the same as using first the path
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to Pri and then to Pr j, which can be written as2:

RSRl ij = Rr ijRS , (3.11)

(I3×3 − Rr ij)tS = sr ijtr ij − sl ijRStl ij , (3.12)

where sl ij and sr ij are unknown scale factors which scale the left and right re-
construction to the actual size. Note that for the method presented here, the
scale factors may be different for each relative movement, because the recon-
structions have been obtained independently using fundamental matrices.
In practice only their ratio can be recovered without additional knowledge,
which can be used to update one of the reconstructions such that their rela-
tive scaling is correct. While (3.11) is well-known from hand-eye calibration,
(3.12) differs from standard hand-eye calibration by the scale factors.

In [Luo93, Luo01] quaternions are used for the computation of the rotation
matrix RS. The quaternion formulation of equation (3.11) is:

qSql ij = qr ijqS , (3.13)

where qS, ql ij, qr ij are the quaternions corresponding to the rotation matrices
RS, Rl ij, Rr ij. Equation (3.13) can be written as

MqS = 0 , (3.14)

where

M =




ql1 − qr1 qRl − qRr ql3 + qr3 −ql2 − qr2
ql2 − qr2 −ql3 − qr3 qRl − qRr ql1 + qr1
ql3 − qr3 ql2 + qr2 −ql1 − qr1 qRl − qRr
qRl − qRr qr1 − ql1 qr2 − ql2 qr3 − ql3


 , (3.15)

with
qr = qRr + qr1i + qr2j + qr3k , (3.16)

and analogous for ql. The indices i, j have been omitted to simplify notation.
The system can be solved if at least two movements of the stereo rig are
available. For many movements of the rig we get an overdetermined linear
system of equations that is solved by least-squares methods like SVD. The
solution is the quaternion qS, which can be converted to a rotation matrix
using (2.45).

2 note that the transformations are written from right to left
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In order to recover the translation vector tS from (3.12), the ratio of the
scale factors slr ij =

sl ij

sr ij
has to be computed, which scales the reconstruction

of the left image sequence such that the scaling complies with the reconstruc-
tion of the right sequence. According to [Luo01] this can be accomplished
by solving the following equation for slrij =

sl ij

sr ij
:

rT
rij(sr ijtr ij − sl ijRStl ij) = 0 , (3.17)

which yields

slr ij =
rT

rijtr ij

rT
rijRStl ij

, (3.18)

where rrij is the axis of the rotation matrix Rr ij.
Equation (3.17) holds since I3×3 − Rr ij from (3.12) is a linear mapping that

results in vectors orthogonal to the rotation axis rrij.
Now (3.12) can be solved for tS giving the component tS⊥ij of tS orthogo-

nal to rrij. Using a second movement of the rig from time j to time k, where
the rotation axis rrjk is different from rrij, a second component tS⊥jk can be
recovered and combined with the first one in order to compute tS up to an
unknown scale factor s from

tS = s(tS⊥ij × rrij) × (tS⊥jk × rrjk) . (3.19)

Equation (3.19) can easily be derived by noting that tS⊥ij × rrij is the normal
vector of the plane defined by the vectors tS⊥ij and rrij. The same is true for
the other movement. The outer product of the two normal vectors gives the
direction of the intersecting line of the two planes, i. e., tS. For more move-
ments of the stereo rig, all resulting equations like (3.19) can be combined
into an overdetermined system of equations.

The main advantage (also cf. Table 3.3) of the method presented in this sec-
tion is certainly the usage of temporal correspondences only, i. e., no left-to-
right feature tracking is necessary. This is achieved by applying a hand-eye
calibration algorithm, with the difference to the classic method known from
robotics that an additional scale factor has to be estimated. Unfortunately,
as a consequence resulting from hand-eye calibration, one movement of the
rig is not sufficient any more. However, the usage of fundamental matrices
diminishes the advantage of temporal feature tracking. Tracking is feasible
when the frames were taken at positions very close to each other, which is
usually the case when an image sequence is used. In contrast to this, stable
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Stereo Self-Calibration Using Temporal Correspondences

Advantages
only temporal feature tracking
linear method
usage of more than one relative movement is easy
Disadvantages
usage of fundamental matrices
separate scale factors for each movement
rotation is computed independently from translation
at least two movements with different rotation axes necessary

Table 3.3: Advantages and disadvantages of the stereo self-calibration method using
temporal correspondences only

computation of fundamental matrices requires large displacements. A direct
result from the fundamental matrix approach is also that the reconstructions
of the relative movements are obtained independently. Thus the scale fac-
tors from left to right reconstruction are different for each movement of the
rig and can only be recovered from one equation. This may result in un-
stable estimations of the scale and consequently the translation between the
stereo cameras, an effect which can actually be observed in practice. Due to
the hand-eye calibration approach used here, rotation is estimated first, then
translation. However, simultaneous recovery of both, rotation and transla-
tion, would be desirable in order to increase the stability of the estimation.

3.4 Summary

This chapter presented the state-of-the-art in self-calibration of a stereo rig.
After defining the term self-calibration as the computation of the unknown
rigid transformation between left and right camera, where in the most gen-
eral case no camera parameters are known, an overview over the currently
available algorithms was given. Stereo self-calibration methods can be di-
vided into two main groups that were distinguished on the basis of the types
of point feature correspondences used for calibration. The first group of al-
gorithms uses left-to-right as well as temporal correspondences, while the
second group uses only monocular temporal ones. From a practical point
of view, an algorithm that does not rely on left-to-right correspondences is
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Chapter 3 Self-Calibration of a Rigid Stereo System

preferable, because an automatic point feature tracking from left to right
frame is usually not feasible if the extrinsic stereo parameters are unknown.

Two algorithms using temporal and left-to-right correspondences were
presented. The first one uses fundamental matrices between left, right, and
temporal frames, and applies the Kruppa equations for self-calibration. It is
assumed that the intrinsic camera parameters remain constant over time and
have zero skew; the principal point is assumed to be known and located at
the image center.

The second method that relies on both kinds of feature correspondences
uses left-to-right matches for the computation of a fundamental matrix be-
fore and after the rig is moved. Temporal correspondences are required
for establishing correspondences between homogeneous 3-D points of the
two projective reconstructions before and after movement. The homogra-
phy between these two projective reconstructions can be used for a stratified
self-calibration, i. e., for an update from projective to affine and metric. In
addition to the already mentioned problem of left-to-right correspondences,
during this self-calibration approach a Cholesky decomposition of a positive-
definite matrix has to be computed, where often the problem arises that, due
to noise, the estimated matrix is actually not positive-definite, with the result
that self-calibration fails.

The algorithm that uses temporal correspondences is based on a hand-
eye calibration algorithm as a main part. An additional problem that does
not arise in classic hand-eye calibration, however, is that an additional scale
factor has to be introduced and estimated. The algorithm uses fundamen-
tal matrices for reconstruction, which results in separate scale factors for
each camera movement. A disadvantage that is inherent to all hand-eye cal-
ibration based algorithms is that at least two movements with non-parallel
rotation axes are necessary in order to compute all parameters. The method
shown in this chapter has the advantage that it is a linear approach, and
additional camera movements can be integrated easily. However, rotation
and translation are estimated separately, while a simultaneous computation
would be desirable.
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Chapter 4

A New Approach to Stereo SelfCalibration

In this chapter a novel method for computing the parameters of a stereo rig
is presented that uses an image sequence recorded by stereo cameras as the
only input data. Starting with an overview of the method in Section 4.1,
Sections 4.2 and 4.3 describe the algorithm in detail. Section 4.4 shows how
the robustness and numerical stability can be increased. The chapter closes
with a summary.

4.1 Overview

This section gives an overview over the new algorithm as well as an outline
for the remaining parts of the chapter, where the separate steps of the stereo
self-calibration approach will be described in detail. The main objectives for
the stereo self-calibration method are:

usage of temporal correspondences only: this topic was already discussed
in the previous chapter: using monocular temporal correspondences
has the advantage that standard tracking methods can be applied,
which rely on the fact that changes from one frame to the next are
small. Some of the algorithms described in the previous chapter ad-
ditionally need left-to-right correspondences, which are hard to obtain
without knowledge on the camera parameters of the stereo rig.

no calibration pattern required: it is a matter of course that no calibration
pattern is to be used for computation of rotation and translation of
the stereo camera system, since we talk about self -calibration; but even
for determining the intrinsic camera parameters, no previous step is
required that makes use of a calibration pattern. This leads directly to
the next item.

calibration of all parameters is possible: this means that no knowledge on
either intrinsic or extrinsic camera parameters is required. This is the
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Chapter 4 A New Approach to Stereo Self-Calibration

most general way to do stereo self-calibration, conforming to the defi-
nition in Section 3.1. The only assumption that has to be made is that
of zero skew (cf. Sect. 2.3.2).

simple extension to multiple movements: extending the algorithm from the
minimum number of movements of the stereo rig to an arbitrary num-
ber of movements should be straightforward. Usually, robustness is
increased when more data are available.

robustness and numerical stability: this is an important point, because the
stability of the algorithm depends on the data used, i. e., a data se-
lection step is introduced before self-calibration. Note that the results
and algorithms shown here can be used without any modifications for
robot hand-eye calibration.

In order to summarize, the goal was to develop a self-calibration algorithm
for a stereo rig that is capable of computing a numerically stable estimate of
the camera parameters while avoiding the drawbacks of the state-of-the-art
methods.

In the following, two different stereo self-calibration methods are pre-
sented, both based on an initial 3-D reconstruction. The main computation
steps of the two methods are shown in the diagrams in Figure 4.1 and Figure
4.2, respectively. At this point an overview will be given, the details will be
described in the following sections.

4.1.1 ICP Based Calibration

The first stereo self-calibration method presented is based on the Iterative
Closest Point (ICP) algorithm (cf. Sect. 4.3.5). Figure 4.1 shows a diagram
containing the main components of this approach.

At the beginning two image sequences are recorded by two rigidly mov-
ing cameras mounted on a rig. None of the cameras needs to be calibrated.
If intrinsic camera parameters are known, however, this knowledge can be
exploited and will increase the quality of the stereo self-calibration, i. e., the
accuracy of the rigid transformation between the two cameras will get higher.
The next step is monocular point feature tracking, which establishes tempo-
ral correspondences between consecutive frames taken by the left and right
camera. No left-to-right correspondences are computed. Using these fea-
tures, a mutually independent 3-D reconstruction is computed from each
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left image sequence

Feature Tracking

3-D Reconstruction

exploit

constraints

right image sequence

Feature Tracking

3-D Reconstruction

exploit

constraints

(Rough) Scale Estimation

Initial Estimate of Rotation and Translation

Standard ICP

Estimate of Stereo Parameters

Extended ICP

Figure 4.1: This chart shows the main components of the new stereo self-calibration
method based on ICP. The 3-D reconstruction is done separately for the
left and right image sequence. After determining an estimate of the rel-
ative scaling between the two reconstructions, a rough alignment of the
two 3-D scene point sets is computed which can be used as an initializa-
tion for the ICP algorithm. Now, either standard ICP can be used, which
computes rotation and translation, or the extended ICP, which additionally
determines the relative scale factor.
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image sequence (cf. Sect. 4.2). This results in the camera movement and in-
trinsic parameters for left and right camera as well as two reconstructions of
the 3-D scene points corresponding to the point features tracked before. In
an optional step additional constraints (if available) on the intrinsic camera
parameters can be exploited, e. g., same parameters for left and right camera
or non-varying parameters over time. Note that up to this point the data of
left and right camera are processed separately.

One of the main problems that arises when using only temporal corre-
spondences is that the result of the 3-D reconstruction is metric and not
Euclidean, which means that the actual scaling of each reconstruction is un-
known, and therefore the resulting scale in general is not the same for the
two reconstructions. Therefore, the relative scaling between the 3-D scene
point set of the left and right reconstruction has to be determined (see Sect.
4.3.2). Depending on the ICP algorithm (standard or extended) used, either
a good estimate (for standard ICP) or a relatively rough initial estimate (for
extended ICP) is required.

Now that both reconstructions are of the same scale, a (rough) estimate
of the relative rotation and translation between the 3-D point sets has to be
computed, which is used as an initialization for the ICP algorithm (see Sect.
4.3.5). This is necessary since ICP is a non-linear method. The standard ICP
computes a rigid transformation that maps a 3-D point of the left reconstruc-
tion onto another one of the right reconstruction. After this transformation
has been applied to the 3-D points, and its inverse to the camera movements,
the stereo parameters can be computed directly from corresponding left and
right camera matrices.

In contrast to the standard ICP, the extended ICP is capable of estimating a
similarity transformation consisting of rotation, translation, and scale. It can
be used to refine the scale factor if only a rough estimate has been computed
at the beginning.

4.1.2 HandEye Based Calibration

Figure 4.2 shows a diagram containing the main computation steps for the
stereo self-calibration method based on hand-eye calibration.

The first steps, namely recording of images, feature tracking, and mutu-
ally independent reconstruction of scene geometry and camera parameters
are the same as for the ICP based approach described previously in Section
4.1.1. In contrast to the ICP based approach where the main data that are
processed are the 3-D points, the important data for the hand-eye calibration
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left image sequence

Feature Tracking

3-D Reconstruction

exploit

constraints

right image sequence

Feature Tracking

3-D Reconstruction

exploit

constraints

(Rough) Scale Estimation

Estimate of Stereo Parameters

Select Sub-sequence

(Extended) Hand-Eye Calibration

convert poses to relative movements

Outlier Detection

Hand-Eye Data Selection

exhaustive Search Vector Quantization

standard

linear

standard

non-linear

extended

non-linear

extended

linear

convert poses to relative movements

Figure 4.2: This chart shows the main components of the new stereo self-calibration
method based on hand-eye calibration. After a 3-D reconstruction is com-
puted separately for left and right image sequence and conversion of the
resulting camera poses to relative movements, the scaling between both
reconstructions is roughly estimated. A data selection step increases the
accuracy considerably. The last step is a hand-eye calibration, either using
the classic approach that estimates rotation and translation, or the extended
method that additionally computes the scale factor.
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based method described now are the reconstructed camera movements. In
the first step after 3-D reconstruction a subsequence of camera movements
is selected from the complete reconstruction (cf. Sect. 4.3.1). This step is op-
tional; however, it is recommended when a large number of frames (e. g.,
more than 50) was used for reconstruction because of error accumulation in
camera poses.

As before, the scaling of the two 3-D reconstructions is usually different.
Therefore, the next step is the computation of the relative scaling between
the reconstructions using one of the methods described in Sections 4.3.2 and
4.3.3. At this point the scaling does not have to be known very accurately, es-
pecially if the extended hand-eye calibration is used at the end that computes
scale factor and stereo parameters simultaneously.

Up to this point, camera matrices as obtained from 3-D reconstruction
were used for processing. From now on, relative movements between cam-
eras are used instead. For this purpose all possible relative movements from
one camera to all others are computed (cf. Sect. 4.4.2). These are used as
input for the following steps. For Nt frames, the total number of all relative
movements is Nt(Nt − 1)/2.

The next optional step is outlier removal, which is described in Section
4.4.5.

A very important part of the stereo self-calibration method is the selection
of data, i. e., relative movements, that are well-suited for the following hand-
eye calibration. The accuracy of the results is highly dependent on that step.
Note that the data selection algorithms can also be used for classic robot
hand-eye calibration in combination with any hand-eye calibration method.
There are two main options for data selection: The first one is the exhaus-
tive search algorithm described in Section 4.4.3, which is straight forward
but time-consuming, and therefore actually not recommended. The second
option is based on vector quantization, with a variety of different algorithms
that are described in Section 4.4.4. Data selection is done on the relative
movements originating from the left camera of the rig (or the hand data in
classic hand-eye calibration).

After this data selection step only a small fraction of the initial set of all
relative movements is left. These are used as input for the final step, which
is hand-eye calibration. Either standard hand-eye calibration methods can
be used at this point as described in Section 2.4, or an extended hand-eye
calibration that is capable of estimating rotation, translation, and scale (cf.
Sect. 4.3.3 and 4.3.4).
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4.2 Mutually Independent 3D Reconstruction

The first step of both stereo self-calibration methods is a mutually indepen-
dent 3-D reconstruction of camera poses and scene points that uses the two
image sequences recorded by the left and right camera of the stereo rig as in-
put data. The images have to be acquired using synchronized cameras, i. e.,
it has to be known which images of both cameras were recorded simultane-
ously. This information will become important in the following steps. For
the 3-D reconstruction step at the beginning, this knowledge is not necessary,
since the two image streams are processed separately.

For each image sequence a point feature tracking (cf. Sect. 2.3.1) is done
using the algorithm described in [Zin04, Zin07], which is an extension of the
Tomasi-Kanade-Shi tracker [Tom91b, Shi94] that was used in [Hei04]. The
tracking results in a set of trails, where one trail contains the information
about the positions of one feature point for all frames where that point could
be tracked.

The trails are used as input for the 3-D reconstruction. For the experiments
described in this work a metric reconstruction is obtained using the method
presented in Section 2.3.3, which is based on [Hei04, Sch07]. The result is
the following information:

camera projection matrix Plt, Prt for each frame at time step t, which can
be decomposed according to (2.10) into

• intrinsic camera parameters for each frame: Klt, Krt,

• extrinsic camera parameters for each frame: Rl t, tlt and Rr t, tr t.

3D point set for left (Pl) and right (Pr) image sequence.

Note that at this step non-linear image distortions as described in Section
2.1.1 are usually neglected. However, if these are too strong, e. g., when
wide angle optics are used, a calibration of lens distortions is inevitable in
order to obtain accurate results in the following steps.

Due to the fact that a metric reconstruction is all that can be obtained with-
out additional constraints, the camera poses and scene points are unique
only up to rotation, translation, and scale (cf. Table 2.1, page 35). Since
the reconstructions were obtained independently, the scaling of the two re-
constructions is different, i. e., an unknown scale factor from left to right
remains. Additionally, the extrinsic camera parameters for the left and right
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reconstruction are given in two different world coordinate systems. Depend-
ing on the options used for the reconstruction algorithm, the origin of the
world coordinate system is usually either located at the center of gravity of
the reconstructed 3-D point set, or it coincides with the 3-D camera coordi-
nate system of the first reconstructed camera. This remaining scale factor is
the price that has to be paid for the advantage that no left-to-right feature
tracking has to be done, but a monocular one is sufficient.

In general the reconstruction algorithm described in Section 2.3.3 is capa-
ble of handling time-varying intrinsic parameters, which is important in the
case of zooming and auto-focus. The only assumption necessary is that of
zero skew, because otherwise no self-calibration would be possible. For prac-
tical purposes in a real environment, however, experimental results [Hei04]
show that the stability and accuracy of the reconstruction increases consider-
ably when the intrinsic camera parameters are assumed to remain constant
over time. For non-constant parameters, zooming is often confounded with a
translatory movement of the camera along the optical axis, thus resulting in
a reconstruction that explains the observed data well, but which is actually
far away from reality. In fact, this does not have much influence on the ap-
plication of light-field reconstruction and rendering [Nie05, Sch07], because
the rendered images may look alike in both cases. For self-calibration of a
stereo rig, however, it is a serious problem because the computation of the
rigid displacement between left and right camera is mainly based on the ex-
trinsic camera parameters, which are of course quite different for zooming
and translatory movement, the former being a change of focal length (an
intrinsic parameter), while the latter changes an extrinsic parameter. There-
fore, it is recommended to assume non-varying intrinsic parameters, even if
the algorithm in general can cope with varying parameters.

The following steps of stereo self-calibration depend only on the results of
the 3-D reconstruction, but not on the method actually used for reconstruc-
tion. This has the advantage that this first step can be substituted with more
sophisticated reconstruction algorithms, which may become available in the
future, without changing the stereo calibration itself.

4.3 Estimation of Scale and Stereo Parameters

After the first step of stereo self-calibration—namely 3-D reconstruction—
is completed, the next one is the estimation of the scale factor between the
two independent reconstructions from left and right image sequence. The
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diagram for the hand-eye based approach in Figure 4.2 shows an optional
step before scale estimation, namely the selection of a subsequence of camera
poses from the complete reconstruction. This step will be described in the
following Section 4.3.1. For the ICP based approach a subsequence selection
is not necessary.

When using the ICP based method described in Section 4.1.1 with stan-
dard ICP, the scale estimate should be fairly accurate, because the following
processing steps are highly dependent on the scale of the reconstructions.
There are two possibilities in this case: Either the scale factor is estimated
independently of rotation and translation using the heuristic approach pre-
sented in Section 4.3.2 or all parameters are estimated simultaneously using
methods shown in Section 4.3.3. In the first case an initialization for rota-
tion and translation has to be computed afterwards, which is needed by ICP
since it is a non-linear optimization method. This can be done with stan-
dard algorithms commonly employed for ICP. When using one of the latter
approaches, this initialization is computed simultaneously with scale. Note,
however, that the methods in Section 4.3.3 are in fact based on hand-eye cal-
ibration, which would result in a mixture of ICP and hand-eye calibration
approaches and thus additional computational effort. For the extended ICP,
which refines scale in addition to rotation and translation, a rough initial
estimate of the scale factor is sufficient.

When using the hand-eye calibration based method described in Section
4.1.2, a rough estimate of scale is usually also sufficient at the beginning,
since the scale can be re-estimated at the end simultaneously with rotation
and translation by an extended hand-eye calibration. At this point, the scale
is only needed for outlier detection and removal as well as the hand-eye
data selection step that increases robustness and accuracy. As with the ICP
approach, both ways of scale estimation can be used, the heuristic one from
Section 4.3.2 and the theoretically founded one described in Section 4.3.3.
Here, the latter one is recommended, since a hand-eye calibration is done
anyway and therefore this method can be applied without much additional
cost.

4.3.1 Selection of an Optimal Camera Sequence for Calibration

This section describes methods for selecting a contiguous subsequence of
camera poses from all poses obtained by 3-D reconstruction. This step is
optional and can therefore be omitted, i. e., it is also possible to use the
complete sequence of cameras instead. However, subsequence selection is
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Figure 4.3: Example for error accumulation in 3-D reconstruction: The image sequence
was recorded on a turntable and should look like an exact circle (left). The
actually reconstructed camera poses (right), however, do not form a circle
due to error accumulation. Each camera pose is drawn as pyramid, its tip
being the position of the optical center, its base being the image plane.

advantageous for mainly one reason: Experimental results show that there is
an error accumulation during the reconstruction process of the camera poses
[Sch04b, Sch07]. An example of error accumulation is shown in Figure 4.3.
This reconstruction was obtained from an image sequence that was recorded
using a turntable for controlling the camera poses. It performed a complete
360◦ turn and therefore the reconstruction should look like an exact circle, as
in Figure 4.3 on the left. The actual result of a 3-D reconstruction is shown
in Figure 4.3 on the right. It can be observed that the circle is not completely
closed, which is the effect of error accumulation during the reconstruction
process. More details as well as an approach for error correction in the case
of camera movements that consist of closed loops can be found in [Sch04b].

Usually, the reconstruction is locally correct, meaning that the more cam-
eras are used the higher the error gets. For stereo self-calibration based on
hand-eye methods this means that there will be a trade-off between accuracy
reduction that is due to error accumulation in 3-D reconstruction and accu-
racy reduction due to an amount of data too small for a good calibration. In
order to summarize, we have the following constraints on the sequence of
camera poses used for (extended) hand-eye calibration:

1. It has to be short enough so that the influence of error accumulation
due to 3-D reconstruction is small.
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2. It has to be long enough so that enough data are available for good
results in hand-eye calibration.

3. The camera movement has to be well-suited for hand-eye calibration
(cf. Sect. 4.4).

The objective is therefore to find a compromise between items (1) and (2),
while (3) is still fulfilled. In fact, criterion (3) is closely related to robustness
and data selection for hand-eye calibration as discussed in Section 4.4.

Note that for the selection of the subsequence of cameras (as well as for
hand-eye data selection as discussed in Section 4.4) only the camera poses of
the left camera (or the hand) have to be considered (cf. Section 2.4 and Table
2.4). In the following, El denotes the set of all camera poses (represented by
their projection matrices) of the left camera. A subsequence of El is denoted
by Eltb,te , i. e.:

El = {Plt | t = 0, . . . , Nt − 1}, Eltb ,te = {Plt | t = tb, . . . , te} ⊆ El . (4.1)

Subsequence selection can now be formulated as an optimization problem:

{t̂b, t̂e} = argmin
tb ,te

fsub(Eltb ,te) , (4.2)

where fsub(·) is the objective function that computes a quality measure for
the selected subsequence where low values resemble high quality.

The optimal objective function selecting a subsequence of camera poses
would be the one that gives the lowest hand-eye calibration error. There are
two problems when using this criterion, however: First, there are usually
no ground truth data available, hence the actual calibration error cannot be
used in practice. This problem is circumvented in this work by defining an
alternative error function that measures the calibration error using only data
readily available in a real environment. Details can be found in Section 5.1,
page 123 ff. Nevertheless it cannot be recommended to use this criterion as
an objective function for subsequence selection, because the computational
cost would be very high compared to the importance of this step. This is
a result of the fact that when using this criterion a complete calibration (in-
cluding hand-eye data selection as described in Section 4.4) has to be done
for each possible combination of beginning tb and end te of the subsequence.

Therefore an alternative criterion for quality measurement of a camera se-
quence is desirable that is less computationally expensive. One condition for
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getting good results in hand-eye calibration is the non-parallelism of rota-
tion axes of the relative movements used for calibration. Hence, a camera
sequence well-suited for calibration is one where this criterion is fulfilled;
different objective functions for optimization will be proposed in the follow-
ing.

Covariance Matrix

The first objective function suggested here is based on the covariance matrix
of the rotation axes of the left camera poses. As mentioned above, the actual
criterion should be based on the rotation axes of relative movements. How-
ever, relative rotations from one frame to the next will usually be small in a
continuously recorded image sequence, which results in rotations that differ
only slightly from identity. Therefore, the rotation axes of these movements
will not be well-defined. This topic is also discussed in more detail in Sec-
tion 4.4. If the axes of the camera rotation matrices are used, however, this
problem can usually be circumvented. The basic idea when using the co-
variance matrix of the camera rotation axes is that the scattering of the axes
can be measured, and that a high variance in the camera rotations implies
high variations in the rotation axes of relative movements also, without the
necessity to determine these relative movements explicitly.

The objective function fsub,C(·) is given by:

fsub,C(Eltb ,te) =
1

‖Σax‖2 , (4.3)

where

Σax =
1

te − tb + 1

te

∑
t=tb

rltrlt
T −


 1

te − tb + 1

te

∑
i=tb

rlt




 1

te − tb + 1

te

∑
i=tb

rlt




T

(4.4)
is the covariance matrix of the rotation axes rlt of the left camera (or hand),
which can be computed from Rl t as described in Section 2.2.1, page 22 f.

Covariance Matrix Modifications

Instead of (4.3) it is also possible to use the following, simpler form:

f ′sub,C(Eltb ,te) =
1

tr (Σax)
. (4.5)
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Besides being simpler, using (4.5) instead of (4.3) has the advantage that the
correlations between the axes are neglected. This effect can also be achieved
by applying a principal components analysis (PCA, also called Karhunen-
Loeve transformation) [Kar46, Loe55], which results in a de-correlation of the
data. For this purpose an orthogonal transformation matrix Λ is built from
the Eigen-vectors of Σax sorted according to the size of the corresponding
Eigen-values. Since Σax is only 3 × 3, the computational effort is not very
high. The covariance matrix Σ

′
ax after the transformation is given by

Σ
′
ax = ΛΣaxΛ

T . (4.6)

Equation (4.5) can now be used as an objective function, where Σax is substi-
tuted with Σ

′
ax.

Various other modifications of the objective functions given by (4.3) and
(4.5) are possible. Instead of using the normalized rotation axes rlt, rota-
tions in axis/angle representation, i. e., ωlt can also be used for computing a
covariance matrix. The same is true for quaternions, which also encode ro-
tation axis and angle. In that case, however, the covariance matrix will have
a size of 4 × 4.

Complete Optimization Problem

No matter which of the previous objective functions is actually used, the ad-
ditional constraints on the parameters have not been considered, yet. These
are:

• tb ≥ 0, te < Nt,

• the number of cameras of a subsequence must be at least three, i. e., two
relative movements, in order to make hand-eye calibration possible at
all: te − tb + 1 ≥ 3 ⇔ te − tb ≥ 2,

• the longer the sequence the higher the punishment for the objective
function.

These items will now be integrated into the objective function as regulariza-
tion terms. The result is:

{t̂b, t̂e} = argmin
tb ,te

fsub(Eltb ,te) + λ1 f1(te − tb + 1) + λ2 f2(te − tb + 1) , (4.7)

where fsub(·) is one of the objective functions described above, λ1, λ2 are
weighting factors, and f1(·), f2(·) are functions implementing the constraints
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on the length of the subsequence. Function f1(·) is used for punishing long
sequences and can be chosen, e. g., as

f1(i) = i or f1(i) = in, n > 0 or f1(i) = exp(i)− 1 , (4.8)

which equals a linear, polynomial, and exponential increase of the regu-
larization term. Additionally, one can take into account that in practice a
minimum length lmin of the subsequence is usually desirable and should not
be punished by a regularization term. In that case, f1(·) is substituted with
f ′1(·):

f ′1(i) =

{
0 if i ≤ lmin,

f1(i − lmin) otherwise,
(4.9)

where f1(·) is one of the functions defined in (4.8).
Function f2(·) implements the constraint that the length of the sequence

must be at least three:

f2(i) =

{
∞ for i ≤ 2,

0 otherwise.
(4.10)

This punishes sequences of length zero, one, and two, which are too short
for hand-eye calibration.

The weighting factors λ1, λ2 should be chosen as follows: If λ1 is too
large, the effect is that no adjustment of the subsequence length is possible.
If chosen too small, the influence of the error accumulation in 3-D recon-
struction will get too high, making the subsequence selection step virtually
useless. This is different for the second weighting factor λ2, because if the
corresponding regularization term has an influence (i. e., if it is not zero), the
following hand-eye calibration will not work at all. Therefore, λ2 should be
chosen quite high, e. g., in the order of magnitude of 106.

Having a discrete optimization problem, various methods exist to compute
an optimal solution, e. g., simulated annealing or genetic algorithms [Pre92,
Aus99]. In practice, an optimization with fixed length of the subsequence
(i. e., te − tb = const, te − tb ≥ 2) is usually sufficient and works quite fast. In
that case it is not necessary to use one of the discrete optimization methods
mentioned above, because a complete search can be done for every possible
starting frame tb. The objective function (4.7) then changes to the simpler
form

t̂b = argmin
tb

fsub(Eltb,te ) . (4.11)
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For practical purposes, the length of the selected aubsequence should be
about 20 - 60 frames.

Using the Whole Sequence of Cameras

As mentioned at the beginning of this section, the 3-D reconstruction is usu-
ally locally correct, i. e., problems occur when data of camera poses are com-
bined where the distance (in frames) between them is too high. This will be
a problem in the pre-processing step of hand-eye data selection as presented
in Section 4.4.2, which computes all relative movements between all available
camera poses. However, if this pre-processing step is done appropriately, the
subsequence selection step can be circumvented. Details will be described in
Section 4.4.2, page 100.

4.3.2 Heuristic Scale Estimation

Since two independent metric 3-D reconstructions form the basis for both
variations of stereo self-calibration as presented in this work, the relative
scale factor between these reconstructions has to be estimated before pro-
ceeding to the next step. This section shows an heuristic approach that yields
a rough scale estimate.

The basic idea is the following: When two cameras are used that are at-
tached rigidly to each other, the recorded image sequences show the same
scene from slightly different positions. Therefore, it is assumed here that
since the same scene is observed, two 3-D scene point reconstructions Pl
and Pr are obtained that approximate the same surface, even if different
points are contained in the two sets. For both point sets, the center of gravity
is computed:

gwl =
1

Nwl

Nwl−1

∑
i=0

wl i, Nwl = |Pl| ,

gwr =
1

Nwr

Nwr−1

∑
i=0

wr i, Nwr = |Pr| .

(4.12)

Note that the number of reconstructed 3-D points contained in the two sets
Pl and Pr is usually different. Additionally, the two point sets—and thus the
centers of gravity—are given in two different coordinate systems at different
scale. However, since the same scene was observed, the two centers of gravity
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would be approximately equal if they would be given in the same coordinate
system and at the same scale. This assumption holds if a sufficiently large
number of 3-D points is reconstructed. In order to compute the scale factor,
a common point of reference is chosen in both reconstructions. For this
purpose, the positions tl0 and tr0 of the first camera poses of the sequences
are used. The distance of the first camera to the center of gravity is computed
for both reconstructions, which gives a scale factor for each:

sl = ‖ gwl − tl0‖, sr = ‖ gwr − tr0‖ . (4.13)

The scale factor slr that equalizes the scale when applied to the 3-D points of
the left reconstruction (and the inverse to the cameras) is then given by:

slr =
sr

sl
. (4.14)

Of course, this procedure assumes that the first camera poses of the two
reconstructions are actually equal, which will not be the case for real data
because a stereo rig is used where the positions are certainly not the same.
Therefore, a systematic error is introduced at this point, which will be small
if the distance of the rig to the observed scene is large compared to the stereo
basis.

In order to summarize, this method gives a simple and fast but rough
estimate of the relative scale factor slr. It can be employed if small errors in
the estimate are acceptable and the distance of the rig to the scence is large
compared to the stereo basis.

4.3.3 Estimating Scale and Stereo Parameters Simultaneously

The objective of this section is to show how the scale estimation can be in-
tegrated into the hand-eye calibration approach, thus making it possible to
estimate all unknown parameters simultaneously instead of separately as
described in the last section. We will start with the integration of scale into
the classic hand-eye equations, where usually rotation and translation are es-
timated separately. After that, it will be shown how to achieve the same for
the dual quaternion hand-eye algorithm. Since the purpose of the algorithms
is self-calibration of a rigid stereo system, the equations will be formulated
with respect to left and right camera instead of hand and eye of a robot.
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Integration of Scale into the Classic Equations

The classic equations are based on the following transformation from left to
right as used in Section 2.1.4:

Tlr =

(
RS tS
03

T 1

)
, (4.15)

which resulted in the following two equations (cf. Sect. 2.4):

RSRl ij = Rr ijRS , (4.16)

(I3×3 − Rr ij)tS = tr ij − RStl ij , (4.17)

where Rl ij, tl ij denote the relative movement of the left camera from frame
i to frame j, and analogically Rr ij, tr ij for the right camera. Integration of
scale into these equations means that a similarity transformation of the form

Tlr =

(
slrRS tS
03

T 1

)
, (4.18)

is used instead of (4.15). Then, the equations change to

RSRl ij = Rr ijRS , (4.19)

(I3×3 − Rr ij)tS = tr ij − slrRStl ij . (4.20)

It can be observed that (4.16) and (4.19) are the same, i. e., the scale factor
has no influence on the computation of rotation. Therefore, the rotation
can be obtained by standard methods, e. g., using the quaternion approach
described in Section 3.3. Equation (4.20), however, contains translation and
scale, and can be formulated as a linear system of equations as follows:

(
(I3×3 − Rr ij) RStl ij

)
︸ ︷︷ ︸

M

(
tS
slr

)
= tr ij , (4.21)

where M is a 3 × 4 matrix for one relative movement. If Nrel movements are
used (at least two are necessary), M is a 3Nrel × 4 matrix.

This approach can be used in order to obtain an estimation of scale to-
gether with the stereo parameters. Its utilization is suggested here especially
for the hand-eye based calibration, because the algorithm requires relative
movements as an input and a data selection as described in Section 4.4 if an
accurate estimate is desired.
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There is still a drawback of this method: Rotation is computed first, and
then translation and scale. Now it will be shown how the scale parameter can
be integrated into the dual quaternion formulation of hand-eye calibration,
thus making a simultaneous computation of all parameters possible.

Integration of Scale into Dual Quaternions

This section shows how the estimation of rotation, translation, and scale can
be formulated using dual quaternions. For this purpose a dual quaternion
q̃slr containing all these parameters is introduced, which is defined by:

q̃slr = qslrnd + εqslrd = slrqS + ε
1
2

tqqS . (4.22)

Here, the index ‘slr’ indicates that scale is encoded; as introduced in Section
2.2.2, page 30 f., ‘nd’ indicates the non-dual part and ‘d’ the dual part of q̃slr.
As before, qS is a unit quaternion encoding rotation, and tq is a quaternion
encoding translation as shown in Section 2.2.2. In the following, the indices
‘d’, ‘nd’ will also be used in conjunction with ql and qr, which represent the
movement of left and right camera, respectively.

Compared to (2.66) on page 31, which models rotation and translation
only, it can be observed that integrating the scale factor slr effects only the
non-dual part of the dual quaternion. This makes sense since scale changes
the rotational part of the transformation (cf. (4.18)). A dual quaternion has
eight elements, but for rotation, translation, and scale only seven degrees of
freedom are necessary. According to (2.59) the norm of a dual quaternion is
in general a dual number with non-negative real part given by:

|q̃|2 = q̃q̃∗ = qndq∗nd + ε(qndq∗d + qdq∗nd) . (4.23)

When the dual quaternion as defined in (4.22) is used, the scale is actually
modeled as the norm of q̃slr:

|q̃slr|2 = slr
2 + ε0 ⇔ |q̃slr| = slr . (4.24)

Since the scale factor will always be a positive real number, the dual part of
the norm has to be zero. Therefore, one degree of freedom is lost, and we
get an additional constraint that is given by:

qslrndq∗slrd + qslrdq∗slrnd = 0 . (4.25)
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Using (4.22), the extended hand-eye calibration problem solving for scale,
rotation, and translation can be formulated as:

qrndqslrnd = qslrndqlnd , (4.26)

qrndqslrd +
1
slr

qrdqslrnd = qslrndqld + qslrdqlnd , (4.27)

where the dual and non-dual parts of q̃l and q̃r encode the movement of
left and right camera, while the dual and non-dual parts of q̃slr encode the
unknown stereo transformation including scale. The indices ‘ij’ that indicate
a relative movement from frame i to frame j have been omitted for reasons
of simplicity. Note that slr is not an additional independent parameter here,
but the norm of the dual quaternion q̃slr (cf. (4.24)). The equations above
will now be compared with the standard equations (2.93) and (2.94), page
44, which are given here in the stereo formulation instead of hand-eye for-
mulation and have been re-ordered for easier comparison:

qrndqlrnd = qlrndqlnd , (4.28)

qrndqlrd + qrdqlrnd = qlrndqld + qlrdqlnd . (4.29)

It can be observed that (4.26) and (4.28) are in fact exactly the same equations,
as the scale factor slr appears on both sides of (4.26) and could therefore be
cancelled out (which would result in a norm one quaternion again). This
is in accordance with the formulas arising when scale is integrated into the
classic equations as described above.

When we look at the other two equations, (4.27) and (4.29), it can be seen
that these differ actually in only one term where the scale is multiplied,
namely the left one on the right side, qslrndqld. Since the scale factor can
be found only in the non-dual part qslrnd of q̃slr, while the dual part is the
same as for rotation and translation only, all the other terms are equal in
both equations, because either only the dual-part qslrd is used, which does
not contain the scale factor at all, or the scale is cancelled out as in the right
term on the left side of (4.27). Again, this is in accordance with the classic
approach: In (4.20) the scale factor arises in combination with the translation
of the left movement only, which is represented by the dual part qld of q̃l,
which codes one movement of the left camera.

It can be observed that (4.27) is a non-linear equation. An objective func-
tion for non-linear optimization using (4.26) and (4.27) will be given in the
following section.
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4.3.4 Nonlinear Optimization of HandEye Equations

In this section different methods for non-linear estimation of rotation, trans-
lation, and scale will be shown. Different optimization criteria will be pre-
sented, which are derived from the results of Section 4.3.3 and therefore
depend on the extended hand-eye formulas, i. e., only knowledge on relative
movements of left and right camera is required, but not on the geometry of
the observed scene.

A formulation of classic hand-eye calibration, i. e., for rotation and trans-
lation, as a non-linear optimization problem was given by Horaud and Dor-
naika [Hor95]. First this approach will be described; after that, the criterion
will be extended such that scaling is also integrated.

The following objective function is given in [Hor95]1:

(q̂S, t̂S) = argmin
qS,tS

f1(qS) + f2(qS, tS) + λ f3(qS)

= argmin
qS,tS

Nrel

∑
i=1

‖qr i − qSql iq
∗
S‖2 +

Nrel

∑
i=1

‖Q ((I3×3 − Rr i) tS − tr i) + qSQ(tl i)q∗S‖2 +

λ (1 − qSq∗S)2 ,

(4.30)

where Nrel is the number of relative movements, qS is the quaternion used
for parameterization of the rotation matrix, and λ is a regularization factor
that penalizes deviations of the quaternion qS from norm one and thus im-
plements the norm one constraint. In [Hor95] λ was chosen as 2 · 106. The
function Q(·) maps a 3-D vector to a purely imaginary quaternion:

Q(x) = 0 + x1i + x2j + x3k , x =
(
x1 x2 x3

)T . (4.31)

The single terms of (4.30) can be derived directly from the hand-eye equa-
tions (4.16) and (4.17): f1(qS) is the same as (4.16) in quaternion notation.
f2(qS, tS) is derived from (4.17) by reformulating the multiplication of the
rotation matrix RS and the translation vector of the relative movement of the
left camera using quaternions. Of course, the norm one constraint of qS has
to be taken into account, which is done by the regularization term defined by

1 the function has been slightly changed here by introducing the mapping Q(·), because the
formulations in [Hor95] and [Dan99] mixed quaternions and 3-D vectors in an uncommon way.
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f3(qS). Note that different methods for implementing this constraint are pos-
sible: One way is the regularization method shown here. In [Dan99] the unit
quaternions are parameterized using spherical coordinates instead, which
results in an implicitly fulfilled constraint. In [Sch01a] another method is
described that allows for the usage of unit quaternions in an unconstrained
non-linear optimization with the minimal number of three parameters.

The parts f1(qS) and f2(qS, tS) of the objective function (4.30) can be sim-
plified by multiplication of qS from the right, which yields:

(q̂S, t̂S) = argmin
qS,tS

Nrel

∑
i=1

‖qr iqS − qSql i‖2 +

Nrel

∑
i=1

‖Q ((I3×3 − Rr i) tS − tr i) qS + qSQ(tl i)‖2 +

λ (1 − qSq∗S)
2 .

(4.32)

The objective functions (4.30) or (4.32) can be used in cases where the scale
factor has been computed sufficiently accurate in a separate, preceding step,
because both equations describe a classic hand-eye calibration, where only
rotation and translation are estimated, but not scale.

Based on the equations (4.19) and (4.20) the objective function (4.30) can
be modified such that it includes scale:

(q̂S, t̂S, ŝlr) = argmin
qS,tS,slr

f1(qS) + f ′2(qS, tS, slr) + λ f3(qS)

= argmin
qS,tS,slr

Nrel

∑
i=1

‖qr i − qSql iq
∗
S‖2 +

Nrel

∑
i=1

‖Q ((I3×3 − Rr i) tS − tr i) + qSQ(slrtl i)q∗S‖2 +

λ (1 − qSq∗S)2 .
(4.33)

Note that in (4.33) just an additional parameter slr was introduced, while the
quaternion qS must still be of norm one. Therefore, (4.33) estimates eight
parameters with only seven degrees of freedom.
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Now the objective function based on the extended dual quaternion equa-
tions (4.26), (4.27) will be given, which again consists of three parts:

̂̃qslr = (q̂slrnd, q̂slrd)

= argmin
qslrnd ,qslrd

g1(qslrnd) + g2(qslrnd, qslrd) + λg3(qslrnd, qslrd)

= argmin
qslrnd ,qslrd

Nrel

∑
i=1

∥∥qrndiqslrnd − qslrndqlnd i

∥∥2
+

Nrel

∑
i=1

∥∥∥∥∥∥
qrnd iqslrd +

1√
qslrndq∗slrnd

qrdiqslrnd − qslrndqldi + qslrdqlnd i

∥∥∥∥∥∥

2

+

λ
(
qslrndq∗slrd + qslrdq∗slrnd

)2 .
(4.34)

This objective function estimates rotation, translation, and scale, which are
all encoded in the dual and non-dual parts of q̃slr. g1(qslrnd) is derived from
(4.26), g2(qslrnd, qslrd) from (4.27). The regularization term g3(qslrnd, qslrd)
enforces the constraint (4.25) on the norm of the dual quaternion q̃slr, which
has to be a real number. As above, eight parameters with only seven degrees
of freedom are optimized.

4.3.5 ICP Based Optimization

In contrast to the previous sections, where only camera movements were
used for computing the relative position and orientation between left and
right camera, we will show in the following how the 3-D structure of the
scene can be used to obtain an estimate of the stereo parameters. This
method may either be used independently of the hand-eye calibration based
approach or afterwards using the hand-eye estimate of RS and tS for initial-
ization. Note that in the first case other ways of finding an initialization for
rotation and translation have to be used, as the method described here is
non-linear, making the results highly dependent on the initialization. Addi-
tionally, an (initial) scale estimation has to be done.

In the following it will be shown how the standard ICP method can be
used for computing rotation and translation if the estimate of the relative
scale factor at the beginning is fairly accurate. Afterwards, an extended ICP
capable of computing the scale factor in addition to rotation and translation
will be presented.
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Standard ICP

The basic idea is to use the Iterative Closest Point (ICP) algorithm for reg-
istration of the two 3-D point sets Pl and Pr that have been obtained from
the mutually independent 3-D reconstructions from the image stream of left
and right camera. It is based on the fact that the stereo cameras observe
the same scene, and therefore the reconstruction yields similar 3-D point
clouds as sparse depth information. Even if these two reconstruction will
in general have been reconstructed from different image point features and
therefore consist of different 3-D points (i. e., the clouds are similar but not
identical), the scene structure is preserved, which is in most cases sufficient
for applying the ICP. However, the two separate 3-D reconstructions cannot
be registered directly after the reconstruction process, as the scaling is not
the same. Thus, the scale factor has to be determined before, e. g., using
the heuristic approach from Section 4.3.2 or the hand-eye calibration based
method described in Section 4.3.3 that solves (4.19) and (4.20), which addi-
tionally yields initializations for rotation and translation.

Therefore, it is recommended to use the ICP based approach in cases
where the errors in hand-eye calibration are too high, which is a hint that
rotation and especially translation are unreliable. This is the case, e. g., if the
rotational movement of the camera is only small, resulting in very similar
rotation axes and small angles. Confer Section 5.1, page 123 ff. on how to
compute residual prediction errors without ground truth information.

The ICP algorithm for registering two point sets was introduced by Chen
and Medioni [Che92] and Besl and McKay [Bes92]. Basically, this algorithm
iteratively performs two operations until convergence. The first operation
consists of finding the closest point in one point set for each point in the
other set, i. e., a nearest neighbor search. A comparison of different near-
est neighbor algorithms with special focus on their usage in ICP is given in
[Zin03b, Zin02]. In the second operation, the rigid motion between the two
point sets is estimated using only the corresponding point pairs. A compre-
hensive summary of different extensions to the ICP algorithm can be found
in [Rus01]. The ICP variant used here is the so-called Picky ICP, which was
first described in [Zin03a, Zin02]. Only a short overview over the Picky ICP
algorithm will be given here, since in general any variation of ICP may be
used. Details on Picky ICP as well as a comparison to other modifications
of ICP can be found in [Zin03a, Zin02]. A structure chart for the Picky ICP
(already adapted to the problem of stereo parameter estimation) is shown in
Figure 4.4, which will be described in the following.
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Given:
an initialization RICP0, tICP0 for the registration parameters,
two 3-D point sets from the independent 3-D reconstruction of left (Pl) and
right (Pr) sequence (Sect. 4.2), where relative scale has been estimated (cf.,
e. g., Sect. 4.3.2, 4.3.3)
Output:
an estimate of the stereo parameters RS, tS.

Initialize counter k = 0

FOR h = number of hierarchy levels TO 0

Create point set Plh by selecting every 2hth point from Pl

Compute a new set Plk+1 of transformed points from Plh using
RICPk, tICPk (cf. Eq. (2.14))

LOOP

k = k + 1

Compute set W k containing corresponding 3-D point pairs in
Plk and Pr using a nearest neighbor search (cf. (4.35))

Remove outliers in W k, which results in the set W Ik contain-
ing only inliers

Compute the best movement RICPk, tICPk from W Ik (Eq.
(4.36))

Compute a new set Plk+1 of transformed points from Plh

using RICPk, tICPk (cf. Eq. (2.14))

Compute registration error ǫICPk between Plk+1 and Pr using
the pairs contained in W Ik (Eq. (4.41))

IF abort criterion fulfilled

THEN EXIT LOOP

Acceleration of convergence by extrapolation of movement
parameters

Register the 3-D point sets and camera poses using (2.14)

Compute RS, tS from registered camera poses using (2.16)

Figure 4.4: Structure chart for Picky ICP (cf. [Zin03a, Zin02]), adapted to stereo self-
calibration.
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As input data the ICP algorithm requires two 3-D point sets Pl and Pr to
be registered as well as an initial estimate RICP0 and tICP0 for the registration
parameters. The point sets are obtained from the mutually independent
3-D reconstruction of left and right image sequence (cf. Sect. 4.2), where the
relative scaling between the two reconstructions was estimated already using
one of the methods described in Sections 4.3.2 or 4.3.3.

For the first step of ICP control points have to be chosen from the two
point sets. In the standard ICP algorithm all points contained in the set Pl
are used as control points. In contrast to that the Picky ICP algorithm uses
a hierarchical point selection. At the beginning a control point set Plh is
created from Pl which contains only every 2hth 3-D point, h + 1 being the
number of hierarchy levels. After convergence of the registration algorithm
for one set of control points, the computation is continued on the next hier-
archy level. Especially for large point sets, this extension will considerably
speed up the computation time.

The first operation in the main loop of the ICP algorithm is the computation
of point pairs W k:

W k = {(i, j) | cwl i ∈ Plk and cwr j ∈ Pr are corresponding points} .
(4.35)

For each control point from the set Plk the closest point in Pr is found us-
ing nearest neighbor search. This is the most time consuming task of the
registration algorithm, therefore a highly optimized k-D tree nearest neigh-
bor algorithm is used for maximum performance [Spr91, Zin03b, Zin02].
Using algorithms relying on additional information (e. g., color, parametric
surfaces, triangle meshes) allow further improvement of the performance
[Rus01, Ben97, Wei97].

After a corresponding point has been found for each control point, erro-
neous point pairs are being removed, thus creating a new set of pairs W Ik
that contains only inliers. Errors usually result from wrong correspondences
found by the nearest neighbor search, which is especially a problem in the
case at hand, because due to the fact that the two reconstructions have been
obtained independently, many points may have no correspondence in the
other set at all. The rejection criterion used here is the distance of two cor-
responding points. The maximum allowable distance is computed using an
LMedS approach [Rou87]. The main idea is to robustly estimate the standard
deviation of all distances of pairs contained in W k and to reject point pairs
with a distance greater than a chosen multiple of this standard deviation.
LMedS is described in more detail in Section 4.4.5.
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Additionally, the outlier removal step prevents cases where multiple cor-
respondences to one point of the set Pr have been found in Plk. In that case
all pairs except the one with smallest distance are rejected. Rejecting point
pairs increases the robustness of the registration considerably, but has the
disadvantage of slowing the convergence of the algorithm. Furthermore, the
proof of convergence presented by Besl and McKay [Bes92] no longer holds
and the registration algorithm does not necessarily converge.

The next main step of ICP is the computation of the rigid movement be-
tween the two point sets using the correspondences W Ik. An estimate can
be computed by minimizing the following objective function, which is based
on (2.14):

(RICPk, tICPk) = argmin
RICP ,tICP

∑
(i,j)∈W Ik

‖ cwr j − RICP
cwl i − tICP‖2 . (4.36)

Various methods for solving (4.36) are compared in [Egg97]. In our imple-
mentation the SVD based approach is used: For this purpose, the minimiza-
tion problem (4.36) is re-written by normalizing the two point sets such that
they have zero mean, which cancels out translation. This results in

RICPk = argmin
RICP

∑
(i,j)∈W Ik

‖( cwr j − gwr) − RICP( cwl i − gwl)‖2 , (4.37)

where gwl and gwr are the centers of gravity of left and right 3-D point set.
The solution (cf. [Egg97]) is given by the SVD of the matrix X , where

X = ∑
(i,j)∈W Ik

( cwr j − gwr)(
cwl i − gwl)

T = USVT . (4.38)

Then
RICPk = UVT . (4.39)

At this point RICPk is an orthogonal matrix, but may have a determinant of 1
or −1, i. e., a reflection may be included. In this case RICPk can be corrected
to get a pure rotation by multiplying the third column of U by −1. Now, the
translation tICPk can be computed from

tICPk = gwr − RICPk
gwl . (4.40)

The registration error computed in the next step is then given by

ǫICPk =
1

|W Ik| ∑
(i,j)∈W Ik

‖ cwr j − RICPk
cwl i − tICPk‖2 . (4.41)
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4.3 Estimation of Scale and Stereo Parameters

The standard ICP algorithm is stopped when the difference between two
subsequently computed registration errors is below a specified threshold.
Unfortunately, due to the additional outlier removal step in Picky ICP, this
criterion cannot be used any more, as the registration error might temporar-
ily increase. Instead, the iteration is stopped if one of the following condi-
tions holds: the change of rotation and translation is small, the registration
error ǫICPk falls below a threshold, or the maximum number of iterations is
reached.

For acceleration of convergence an extrapolation of rotation and trans-
lation was proposed by [Bes92], with improvements given by [Sim96] and
[Rus01]. Extrapolation with all extensions is also implemented in Picky ICP
and done before each new iteration. Details can be found in [Zin02].

Before using the ICP, an initialization for rotation and translation between
the two point sets that are to be registered has to be found, because ICP is a
non-linear method that converges to the nearest optimum. At the beginning
of this section it was already mentioned that it is of course possible to use
a hand-eye calibration method for that purpose. The drawback is, however,
that without a data selection as described in the next section the hand-eye
calibration results may be very inaccurate. This is true not so much for ro-
tation, which can usually be estimated reliably enough, but for translation,
where the results are highly dependent on the data used for calibration.
Therefore, it is recommended to use hand-eye calibration for an initial es-
timate of rotation, and a different method (see below) for translation. An
overview over initialization methods commonly used for ICP registration
can also be found in [Zin02].

A simple way to obtain an estimate for translation was already described
in [Bes92]: Here, the center of gravity gwl, gwr (cf. (4.12)) is computed
for each 3-D point set, and the difference is used as the initial translation
estimate:

tICP0 = gwl − gwr . (4.42)

This method is feasible if the two point sets are very similar. In the case
of stereo self-calibration this can usually be assumed, since the same scene
was observed by both cameras and therefore the 3-D reconstructions will
look alike. If an initial estimate for rotation is also desired, it is suggested
in [Bes92] to apply a principal components analysis [Kar46, Loe55] for this
purpose.

Another way to obtain an initial alignment commonly used is the Darces

method (Data-Aligned Rigidity-Constrained Exhaustive Search) proposed by
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[Che99]. However, this method cannot be recommended for the application
in stereo self-calibration, because one of the prerequisites for this algorithm
is that one of the two point sets is considerably smaller than the other one
(e. g., a subset) and the number of outliers as well as the noise is low. This is
usually not the case if the ICP is used on two point sets obtained from 3-D
reconstruction.

In contrast to standard ICP applications, where only 3-D point clouds are
used, additional information is available in the case at hand, because the
previous 3-D reconstruction step also yields camera poses for both image se-
quences. Assuming that the distance between the two cameras of the stereo
system is small compared to the distance of the rig to the scene, the dif-
ference between the positions of the first reconstructed camera poses of the
left (tl0) and right (tr0) sequence can be used as an initial estimate tICP0 for
translation:

tICP0 = tl0 − tr0 . (4.43)

After convergence of the ICP, the parameters RICP and tICP are used to
register the two 3-D point sets using (2.14), while the inverse transformation
is applied to the camera poses. The stereo parameters RS and tS can be
computed from the registered camera poses using (2.16).

Extended ICP—Integration of Scale Estimation

In the following it will be shown how the estimation of scale can be inte-
grated into the ICP algorithm, resulting in a more accurate estimation of
rotation, translation, and scale. The method presented here has been pub-
lished in [Zin05]; more details as well as a thorough experimental evaluation
of the method is given in [Zin07]. It is an extension of the standard ICP
equations given above; therefore it can be applied easily in a wide range of
ICP modifications.

The basic idea is to integrate the scale factor estimation at each iteration
into (4.36) based on the similarity transformation from left to right point
set given in (4.18). This results in the following objective function to be
minimized:

(RICPk, tICPk, sICPk) = argmin
RICP ,tICP,sICP

∑
(i,j)∈W Ik

‖ cwr j − sICPRICP
cwl i − tICP‖2 ,

(4.44)
where sICPk is the scale factor estimate at iteration step k.
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As seen before in Section 4.3.3, where the integration of scale into the
hand-eye calibration equations was described, the scale factor has no influ-
ence on the estimation of rotation. This can be observed in (4.38): After inte-
grating the scale factor, the matrix X is multiplied by sICP. In the SVD of X ,
only the singular values contained in S are affected, as the other two matrices
are orthonormal. However, the singular values are not used for computing
the rotation matrix, and hence it is not affected by the scale factor.

Therefore, a three-step approach can be used for solving (4.44), which
computes rotation first, then scale, and translation at the end. As motivated
above, the rotation can be computed as before using (4.38) and (4.39). The
scale factor is given by the solution of the following minimization problem,
which is the objective function (4.37) modified by the scale factor:

sICPk = argmin
sICP

∑
(i,j)∈W Ik

‖( cwr j − gwr)− sICPRICPk(
cwl i − gwl)‖2 .

(4.45)
Setting the first derivative of (4.45) to zero yields the solution for the scale
factor:

sICPk =
∑(i,j)∈W Ik

( cwr j − gwr)
TRICPk(

cwl i − gwl)

∑(i,j)∈W Ik
( cwl i − gwl)

T( cwl i − gwl)
. (4.46)

Now the translation vector can be computed from

tICPk = gwr − sICPkRICPk
gwl . (4.47)

After convergence of the ICP, the parameters RICP, tICP, and sICP can used
to register the two 3-D point sets using the following equation:

cwr = sICPRICP
cwl + tICP . (4.48)

As before, the inverse transformation is applied to the camera poses. The
stereo parameters RS and tS can now be computed from the registered cam-
era poses using (2.16).

4.4 Robustness and Numerical Stability

Hand-eye calibration—and thus the stereo self-calibration approach based on
it—is only possible if at least two movements with different rotation axes are
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available (cf. Sect. 2.4, and Table 2.4). This section describes how to appropri-
ately select a subset of the recorded data in order to allow for a numerically
stable hand-eye calibration. It is important to note that the methods for data
selection do not depend on a special hand-eye algorithm, but can be used
with any hand-eye calibration method.

The usual way to fulfill the data requirements in robot hand-eye calibra-
tion is to use a calibration setup where the different positions of the gripper
are chosen such that the data is well-suited for calibration. Such a setup
is described, e. g., in [Tsa89]. However, in stereo self-calibration image se-
quences are used that have been recorded by two cameras acquiring images
continuously, which are often moved by hand. This means that in this case
it is usually not possible to move the cameras according to the requirements
given in [Tsa89]. Additionally, a continuous stream of video data means that
translation and rotation (and thus the rotation axes) of consecutive frames
are similar, which makes the processing of frames in temporal order subop-
timal. For robot hand-eye calibration it is also advantageous to use a data
selection method as described here instead of a special setup, as the robot
may thus be moved and take images of a calibration pattern continuously.
Results for classic hand-eye calibration—applied in the context of minimally
invasive surgery—will be presented in Section 5.2.

The remaining part of this section is structured as follows: At the begin-
ning (Sect. 4.4.1) the data requirements for a numerically stable hand-eye
calibration are stated explicitly along with a criterion for measuring the nu-
merical stability of the calibration algorithm. A general pre-processing step
that is performed before the actual data selection and independently of the
actual method is described in Section 4.4.2. Section 4.4.3 presents a rela-
tively simple data selection algorithm published in [Sch03c] that is based
on exhaustive search. More sophisticated methods [Sch04a] based on vec-
tor quantization are described in Section 4.4.4. Outlier removal is treated in
Section 4.4.5.

4.4.1 Numerical Stability of HandEye Calibration

Critical factors and criteria for improving the accuracy of hand-eye calibra-
tion were already given in one of the first publications on that topic [Tsa89].
These criteria are:

1. Maximize the angle between rotation axes of relative movements (in-
fluence on error in rotation, no translation recovery possible for parallel
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axes),

2. Maximize the rotation angle of relative movements (influence on error
in rotation and translation),

3. Minimize the distance between the optical center of the camera and the
calibration pattern (influence on error in translation),

4. Minimize the distance between the gripper coordinate system positions
(influence on error in translation).

If a movement of the robot gripper is being planned, all items above may be
controlled by the user. Especially for stereo self-calibration, however, where
the cameras are either moved manually or implicitly by the head movement
of the user in an Augmented Reality setting, controlling (3), which would be
the distance of the cameras to the scene, is often complicated. Also, having
a continuous camera movement where rotation and translation change only
slightly between two consecutive frames, a trade-off between requirements
(1) and (2) on one side and (4) on the other side has to be taken into account:
Small distances between the centers of one camera usually means consecu-
tive frames and thus usually similar rotation axes and small angle, and vice
versa.

Criterion (1) is considered to be the most important one here, since no
recovery of the hand-eye translation is possible if the rotation axes used are
parallel (cf. Sect. 2.4 and Table 2.4).

The great influence of criterion (1) can be seen if we look at the linear sys-
tem of equations that has to be solved for the unknown transformation, e. g.,
(2.95) if the dual quaternion algorithm described in Section 2.4.1 is used.
This system has rank six if a general enough motion (i. e., a motion with
non-parallel rotation axes) is available. Speaking in terms of singular value
decomposition this means that two out of eight singular values are zero (in
the noise-free case). When using a movement consisting of parallel rota-
tion axes, however, the rank of the coefficient matrix reduces from six to five,
which makes determining a unique translation vector impossible. In the case
of real movements, the singular values will of course only be approximately
zero. If the rotation axes used as input data get more parallel, the rank of the
coefficient matrix will get closer to rank five, and thus the solution will be-
come more unreliable. Therefore, an appropriate data selection that chooses
motions with non-parallel rotation axes results in an equation system that
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actually is of rank six, and thus yields a more trustable solution. Data selec-
tion methods for this purpose will be presented in the following. Details on
the numerical condition of linear systems of equations when using SVD can
be found in [Gol96, Tre97, Sch93, Pre92].

For practical purposes, i. e., when two systems of equations are to be com-
pared, the quality of the system can be measured by comparing the singular
values six and seven of the coefficient matrix of (2.95):

(
X Y

) (qHEnd
qHEd

)
= 0 , with

(
X Y

)
= USVT , (4.49)

where
S = diag(ς1, ς2, . . . , ς6, ς7, ς8) . (4.50)

If ς6 and ς7 are of the same order of magnitude, the rank of the matrix is
close to five, since ς7 should be approximately zero2. Comparison of these
two singular values can be done, e. g., by computing their ratio ς6

ς7
. The

higher the ratio, the closer the coefficient matrix will be to rank six.

4.4.2 PreProcessing

Usually, a continuously recorded image sequence is used as input data,
where consecutive frames differ only slightly. As motivated above, it is often
disadvantageous to process the data in their temporal ordering. Therefore,
it is desirable to perform a data selection step. The main question is what
data, i. e., which relative movements, should be used for the data selection
described in the following sections. Of course it would be possible to use the
relative movements between consecutive frames, as these are readily avail-
able. However, this cannot be recommended because the calibration results
will usually be very bad compared to those after data selection, i. e., a lot of
information would be wasted that is contained in the input data. Therefore,
it is proposed here to compute all possible (i. e., consider all combinations
of camera positions) relative movements instead, and use these as input for
the following steps. For the conversion from camera poses to relative move-
ments, the equations (3.9) and (3.10) can be used.

For Nt frames, the total number of all relative movements is Nt(Nt − 1)/2,
i. e., the time complexity equals O(Nt

2).
As described in Section 4.3.1, this pre-processing steps causes problems

that are due to error accumulation in 3-D reconstruction as the number of

2 in practice it will usually be in the order of 10−1 to 10−3
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frames is getting larger. Therefore, methods for selecting a subsequence of
frames have been presented in that section. However, it is also possible to use
the complete input sequence of camera poses, if the computation of relative
movements as described above is slightly changed: Instead of computing all
movements between all pairs of camera poses, relative movements are com-
puted only between pairs where the distance is smaller than a given number
of frames (e. g., 20–60). This way, all available data can be used, i. e., no sub-
sequence selection has to be done, while the effects of error accumulation
are still suppressed; the influence increases as the neighborhood considered
for relative movement computation gets larger.

4.4.3 Exhaustive Search

This section describes a simple data selection algorithm that takes into ac-
count the angle between rotation axes (criterion (1)) in order to increase nu-
merical robustness, and the rotation angle (criterion (2)) in terms of thresh-
olds. It was published in [Sch03c].

Before selecting the movements according to their non-parallelism, a pre-
selection of those relative movements is done where the rotation angles are
higher than a given threshold θt and less than 180◦ − θt or3 higher than
180◦ + θt and less than 360◦ − θt, because for small angles the rotation axis
is not well-defined (cf. Sect. 2.2.1).

After this pre-selection step, pairs of relative movements (each pair consist-
ing of three camera poses) are rated according to their suitability for hand-
eye calibration. The goal is to use the best fraction of pairs for computing
the hand-eye transformation. As a rating criterion it is proposed to use the
scalar product between the rotation axes of two relative camera movements.
This yields a value of one for parallel rotation axes and zero for orthogo-
nal axes. Therefore, for all relative movements left after pre-processing, the
scalar product of all possible pairs of axes is computed (but not stored, since
only the best fraction of movement pairs will be used afterwards).

A worst case estimate (if no movements are eliminated during pre-selec-
tion w. r. t. angle) of the time complexity of this approach is O(Nt

4), Nt being
the number of frames of the original image sequence. Note that already
O(Nt

2) relative movements are used as input data due to the pre-processing
described in Section 4.4.2.

3 this second interval is due to the fact that a rotation about an axis r by an angle θ is the same as
a rotation about the axis −r by the angle 360◦ − θ
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A drawback of this method is that it is more or less a brute-force approach;
it cannot compete in computation time with the vector quantization methods
presented in the following. Another problem is that always well-matching
pairs of relative movements are selected, where one relative movement may
be contained in multiple pairs. The pairs are afterwards used to form a linear
system of equations for solving for the hand-eye transformation. Since each
relative movement results in one equation, it may happen that one movement
is used more than once, leading to two linearly dependent equations, one of
them being redundant. Therefore, this approach not only has a relatively
high time-complexity, but also increases the number of equations unneces-
sarily.

4.4.4 Vector Quantization Based Data Selection

In this section various data selection algorithms will be presented that, in
contrast to the exhaustive search method described in Section 4.4.3, do not
select pairs of relative movements, but actually select a globally consistent set
of movements that optimizes the non-parallelism criterion (1) from Section
4.4.1.

The basic idea of the following algorithms is: Given a set of Nrel relative
movements represented by their rotation axes, compute a new set of distinct
axes consisting of Nrs vectors, where Nrs < Nrel. This can be achieved by us-
ing a clustering algorithm on the vectors representing axes, which computes
a partitioning of the axes vectors.

A method which is suited very well for the task at hand is vector quan-
tization [Lin80]. In general, vector quantization works as follows: An arbi-
trary input vector x ∈ IRn is mapped to a vector of the so-called codebook
C = {c1, . . . , cNrs

}, which is a set of Nrs n-dimensional vectors that define a
partitioning of IRn. Given a distance measure d(·, ·) on vectors in IRn (usually
the Euclidean distance), the input vectors are mapped as follows:

x 7−→ cκ , where d(x, cκ) < d(x, ci) ∀i = 1, . . . , Nrs, i 6= κ . (4.51)

Thus, the entries of the codebook C are the cluster centers in IRn. For finding
the entries of the codebook the well-known LBG algorithm4 [Lin80] is used,
which is an iterative method that computes the codebook given the desired
number of codebook entries. The complexity of the LBG algorithm for each

4 named after the authors Linde, Buzo, and Gray
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iteration is O(NrelNrs), which equals O(Nt
2Nrs) if no relative movements

have been removed during pre-selection.
Different variations of this basic idea will be discussed in the following,

which differ in the input data used as well as in the dimensionality of vector
quantization.

Vector Quantization of Normalized Rotation Axes in 3D

The first vector quantization based data selection algorithm presented here
uses the 3-D rotation axes ri of the relative movements as input data. It was
published in [Sch04a]. The rotation angle θi is again taken into consideration
using the same pre-selection of relative movements as in Section 4.4.3, i. e.,
movements having a rotation angle θi smaller than a given threshold θt are
removed. After that pre-selection step, only the rotation axes (normalized to
one) are used for further processing. The complete algorithm as described
in the following is shown in Figure 4.5.

After pre-selection according to rotation angle and normalization of the
rotation axes to one, the ambiguity in the axis/angle representation has to
be resolved in order to assure that similar rotation axes are actually close to

each other in 3-D. Since all normalized rotation axes ri =
(
rix riy riz

)T

lie on a 3-D sphere, this can be achieved by restricting the axes to one hemi-
sphere. Here, w. l. o. g. the hemisphere with non-negative riz-coordinate was
chosen, i. e., if this coordinate of an axis ri is negative, the axis ri is substi-
tuted with −ri. Rotation axes having a zero riz-coordinate have to be treated
separately by checking the riy- and rix-coordinates analogically. This ambi-
guity resolution step is shown in the separate structure chart in Figure 4.6.

Now, the training phase of the vector quantizer, i. e., computation of the
codebook vectors C, can be started, resulting in a clustering of the rotation
axes. Note that, due to the fact that all axes have norm one, the vectors are
not uniformly distributed in space, but lie on the surface of the unit sphere.
This is visualized in Figure 4.7, where the distribution of the axes vectors
and the resulting codebook entries after vector quantization are shown for
input data obtained by an optical tracking system (cf. Sect. 5.2). For the
data set shown in Figure 4.7(a) no pre-selection of the data with respect to
small rotation angles was done, i. e., all relative movements were used as
input for vector quantization. The plot in Figure 4.7(b) shows the same data,
where relative movements having a rotation angle smaller than 15◦ have
been removed.
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Input:
a set of Nrel relative movements consisting of rotation and translation Ri, ti
(cf. Sect. 4.4.2),
θt = threshold for pre-selection according to rotation angle,
Nrs = number of desired relative movements after data selection.
Output:
set of Nrs relative movements consisting of rotation and translation Rκ , tκ .

FOR each relative movement i

Compute axis ri (norm one) and angle θi from Ri

IF |θi| < θt OR (|θi| > 180◦ − θt AND
|θi| < 180◦ + θt) OR |θi| > 360◦ − θ

THEN Rotation angle too small: remove movement i from data set

ELSE Resolve ambiguities (see Fig. 4.6)

Compute codebook C = {c1, . . . , cNrs
} of size Nrs using the remaining ri as

training vectors
FOR each remaining axis ri

Classify ri to one of the partitions represented by codebook vector
cκ :
ri → ri,κ

Compute the distance d(ri,κ , cκ)

FOR each codebook entry cκ

Determine rκ = r j,κ , where d(r j,κ , cκ) < d(ri,κ , cκ) ∀i, j of partition κ,
i 6= j

Select the relative movement Rκ , tκ that corresponds to rκ as one of
the resulting movements

Figure 4.5: Structure chart for data selection using a 3-D vector quantization of nor-
malized rotation axes.

In many applications the codebook vectors can be directly used for further
processing; note that this is not the case for data selection as described here.
Codebook vectors are computed as the center of gravity (i. e., mean values) of
all input vectors belonging to a certain partition. Therefore, a codebook vec-
tor usually does not coincide with an element of the input vector set, which
in our case means that it cannot be related to an actual relative movement.
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Input: a rotation axis ri =
(
rix riy riz

)T
(norm one)

Output: rotation axis with resolved ambiguities

IF riz < 0

THEN ri := −ri

ELSE IF riz = 0

THEN IF riy < 0

THEN ri := −ri

ELSE IF riy = 0 AND rix < 0

THEN ri := −ri

Figure 4.6: Structure chart for resolving the ambiguities in a normalized rotation axis.
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Figure 4.7: Examples of vector quantization result in 3-D based on real data: The input
data, i. e., rotation axes of norm one, are represented by the small dots, the
codebook vectors are plotted as bold dots. Because of the normalization of
the axes to one, all vectors lie on a sphere.

This is why additional steps have to be taken in order to get the appropriate
data, which is one rotation axis (and the associated relative movement) per
partition: Firstly, each rotation axis ri has to be classified to one of the par-
titions defined by the codebook vectors. The classified axes are denoted by
ri,κ. Secondly, for each rotation axis ri,κ of a partition κ, the distance to the
codebook vector cκ representing that partition is computed; the selected axis
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is the one where the distance to the codebook vector d(ri,κ , cκ) is smallest.
The relative movements belonging to the rotation axes selected this way

can now be used for hand-eye calibration. In contrast to the exhaustive
search method described in the previous section the vector quantization
based selection is faster by orders of magnitude, with the additional effect
that each movement will actually be used only once, i. e., no redundant equa-
tions are introduced. However, considering the fact that the rotation axes are
all of norm one, modifications are still possible. These will be discussed in
the following sections.

Vector Quantization of Normalized Rotation Axes in 2D

The vector quantization based data selection algorithm presented above uses
normalized rotation axes as input. Since the rotation angle is not encoded in
the axis any more but treated separately, an axis is a 3-D vector with only two
degrees of freedom. Therefore, it is possible to reduce the dimensionality of
the vector quantization from three to two if an appropriate parameterization
of the axes is used. An apparent choice for this task are polar coordinates.
Given a rotation axis r, the polar coordinates λ, ρ of r are computed as:

λ = arctan
ry

rx
, ρ = arcsin rz, r =

(
rx ry rz

)T . (4.52)

The data selection algorithm using polar coordinates is shown in Figure 4.8.
The main difference to the previous algorithm (cf. Figure 4.5) is that an

additional computation step preceding the codebook generation was intro-
duced that converts the normalized rotation axes ri to polar coordinates us-
ing (4.52). This reduces the dimensionality of the following vector quantiza-
tion, as only 2-D vectors rpol i that contain the angles λi and ρi are used from
now on. The remaining parts of the algorithm are similar to the previous
version, with the difference in vector dimensions.

An example of a vector quantization result using polar coordinates is
shown in Figure 4.9. The same input data as in Figure 4.7 was used.

Computing Rotation Angle Thresholds Automatically

A disadvantage of the two data selection algorithms shown in Figures 4.5
and 4.8 is that a threshold θt for the rotation angle has to be set manually.
Only relative movements with rotation angles between θt and 180◦ − θt, or
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Input:
a set of Nrel relative movements consisting of rotation and translation Ri , ti
(cf. Sect. 4.4.2),
θt = threshold for pre-selection according to rotation angle,
Nrs = number of desired relative movements after data selection.
Output:
set of Nrs relative movements consisting of rotation and translation Rκ , tκ .

FOR each relative movement i

Compute axis ri (norm one) and angle θi from Ri

IF |θi| < θt OR (|θi| > 180◦ − θt AND |θi| < 180◦ + θt)
OR |θi| > 360◦ − θ

THEN Rotation angle too small: remove movement i from data set

ELSE Resolve ambiguities (see Fig. 4.6)

FOR each remaining axis ri

Convert ri to polar coordinates rpol i
= (λi, ρi)

T (cf. (4.52))

Compute codebook C = {c1, . . . , cNrs
} of size Nrs using the polar coordi-

nates rpoli as training vectors

FOR each polar coordinate vector rpoli

Classify rpoli to one of the partitions represented by codebook vector
cκ : rpoli → rpol i,κ

Compute the distance d(rpol i,κ , cκ)

FOR each codebook entry cκ

Determine rpolκ = rpol j,κ, where d(rpol j,κ , cκ) < d(rpol i,κ, cκ) ∀i, j of
partition κ, i 6= j

Select the relative movement Rκ , tκ that corresponds to rpolκ as one
of the resulting movements

Figure 4.8: Structure chart for data selection using a 2-D vector quantization of rotation
axes represented by their polar coordinates.
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(a) No threshold on rotation angle, i. e., θt = 0◦
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Figure 4.9: Examples of vector quantization result using polar coordinates based on
real data: The input data, i. e., normalized rotation axes converted to polar
coordinates, are represented by the small dots, the codebook vectors are
plotted as bold dots. The angles λ and ρ are given in rad.

between 180◦ + θt and 360◦ − θt are used in these methods. There are mainly
two ways to improve these algorithms:

1. The threshold is used, but computed automatically from the available
data.

2. No threshold is used at all, i. e., all data are used for vector quantiza-
tion, and the rotation angle is taken into account implicitly.

The first possibility is discussed here; several ways to implement the latter
one will be presented in the following sections.

In the data selection algorithms shown previously a single threshold was
used, which is applied symmetrically to the lower (0◦, 360◦) and upper (180◦)
bounds of the rotation angle interval. The best-suited rotation angles are
located in the middle of the two intervals at 90◦ and 270◦. Now, differ-
ent thresholds for the upper and lower bound will be computed automati-
cally, which are not necessarily symmetric. The structure chart for automatic
threshold computation is shown in Figure 4.10.

It can be observed that, instead of an angle threshold, the percentage of rel-
ative movements that ought to remain after pre-selection has to be specified.
One could argue that just one parameter was substituted with another and
nothing was gained. However, this is not the case: When an angle threshold
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Input:
a set of Nrel relative movements consisting of rotation and translation Ri , ti
(cf. Sect. 4.4.2),
k = remaining fraction (0 to 1) of relative movements after pre-selection.
Output:
θtu, θtl = upper and lower threshold for pre-selection according to rotation
angle.

FOR each relative movement i

Compute rotation angle θi from Ri

Take absolute angle, i. e., θi := |θi|
IF θi > 180◦

THEN Normalize angle to interval 0◦ to 180◦ : θi := 360◦ − θi

Store angle θi in a list L (indexed from 0, . . . , Nrel − 1)

Sort list L (ascending)

αl := L(0), αu := L(Nrel − 1)

IF αl > 90◦

THEN θtl := 0◦, θtu := 180◦ −L((Nrel − 1) − Round((1 − k) · (Nrel + 1)))

ELSE IF αu < 90◦

THEN θtl := L(Round((1 − k) · (Nrel − 1))), θtu := 0◦

ELSE IF αl ≤ 90◦ AND αu ≥ 90◦

THEN Find index i, where L(i) ≥ 90◦ and L(j) < 90◦

∀j = 0, . . . , i − 1
Compute fractions ξl, ξu of list elements left and
right of i (cf. (4.53))

θtl := L(Round((1 − k) · (Nrel − 1) · ξl))

θtu := 180◦ −L((Nrel − 1)−
Round((1 − k) · (Nrel + 1) · ξu))

Figure 4.10: This structure chart shows an algorithm for computing upper and lower
rotation angle thresholds θtu, θt l automatically.
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is explicitly specified there is always the danger of choosing it too high or
too low. If the threshold is too high there may be no movement left after
applying the threshold, which makes calibration impossible. If chosen too
low, it may happen that a lot of movements are processed further that are
actually not very good and thus distort the calibration result. Since the rota-
tion angles are highly dependent on the recorded image sequence, a general
recommendation for choosing the thresholds is not possible. Specifying a
percentage of movements that are to remain after pre-selection allows choos-
ing the best ones while it can still be guaranteed that enough movements are
left for calibration, i. e., this parameter is not as critical as the angle threshold
by far.

At the beginning the rotation angle θi is computed from each relative
movement; the rotation axes are irrelevant for threshold determination. Since
only the amount of rotation is of interest we take the absolute values of θi.
Then, all angles are normalized such that they are inside the interval of 0◦ to
180◦ and stored in a list L which can be accessed by an index ranging from 0
to Nrel − 1. After sorting the list in ascending order, the smallest and largest
rotation angles αl and αu that are contained in the recorded image sequence
can be found in the entries L(0) and L(Nrel − 1).

Now, three cases have to be distinguished. If the smallest rotation angle
αl is above 90◦ no movements are contained in the sequence that have to be
removed at the lower bound. Therefore, the lower threshold θtl can be set to
0◦. In this case, all movements have to be removed at the upper bound, and
the upper threshold is defined by the list entry having index (Nrel − 1) −
Round((1 − k) · (Nrel + 1)).

A similar situation, just with reversed roles of the thresholds, arises if the
largest angle αu is below 90◦. In that case all movements have to be removed
at the lower bound; therefore, the upper threshold θtu can be set to 0◦, while
the lower one is given by the list entry at index Round((1 − k) · (Nrel − 1)).

The case where angles below 90◦ exist as well as angles above 90◦ is
slightly more complicated, as the lower and upper threshold has to be cho-
sen asymmetrically depending on the number of movements with rotation
angles larger and lower than 90◦ . Therefore, the first step is to identify the
position i of the first angle in the list that is equal or larger than 90◦ , i. e., the
“middle” of the list with respect to the best angle contained in the sequence.
Now the fraction of angles left and right of the identified position i can be
computed; these are later used as weighting factors for threshold computa-
tion. These weighting factors ξl for the lower and ξu for the upper threshold
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are given by:

ξl =
i

Nrel − 1
, ξu = 1 − ξl . (4.53)

The thresholds are then defined by the list elements having index Round((1−
k) · (Nrel − 1) · ξl) (lower) and (Nrel − 1) − Round((1 − k) · (Nrel + 1) · ξu)
(upper), respectively.

Vector Quantization Using Axis/Angle Representation

In this section a data selection algorithm will be presented that does not
perform a pre-selection of relative movements according to their rotation
angle, but uses all available movements instead, which makes thresholds
unnecessary. A structure chart is shown in Figure 4.11.

Instead of treating rotation axis and angle separately, the axis/angle rep-
resentation is used in the form described in Section 2.2.1, page 22 f., where
the angle θ was encoded as the norm of the axis vector r in a 3-D vector ω

having three degrees of freedom.
Again, we start with a set of Nrel relative movements, this time represented

by their rotation axes with angles encoded in ωi. At the end, the result
will be a set of Nrs vectors, Nrs < Nrel, where the corresponding selected
movements are a trade-off between criterion (1) and (2), page 99, because
movements with small rotation angles will be found in the resulting data set
if their rotation axes fit well to the rest of the data (i. e., the other axes).

At the beginning the axes ωi are normalized such that all angles are in the
range from 0◦ to 180◦ . This is contrary to the normalization in the previous
data selection methods, where the normalization was done using the sign
of the axes elements; in general, there are always those two options: either
the sign of an axis is controlled while the angle is arbitrary, or the angle is
controlled and the sign varies. Depending on the application, either option
may have advantages and disadvantages. Movements with rotation angles
near zero will be located near the origin of the coordinate system in this
representation. Therefore, even if the axis is not well-defined in these cases,
a data selection can be done. The main advantage of the algorithm presented
here is that no threshold has to be used and that a 3-D vector quantization
can be used in a straight forward fashion, as the 3-D axis/angle vectors ωi
also have three degrees of freedom.

An example of a vector quantization result using the axis/angle repre-
sentation without thresholds is shown in Figure 4.12. The same data as in
Figures 4.7 and 4.9 was used.
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Input:
a set of Nrel relative movements consisting of rotation and translation Ri, ti
(cf. Sect. 4.4.2),
Nrs = number of desired relative movements after data selection.
Output:
set of Nrs relative movements consisting of rotation and translation Rκ , tκ .

FOR each relative movement i

Compute axis/angle ωi from Ri; angle θi = |ωi|
IF θi > 180◦

THEN substitute ωi with a rotation about the negative axis and
angle 360◦ − θi

Compute codebook C = {c1, . . . , cNrs
} of size Nrs using the ωi as training

vectors

FOR each vector ωi

Classify ωi to one of the partitions represented by codebook vector
cκ :
ωi → ωi,κ

Compute the distance d(ωi,κ, cκ)

FOR each codebook entry cκ

Determine ωκ = ωj,κ, where d(ωj,κ, cκ) < d(ωi,κ, cκ)

∀i, j of partition κ, i 6= j

Select the relative movement Rκ , tκ that corresponds to ωκ as one of
the resulting movements

Figure 4.11: Structure chart for data selection using axis/angle representation.

Vector Quantization Using Quaternions

As in the previous section a data selection algorithm is presented here that
does not remove movements having small rotation angles and therefore has
no need for thresholds. The basic idea is to use the quaternion representation
of 3-D rotation matrices as discussed in Section 2.2.1, page 23 ff. A structure
chart is shown in Figure 4.13.

After the quaternion representation has been computed for each relative
movement, the ambiguity in the quaternion representation has to be re-

112



4.4 Robustness and Numerical Stability

−0.1

0

0.1

0.2

−0.2

0

0.2

0.4

0.6

−1

−0.5

0

0.5

1

ωxωy

ω
z

Figure 4.12: Example of vector quantization result based on real data using axis/angle
representation without a threshold: The input data, i. e., rotation axes
where the rotation angle is encoded as the norm, are represented by the
small dots, the codebook vectors are plotted as bold dots.

solved. Since the quaternions qi and −qi represent the same rotation, we
restrict the quaternions to the hemisphere with positive real part. This can
be done similarly to the axis ambiguity resolution as shown in Figure 4.6,
with the difference that a quaternion consists of four elements instead of
three. The remaining part of the algorithm is comparable to the data selec-
tion methods discussed before. A main advantage of quaternions compared
to using the rotation axis is that the quaternion is well-defined for arbitrary
rotation angles. As discussed before, the rotation axis is undefined for a rota-
tion angle of zero, i. e., for movements where the rotation matrix equals I3×3.
The corresponding quaternion, however, is defined and equals 1. The main
disadvantage of using quaternions is that these consist of four elements with
only three degrees of freedom; therefore, a 4-D vector quantization has to be
used instead of a three-dimensional one. Of course, as before when rotation
axes were discussed, polar angles representing quaternions could be used,
as these have norm one and thus lie on a sphere.
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Input:
a set of Nrel relative movements consisting of rotation and translation Ri, ti
(cf. Sect. 4.4.2),
Nrs = number of desired relative movements after data selection.
Output:
set of Nrs relative movements consisting of rotation and translation Rκ , tκ .

FOR each relative movement i

Compute quaternion qi from Ri

Resolve ambiguities (see text)

Compute codebook C = {c1, . . . , cNrs
} of size Nrs using the quaternions qi

as training vectors

FOR each quaternion qi

Classify qi to one of the partitions represented by codebook vector
cκ :
qi → qi,κ

Compute the distance d(qi,κ , cκ)

FOR each codebook entry cκ

Determine qκ = qj,κ , where d(qj,κ , cκ) < d(qi,κ , cκ) ∀i, j of partition
κ, i 6= j

Select the relative movement Rκ , tκ that corresponds to qκ as one of
the resulting movements

Figure 4.13: Structure chart for data selection using quaternions.

Alternative Movement Selection Strategy

A modification that can be made in all algorithms is to substitute the selec-
tion strategy of one movement for each class after the vector quantizer is
trained. Up to now, the training data are classified, and one relative move-
ment is selected for each class, namely the one that is nearest to the codebook
vector of the corresponding class. Instead of using some distance measure
for this purpose, it is also possible to choose the movement having the largest
rotation angle of its class. At the end, the result will be a set of Nrs vectors,
where the corresponding selected movements are a trade-off between crite-
rion (1) and (2), page 99, because movements with small rotation angles will
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be found in the resulting data set if their rotation axes fit well to the rest of
the data (i. e., the other axes). This is especially an advantage for the two
algorithms based on quaternions and axis/angle representation that have
no need of a pre-selection according to the rotation angle, because here the
movement nearest to the class centers may actually have very small rotation
angles.

4.4.5 Removing Outliers

Overview

As depicted in Figure 4.2 (page 73), an optional outlier removal step can be
performed before the actual (extended) hand-eye calibration is done. This
step makes sure that the data used for calibration are not corrupted by out-
liers that would distort the calibration result. Outliers may originate from
various sources, depending on the origin of the hand-eye data used as input:

Robot Manipulator Arm This is the classic application for hand-eye calibra-
tion, where the hand data are obtained from a robot. For instance,
the pose information provided by the endoscopic surgery robot AE-
SOP 3000 (cf. [Vog06, Vog04a, Vog04b, Vog03a, Sch03c] for details) is
usually accurate but very unreliable when the direction of movement
changes substantially [Vog06, Sch03c]. Thus it is necessary to detect
the positions where those changes occur, so that they can be removed
from the data used for hand-eye calibration.

Optical Tracking System In [Sch04a] an optical tracking system is used that
provides pose data (the hand) of a so-called target consisting of markers
that are easy to track by cameras using infrared light. The target is
fixed to an endoscope with a camera (the eye) mounted on it. In such
a system, unreliable pose information arises if the target is partially or
completely occluded, either by the operator or by itself. Details can be
found in [Vog06, Sch04a, Vog05].

Stereo Rig This is the case which is treated in this work, where both hand
and eye data are obtained by a 3-D reconstruction of camera poses.
Here, outliers will usually originate from camera poses that were re-
constructed incorrectly. However, outliers are not such a severe prob-
lem as in the two former cases, because in order to be an outlier, single
cameras would have to be reconstructed completely wrong. This is
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usually not the case, as the reconstructed camera poses depend on
each other and therefore errors will accumulate rather than result in
outliers.

The outlier detection method described in the following is based on the
RANSAC (RANdom SAmple Consensus) approach [Fis81], combined with
LMedS (Least Median Squares) [Rou87], which is capable of computing the
threshold used in RANSAC for deciding which measurements are inliers
and which are outliers automatically. For an overview see [Fau01].

The basic idea of these algorithms is the following: In order to estimate a
set of parameters A, select a number Nr of random samples from the data,
where each sample consists of the minimum number Nest of measurements
that are necessary to obtain an unique estimate of the parameters A. The
minimum number of samples that have to be chosen is determined by solv-
ing the following formula for Nr:

Pr = 1 −
(

1 − (1 − η)Nest
)Nr

, (4.54)

where η is the estimated rate of outliers in the data set (must be fixed by
the user), and Pr is the desired probability that at least one of the samples
contains only inliers. Pr is usually set to 0.95 or 0.99.

The parameters are estimated for each sample, and the errors for each
measurement in the complete data set are computed as well as the median
of the errors. At the end, a threshold θLMedS for classifying all measurements
as in- or outliers is computed from the smallest median residual error mmin
that was observed during sampling. For this purpose the robust standard
deviation of the errors (i. e., of inliers) is estimated as [Rou87, Fau01]:

σ̂ = 1.4826
(

1 +
5

Nr − Nest

)
· √mmin . (4.55)

The threshold θLMedS is now given by

θLMedS = (2.5 σ̂)2 . (4.56)

An element of the data set is considered to be an outlier if its squared resid-
ual error is larger than θLMedS. Now a robust estimate of the parameters A
can be re-computed using all measurements that were classified as being an
inlier.

Two questions are yet to be answered: What are data to use for outlier
detection, and how to define the residual error function. These topics will be
discussed in the remaining part of this section.
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Input:
a set of Nrel relative movements (cf. Sect. 4.4.2),
η: estimated rate of outliers in the data set,
Pr: desired probability that at least one of the samples contains only inliers
(usually 0.95 or 0.99).
Output:
a set of NLMedS relative movements containing only inliers.

Compute number of samples Nr from (4.54)

Select Nr samples from the data set, each consisting of Nest = 2 relative
movements

FOR each sample i

Compute RS i, tS i using hand-eye calibration

Apply RS i, tS i to the poses of the left camera (or hand) and compute
the residual error for each relative movement

Compute the median of all residuals

Store the sample that contains the smallest median mmin

Compute the threshold θLMedS from (4.55), (4.56)

Use the sample with the smallest median and θLMedS to remove outliers

Figure 4.14: Structure chart for outlier removal based on LMedS.

Error Metric

The residual error used for outlier rejection is based on the error metrics
that are used for the experimental evaluation given in Section 5.1, where
details can be found. A metric is defined that measures the quality of the
computed hand-eye transformation without ground truth, which will not be
available in a real application. The basic idea is to use the computed hand-
eye transformation for the prediction of the position of the right camera (or
eye) from the known positions of the left camera (or hand) and the computed
hand-eye transformation. Since only a scalar residual (and not a residual
vector) can be used for outlier detection, it is proposed here to use the error
in translation, while the rotational error is neglected. This is due to the
fact that the estimate of translation is more prone to errors than rotation if
ill-suited data are used for calibration, i. e., translation is more sensitive.
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Algorithm

The data used for hand-eye calibration as well as the stereo self-calibration
approach presented in this work are relative movements of the cameras (or
hand and eye). These relative movements are computed from reconstructed
camera poses. The question that remains when talking about outlier rejection
is what data should be used. In general, there are two possibilities: Either
the single camera poses or the relative movements computed from them.
Of course, when looking at the origin of outliers, which may result from
calibration errors, the usage of poses seems to be the method of choice, and
can surely be used.

However, the usage of relative movements is proposed here for a number
of reasons. The main problem when using single camera poses is that if
the residual errors after hand-eye calibration are high, it cannot be decided
which of the poses is the outlier, since a relative movement has to be com-
puted from two given poses. Additionally, high residuals may originate from
different sources: Either the sample contains at least one outlier, or the com-
bination of the relative movements is badly suited for hand-eye calibration,
which is the case when the rotation axes are similar.

For choosing random samples, the hand data set is used. Then, for each
chosen relative hand movement, the corresponding eye movement is selected
and used for hand-eye calibration. Thus both, hand and eye data, are taken
into account during the outlier removal step. If either one is an outlier, the
corresponding relative movement of the other data set is also removed. The
complete outlier removal step is summarized in the structure chart shown in
Figure 4.14.

4.5 Summary

This chapter presented the main contribution of this work: A new self-ca-
libration algorithm for a stereo rig that uses only temporal feature point
correspondences, requires no calibration pattern, and allows for the calibra-
tion of the intrinsic as well as the extrinsic camera parameters. An important
part is the data selection step based on vector quantization that can be used
without further modifications for robot hand-eye calibration as well.

Two basic methods for stereo self-calibration were presented, one being
based on the ICP algorithm that uses reconstructed 3-D points, the other
one based on an extended hand-eye calibration that exploits knowledge on

118



4.5 Summary

the reconstructed camera movements. The main focus of the work is on the
latter one.

For both methods, the input data needed for calibration are two image
sequences recorded by the cameras of the stereo rig, which is moving while
the images are acquired. Having a continuously recorded image sequence for
each camera, feature points can be tracked from one image of a sequence to
the next, i. e., temporally. Feature tracking from left to right is not required.

The point correspondences are used for obtaining a 3-D reconstruction
of camera poses as well as 3-D points using a structure-from-motion ap-
proach. This is done independently for each of the two image sequences,
i. e., after this step two reconstructions of the same scene are available. Each
reconstruction is only unique up to an unknown similarity transformation,
meaning that the world coordinate system can be chosen arbitrarily and that
the scaling of the reconstruction is unknown. This global scale factor cannot
be determined without further knowledge on the observed scene. However,
it is possible and necessary to compute the relative scale factor between the
two reconstructions in order to obtain the desired stereo parameters.

For the ICP based method a heuristic scale estimation is suggested that is
based on the fact that both cameras observed the same scene, and that uses
the distance of the cameras to the center of gravity of the 3-D points for esti-
mation. After the scale of both reconstructions has been equalized, an initial
estimate for the alignment of the two 3-D point sets is computed that is used
as an initialization for the following step. There are two options for this next
step: Either a standard ICP algorithm can be used that estimates rotation
and translation, while keeping scale fixed. This is feasible if the initial scale
estimate has been fairly good. The other option is to use an extended ICP,
which is capable of estimating all parameters, i. e., including scale. The re-
sult is a rigid transformation in the first case and a similarity transformation
in the latter one. Applying this transformation to the 3-D points as well as
its inverse to camera poses, the stereo parameters can be computed. Un-
fortunately, this ICP approach is not very accurate, which is mainly due to
the points contained in the two reconstructions: Even when the same scene
has been observed by both cameras, the actually tracked feature points—and
therefore the reconstructed 3-D points—are usually different, resulting in an
only more or less accurate estimate of the stereo parameters. The main ad-
vantage of the ICP based approach is that it can be used even if the rotational
part of the camera movement was very small, which causes problems in the
hand-eye approach.

In contrast to that, the hand-eye calibration based method does not make
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use of the reconstructed 3-D points, but only of relative camera movements.
The first (optional) step after 3-D reconstruction is the selection of a contigu-
ous subsequence of camera poses, which accounts for error accumulation
during the reconstruction process. As before, an estimate of the relative
scale factor between the two reconstructions has to be computed. Since the
scale can be estimated together with the stereo parameters in the following,
a rough estimate is usually sufficient at this point. It may again be computed
heuristically; since a hand-eye calibration is done anyway, it is also possible
to estimate the scale in a theoretically founded way, i. e., based on extended
hand-eye equations. Before proceeding to the next step, an outlier detection
and removal based on LMedS can be performed optionally.

A very important component of the proposed calibration method is the
vector quantization based data selection step. This step makes the extended
hand-eye calibration using a continuously recorded image sequence with 25
frames per second possible in the first place. Without it, the errors in the
estimated stereo transformation would be considerably higher, especially for
the translatorial component. A benefit of this algorithm is that it can also
be applied in standard robot hand-eye calibration, i. e., the impact of that
method is considerably higher than that of a mere stereo calibration data
selection approach. The result of this step is a data set that is well-suited for
hand-eye calibration, mainly because it removes relative movements with
small rotation angles and selects those movements where the rotation axes
are different.

A variety of methods has been proposed, which differ from each other
in the dimensionality (2-D, 3-D, 4-D) of the vector quantization compared
to the degrees of freedom (two or three), and whether a fixed threshold, an
automatically computed one, or no threshold at all is used for incorporation
of the rotation angle. The methods using no threshold are based on 3-D and
4-D vector quantization using the axis/angle or quaternion representation
of rotations, respectively. They are a trade-off between the non-parallelism
criterion for the rotation axes and the fact that for movements with small
rotation angles the axis is not well-defined, while the former methods re-
move movements with small angles in a pre-processing step and use only
the differences in the rotation axes as a selection criterion.

The final step is hand-eye calibration using the previously selected relative
movements as input data. If the relative scale estimation step at the begin-
ning was sufficiently accurate, a standard hand-eye calibration algorithm can
be used at this point, which computes rotation and translation of the stereo
rig. Another option proposed in this work is to use an extended hand-eye
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calibration algorithm, which is capable of estimating rotation, translation,
and scale. For this purpose a linear formulation of the extended hand-eye
calibration problem has been introduced, which solves for rotation first, and
for translation and scale in a second step.

Additionally, the scale factor has been integrated into the dual quaternion
formulation of hand-eye calibration, resulting in non-linear equations. Based
on this, an objective function for non-linear optimization using dual quater-
nions has been given as well as an objective function based on a non-linear
criterion for standard hand-eye calibration that was extended in order to
incorporate scale.
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Chapter 5

Experiments

This chapter presents experimental results for the evaluation of the new
stereo self-calibration method described in Chapter 4. The main focus is
on the hand-eye based approach, whereas the ICP based method is evalu-
ated only briefly. One of the main contributions of this thesis is the selection
of well-suited data for hand-eye calibration, which is necessary in order to
obtain stable estimates for rotation and translation. Therefore, special focus
is set on the evaluation of the vector quantization based data selection as
described in Section 4.4.4.

The chapter starts with an introduction to the metrics used for residual
error computation in Section 5.1. Hand-Eye data selection (Section 5.2) was
evaluated separately from stereo self-calibration (Section 5.3), on syntheti-
cally generated as well as on real data. This section includes the application
of stereo self-calibration to the (extended) hand-eye calibration of a camera
and an optical tracking system used in endoscopic surgery without a cali-
bration pattern, which is mandatory for the standard calibration method.

After the stereo rig is calibrated, depth maps are computed using the ob-
tained camera parameters, which allow to render computer generated ob-
jects into real scenes. The resulting augmented reality images are shown in
Section 5.4.

The chapter concludes with a summary and a discussion of the advantages
and disadvantages of the new algorithms based on the experimental results.

5.1 Residual Error Metrics

For experimental evaluation error metrics for rotation and translation have
to be given that measure the accuracy of hand-eye calibration and stereo self-
calibration. Commonly, the error in translation is given as a relative error,
while for rotation an absolute error metric is used [And01, Dan99, Hor95].
In this work, absolute and relative errors will be given for both, rotation and
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translation. The absolute residual error for translation is given by

ǫtabs =
1
N

N

∑
i=1

‖t̂i − ti‖ , (5.1)

and the relative residual error by

ǫtrel =
1
N

N

∑
i=1

‖t̂i − ti‖
‖ti‖

, (5.2)

where N is the number of translation vectors used for error computation
(see below), ti is the true translation vector, and t̂i is the vector estimated by
hand-eye (or stereo) calibration.

Different metrics for errors in rotation are used in literature. While the
norm of the difference between two rotation matrices is given in [Hor95], this
work follows [And01, Dan99] and uses the norm of quaternion differences
instead for relative residual errors. The absolute rotation errors are either
given in degrees as defined in (5.8) below, or using quaternions as well. In
the latter case, the absolute rotational error is given by:

ǫRabs =
1
N

N

∑
i=1

‖q̂i − qi‖ . (5.3)

The norm difference is directly connected to the rotation angle as well as to
the angle between the two rotation axes:

‖q̂i − qi‖2 = 2 − 2(cos θ̂i cos θi + r̂T
i ri sin θ̂i sin θi) , (5.4)

where θ̂i, θi are the rotation angles and r̂i, ri the rotation axes corresponding
to the quaternions q̂i and qi, respectively.

For rotations about the same axis, but by different angles, this metric has
the property that it is directly connected to the residual rotation angle, as
(5.4) can be simplified to:

‖q̂i − qi‖ =

√

2 − 2 cos
θ̂i − θi

2
, (5.5)

Therefore, the maximum norm difference for residual angles ranging from
0◦ to 180◦ is

√
2.
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The relative error for rotations is given by:

ǫRrel =
1
N

N

∑
i=1

‖q̂i − qi‖
‖1 − qi‖

. (5.6)

For relative errors, one should keep in mind that these are not always well
defined, as there will be cases where the translation or rotation is extremely
small, or in the worst case zero for translation or identity for rotation.

The absolute residuals can be given in degrees based on the axis/angle
representation (cf. Sect. 2.2.1, page 20 f.) of the residual rotation matrix Rresi
as well, which is given by:

Rres i = R̂
T
i Ri . (5.7)

The absolute rotational residual error is then given by the angle θres i, which
can be computed from one of the complex Eigen-values of Rres i:

ǫ′Rabs =
1
N

N

∑
i=1

|θresi| . (5.8)

The advantage of using this metric instead of the quaternion based one is
simply that an absolute residual given in degrees makes it easier for the
reader to judge whether the error is high or low.

The metrics given above can be used in two ways: When ground truth data
is available the error between the estimated stereo (or hand-eye) parameters
and the ground truth transformation can be computed.

However, when calibrating real data, ground truth is unavailable. In this
case, the metrics given above are used for computing a prediction error,
which gives the residual between the predicted eye position computed from
hand data and the estimated hand-eye transformation, and the real (cali-
brated) eye pose. In order to give an overall residual error, a set of relative
movements (in this work 100) is selected randomly from the complete set of
all possible relative movements (cf. Sect. 4.4.2). Note that again it is of dis-
advantage to use relative movements between subsequent positions, because
the movements will usually be small, which results in large relative errors
and thus does not reflect the actual quality of the estimated hand-eye trans-
formation. The results shown in this chapter’s tables have been obtained by
iterating the above process 100 times and averaging the resulting residual
errors.
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To summarize: The residual errors in translation shown in the following
were computed using (5.1) and (5.2). For relative residual errors in rotation,
(5.6) was used. The absolute rotational errors in the graphs plotted in Sec-
tion 5.2 were computed using the quaternion based equation (5.3), while the
residuals contained in the tables of the Sections 5.2.4 and 5.3 show the aver-
age rotation angle in degrees, which was computed using (5.8). All results
shown in the tables are given with an accuracy of three valid digits.

5.2 HandEye Calibration Experiments

The focus of this section is mainly on the evaluation of the hand-eye data
selection methods based on vector quantization. In Section 5.2.1 the data
used for this purpose is described, followed by the experimental results. The
questions to be answered here are: How does the codebook size used for
vector quantization influence the calibration error (Sect. 5.2.2), how does the
pre-selection threshold on the rotation angle affect the result (Sect. 5.2.3), and
which one of the presented data selection methods performs best (Sect. 5.2.4).
Only a selection of all experiments is presented in this chapter. Additional
results can be found in Appendix A. All experiments of this section were
conducted on an AMD Athlon XP2600+ PC.

5.2.1 Description of Data Sets

Real Data Sets

Instead of a robot as in classic hand-eye calibration, an optical tracking sys-
tem that provides hand data is used here. This infrared optical tracking
system smARTtrack1 by Advanced Realtime GmbH (cf. Fig. 5.1) provides
pose data of a so-called target (the hand) that is fixed to an endoscope. It is
a typical optical tracking system consisting of two (or more) infrared cam-
eras and a target that is tracked. The target is built from markers that can
easily be identified in the images captured by the cameras. Spheres with a
retro-reflective surface are used. An active illumination with infrared light
simplifies the marker identification. The 3-D position of each visible marker
is calculated by the tracking system. The knowledge of the geometry of the
target then allows to calculate its pose.

A CCD camera is mounted rigidly on the endoscope, which is moved
manually. The objective of hand-eye calibration is to determine the un-
known transformation from the target-pose provided by the optical track-
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Figure 5.1: Left: Optical tracking system smARTtrack1 in the laboratory. Right:
smARTtrack1 in the operating room during an endoscopic surgery. Im-
ages by courtesy of F. Vogt [Vog06].

ing system to 3-D camera coordinates. This transformation is the basis for
the reconstruction of high-quality medical light-fields. More details on this
topic as well as on the optical tracking system and the target can be found
in [Vog06, Vog05, Vog04a].

The camera (eye) poses are computed using a calibration pattern and stan-
dard camera calibration techniques [Zha98a, Zha00].

Two real data sets acquired in this way have been evaluated. They are de-
noted by ART14 and ART26 in the following. They differ mainly in the num-
ber of images contained in each sequence (270 for ART14, 190 for ART26),
and in the type of movement that was done while the images were recorded:
As can be seen in the plots of normalized rotation axes after pre-selection
in Figure 5.2, the rotational movement in ART14 is much smaller than in
ART26, which makes the latter sequence much better suited for hand-eye
calibration than the first one. This can be observed in the amount of error
after calibration as well.

Additionally, data sets containing a small number of frames (about 20) at
manually selected distinct positions were compared to the results obtained
from ART14 and ART26 that use continuously recorded images in Section
5.2.4. As these data sets are only used in that section, further details will be
given there. All ART data sets used in this work were provided by F. Vogt,
and the same notation as in [Vog06] is used here.
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Figure 5.2: Comparison of normalized rotation axes contained in the data sets after
pre-selection: (a) ART14, (b) ART26, (c) StCamS, (d) SantaS. The variation in
the rotation axes is much larger for ART26 and StCamS compared to ART14
and SantaS, making the former two better suited for hand-eye calibration.

Synthetic Data Sets

In addition to real data, synthetically generated data sets were used so that
exact ground truth is readily available in order to evaluate the performance
and accuracy of the proposed algorithms. In order to obtain results that
reflect real data well, the synthetic data are based on either camera poses ob-
tained by 3-D reconstruction from real image sequences, or poses obtained
from the optical tracking system used in endoscopy, which has been de-
scribed above. This way, data are available that actually represent a continu-
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ous camera movement as can be observed in reality. The steps for generating
a synthetic data set are as follows:

1. Take a sequence of camera positions and orientations obtained by a 3-D
reconstruction of an image sequence recorded using single hand-held
camera, or continuously recorded data obtained from other sources,
e. g., an optical tracking system. This sequence is used as camera move-
ments of the left camera (or hand).

2. Apply a rigid transformation as defined by (2.14) to all poses in order
to obtain corresponding movements of the right camera (or eye).

3. Add Gaussian noise to the poses of the right camera movements.

Adding noise to the camera poses is done as follows: If tr i is the position of
the i-th camera of the right sequence, the noisy position trni is computed by
adding a random vector trandi to the exact position:

trni = tr i + trandi . (5.9)

For rotation, the method of generating noisy data is slightly different, be-
cause the constraints on rotation matrices (cf. Sect. 2.2.1, eq. (2.23)) have to
be taken into account. The noisy rotation matrix is computed by:

Rrni = Rr iRrandi , (5.10)

where Rrandi is a rotation matrix defined by three randomly chosen Cardan
angles, which are combined using (2.24). In both cases the Gaussian density
used is zero-mean, but has different variances for rotation and translation.

The synthetic data used for evaluation are based on the following real data
sets (i. e., these poses were used as hand data):

ARTS consists of 190 poses, obtained from an optical tracking system used
in endoscopic surgery. These are the hand poses of the real data set
ART26.

SantaS consists of 40 poses, obtained from a 3-D reconstruction using a
structure from motion algorithm. The original images were recorded
using a fixed camera and a turntable (see Fig. 5.3).

StCamS consists of 400 poses, obtained from a 3-D reconstruction using a
structure from motion algorithm. The original images were recorded
using a hand-held camera (see Fig. 5.4).
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Figure 5.3: Three images of the SantaS sequence, consisting of a total of 40 frames.

Figure 5.4: Five images of the StCamS sequence, consisting of a total of 400 frames.

For all three sequences two different kinds of corresponding eye move-
ments were generated. The first one uses the identity matrix for rotation,
and a translation1 in x-direction only and is the same for all three sequences,
i. e.:

RHE = I3×3, tHE =
(
30 0 0

)T . (5.11)

The corresponding sequences are denoted by ARTSid, SantaSid, and StCamSid.
The second kind is based on a hand-eye transformation that was obtained
from a real calibration, and it is different for each sequence. For ARTS the fol-
lowing transformation was applied, which is representative for the hand-eye
transformation from the target of the optical tracking system to the endo-
scope tip:

RHE =




0.9992 −0.03447 −0.01838
−0.03363 −0.5195 −0.8538
0.01989 0.8538 −0.5203


 , tHE =



−98.95
200.9
−334.1


 . (5.12)

The transformation used for StCamS has been obtained by calibration of
the stereo camera system used for acquiring the images used as a basis for

1 all translations given in the following are in mm
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Sequence ARTSid SantaSid StCamSid ARTSre SantaSre StCamSre

Std. Dev. t 1.5 1.5 1.5 0.7 0.7 1.5
Std. Dev. R 0.005 0.005 0.005 0.005 0.005 0.005

Table 5.1: Standard deviations used for generating the synthetic sequences.

3-D reconstruction. Therefore, it is typical for a stereo rig. The parameters
used are:

RHE =




0.9844 0.002391 0.1760
0.002230 0.9997 −0.02605
−0.1760 0.02604 0.9840


 , tHE =



−113.3
−11.61
−6.397


 . (5.13)

The sequences generated by applying these transformations are denoted by
ARTSre, SantaSre, and StCamSre.

After the synthetic hand-eye sequences have been generated this way, zero-
mean Gaussian noise was added to the poses of the eye movements using
(5.9) and (5.10). The standard deviations of the noise are summarized in
Table 5.1. They were chosen such that the resulting residual errors after
hand-eye calibration are approximately in the same order of magnitude as
observed when real data are used. This way it is possible to come to conclu-
sions about the error with respect to ground truth data from the prediction
error metric as described in Section 5.1.

5.2.2 Codebook Size

The first type of experiments for hand-eye calibration analyzes the influence
of the codebook size used for vector quantization, i. e., the hand-eye calibra-
tion residual errors were evaluated using different codebook sizes, while all
other parameters were left constant. The experiments were performed using
the vector quantization algorithm on normalized rotation axes in 3-D (Sect.
4.4.4, page 103 ff.) and an automatic threshold computation for the removal
of movements having small rotation angles (Sect. 4.4.4, page 106 ff.). Table
5.2 gives an overview over the results of automatic threshold computation.
It shows the number of frames in the sequence (# Frames), the total number
of relative movements (# relative movements), the number of relative move-
ments left after pre-selection according to the rotation angle (# movements
after pre-sel.), the minimum and maximum rotation angles contained in the
sequence (min./max. angle in seq.), and the minimum and maximum angles
after pre-selection (min./max. angle after pre-sel.).
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Sequence ARTS SantaS StCamS ART14 ART26
# Frames 190 40 400 270 190
# relative movements 17955 780 79800 36315 17955
# movements after pre-sel. 14336 623 37915 21788 14343
min. angle in seq. 0.233◦ 5.95◦ 0.154◦ 0.00000171◦ 0.0388◦

max. angle in seq. 81.7◦ 180◦ 47.3◦ 80.3◦ 80.9◦

min. angle after pre-sel. 12.9◦ 21.1◦ 17.3◦ 16.3◦ 12.9◦

max. angle after pre-sel. 81.7◦ 161◦ 47.3◦ 80.3◦ 80.9◦

Table 5.2: Data selection information for the different sequences.

Only the results for some selected data sets are presented in the follow-
ing. The remaining ones can be found in Appendix A.1, page 189 ff. Relative
errors with respect to ground truth are not shown for data sets where the
identity rotation matrix was used, because a relative error cannot be com-
puted in these cases. This is also why the relative errors shown in the plots
should always be regarded with caution, as they will be quite high in cases
where the translation is nearly zero and the rotation near to identity (cf. eq.
(5.2) and (5.6)).

The results for the sequence ARTSre, where the hand-eye transformation
given in (5.12) was used, are shown in Figure 5.5 for the prediction error
metric defined in Section 5.1. Relative and absolute errors with respect to
ground truth are shown in Figure 5.6.

Residual errors for StCamSre (using the stereo parameters shown in (5.13))
are depicted in Figures 5.7 and 5.8. Since the number of frames contained
in this sequence was approximately twice as high as in ARTS, the codebook
size was evaluated for up to 20000 movements, which is roughly half of the
relative movements left after pre-selection.

In addition to the synthetically generated sequences, the two real data sets
ART14 and ART26 were evaluated; no ground truth was available in these
cases. The results for ART14 are shown in Figure 5.9, the results for ART26
in Figure 5.10.

The following conclusions can be drawn from the experiments of this sec-
tion: Firstly, the question is to be answered whether a certain size of the
codebook can be recommended in general. It can be observed that the fluc-
tuations for small codebook sizes are relatively high, while the plotted func-
tions get usually smoother for increasing codebook size. Taking into account
the ground truth residuals for the synthetically generated sequences, the
residuals can be considered to be relatively stable for the following values
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Figure 5.5: Sequence ARTSre using rotation and translation based on real data: Mean
relative and absolute errors in rotation and translation dependent on the
codebook size used for vector quantization.

for the codebook size (note that the plots not shown in this section can be
found in appendix A.1, page 189 ff.): 2000 (ARTS), 100 to 120 (SantaS), 6000
(StCamS). This corresponds to 11% (ARTS), 13% to 15% (SantaS), and 7.5%
(StCamS) of the total number of relative movements contained in the se-
quence. Compared to the other data sets, SantaS consists of a small number
of frames only; therefore, it can be recommended to use about 10% of the
total number of relative movements for large sequences, and about 15% for
smaller ones. If there is no hard constraint on computation time, the code-
book size is not a critical factor, however, because hand-eye calibration can
be done for as many codebook sizes as desired, and the best result can be
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Figure 5.6: Ground truth residuals for sequence ARTSre using rotation and translation
based on real data: Mean relative and absolute errors in rotation and trans-
lation with respect to ground truth dependent on the codebook size used
for vector quantization.

chosen at the end.
It can also be observed that there is a high correlation between the pre-

diction error metric introduced in Section 5.1 and the residual errors with
respect to the ground truth. Note that this is true for the overall shape of the
function, but not necessarily for the actual magnitude of the residual errors,
i. e., if the residual of the prediction error metric is high, the ground truth
error is also high and vice versa. Additionally, if the rotation error is high,
the translation error will be high also, and vice versa.
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Figure 5.7: Sequence StCamSre using rotation and translation based on real data: Mean
relative and absolute errors in rotation and translation dependent on the
codebook size used for vector quantization.
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Figure 5.8: Ground truth residuals for sequence StCamSre using rotation and transla-
tion based on real data: Mean relative and absolute errors in rotation and
translation with respect to ground truth dependent on the codebook size
used for vector quantization.
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Figure 5.9: Sequence ART14 using real data obtained from an optical tracking system
and camera calibration. Mean relative and absolute errors in rotation and
translation dependent on the codebook size used for vector quantization
are shown.
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Figure 5.10: Sequence ART26 using real data obtained from an optical tracking system
and camera calibration. Mean relative and absolute errors in rotation and
translation dependent on the codebook size used for vector quantization
are shown.
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5.2.3 Rotation Angle Threshold

An additional parameter that influences the hand-eye calibration results is
the pre-selection of data with respect to the rotation angles contained in the
relative movements, which is used in most of the vector quantization based
data selection methods presented in Section 4.4.4. Instead of fixed rotation
angle thresholds the automatic threshold computation algorithm shown in
the structure chart in Figure 4.10, page 109, has been used for evaluation.
Again, only the results for a few data sets are presented in the following
(the same as in the previous section). The remaining ones can be found
in Appendix A.2, page 198 ff. All experiments were performed for fixed
codebook sizes (but naturally different ones for each data set), while the
percentage of relative movements that are removed by automatic threshold
computation was variable. Therefore, the plots depicted in the following
show residual errors dependent on the fraction of data left after pre-selection
according to the rotation angle, i. e., 1 means 100% of the data were used
(which is equivalent to no pre-selection at all), while 0 would mean that no
data was left after pre-selection. As the latter case is pointless, the evaluation
was only done up to a fraction where enough data was left to allow for hand-
eye calibration. Depending on the data set, the evaluation was stopped at
5% (ART14, StCamS), 10% (ARTS, ART26) or 20% (SantaS).

The results for the sequence ARTSre are shown in Figure 5.11, the corre-
sponding ground truth residuals are shown in Figure 5.12. A codebook size
of 1100 was used in this experiment.

It can be observed in Figure 5.11 that the errors are high mainly for very
small and very high fractions, which is what would be expected for se-
quences containing a certain number of relative movements with small ro-
tations: Exactly these movements are eliminated during pre-selection at the
beginning, making the remaining data better suited for calibration. High
errors for small fractions is also what could have been expected, because
from a certain point on only a small number of data are left, which makes
hand-eye calibration more sensitive to erroneous movements.

The residual errors for StCamSre are depicted in Figures 5.13 and 5.14. The
codebook size used was 2000. In contrast to the ARTSre sequence it can be
observed that the peak errors are not located mainly at the left and right sides
of the plots, but fluctuate highly over the complete range. When looking
at the ground truth residuals for translation, it can be seen that the error
decreases the more data are removed from the set. This effect is due to the
camera movement used as hand and eye data, which contains no movements
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Figure 5.11: Sequence ARTSre using rotation and translation based on real data: Mean
relative and absolute errors in rotation and translation dependent on the
fraction of relative movements left after pre-selection with respect to the
rotation angle. Codebook size: 1100.

having very high rotation angles at all (cf. Table 5.2). The maximum angle
contained in the ARTS sequence is nearly twice as high as in the StCamS data
set, making the latter one much less suited for hand-eye calibration than the
ARTS sequence. This has of course also an influence on the absolute value
of the residuals, which are much higher for the StCamS data set.

In addition to the synthetically generated sequences the two real data sets
ART14 (using a codebook size of 600) and ART26 (using a codebook size
of 1100) were evaluated; no ground truth was available in these cases. The
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Figure 5.12: Ground truth residuals for sequence ARTSre using rotation and transla-
tion based on real data: Mean relative and absolute errors in rotation and
translation with respect to ground truth dependent on the fraction of rel-
ative movements left after pre-selection with respect to the rotation angle.
Codebook size: 1100.

results for ART14 are shown in Figure 5.15, the results for ART26 in Figure
5.16.

Similarly to the synthetically generated data sets large peaks can be ob-
served for small fractions left after pre-selection, which is again due to the
fact that from a certain point on there are not enough data left for an accurate
hand-eye calibration. Note that as before the residuals for the ART14 data
set are higher than for the ART26 sequence, which is a hint that the latter

141



Chapter 5 Experiments

0 0.2 0.4 0.6 0.8 1
5.6

5.8

6

6.2

6.4

6.6

6.8

7

Fraction left after pre-selection

E
rr

or

(a) Relative rotation error (in %)

0 0.2 0.4 0.6 0.8 1
17

17.05

17.1

17.15

17.2

17.25

Fraction left after pre-selection

E
rr

or

(b) Relative translation error (in %)

0 0.2 0.4 0.6 0.8 1
5

5.5

6

6.5

7

7.5

8
x 10

−3

Fraction left after pre-selection

E
rr

or

(c) Absolute rotation error

0 0.2 0.4 0.6 0.8 1
3.34

3.36

3.38

3.4

3.42

3.44

Fraction left after pre-selection

E
rr

or

(d) Absolute translation error

Figure 5.13: Sequence StCamSre using rotation and translation based on real data:
Mean relative and absolute errors in rotation and translation dependent
on the fraction of relative movements left after pre-selection with respect
to the rotation angle. Codebook size: 2000.

one contains more movements having different rotation axes, and is there-
fore much better suited for hand-eye calibration in general. A peak cannot
be observed when 100% of the data are used. It should also be noted that
the scale of the plots is different for the synthetic data, which makes them
seem to fluctuate more compared to the real data sets. This is an effect of the
much higher peak at the lower end of the range.

In general, a value of 20% to 40% for the data to be left after pre-selection
with respect to the rotation angle is a relatively good choice for automatic
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Figure 5.14: Ground truth residuals for sequence StCamSre using rotation and trans-
lation based on real data: Mean relative and absolute errors in rotation
and translation with respect to ground truth dependent on the fraction
of relative movements left after pre-selection with respect to the rotation
angle. Codebook size: 2000.

threshold computation in most cases. If possible, smaller values are prefer-
able to higher ones, because the computation time of vector quantization
depends on the size of the data sets after pre-selection. As for the codebook
size, it is a good advice to perform a hand-eye calibration for at least a small
number of different values for threshold computation, which is completely
unproblematic if there are no real-time constraints.
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Figure 5.15: Sequence ART14 using real data obtained from an optical tracking system
and camera calibration. Mean relative and absolute errors in rotation and
translation dependent on the fraction of relative movements left after pre-
selection with respect to the rotation angle are shown. Codebook size:
600.
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Figure 5.16: Sequence ART26 using real data obtained from an optical tracking system
and camera calibration. Mean relative and absolute errors in rotation and
translation dependent on the fraction of relative movements left after pre-
selection with respect to the rotation angle are shown. Codebook size:
1100.
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5.2.4 Comparison of Data Selection Methods

In this section the different vector quantization based data selection methods
proposed in Section 4.4.4 will be evaluated. As has been implied that data
selection is essential if camera movements are used that were reconstructed
from a continuous video stream, the results when using relative movements
between consecutive frames (i. e., no data selection) are shown as well. As
before, only selected results are presented; the remaining ones can be found
in Appendix A.3, page 206 ff.

The following methods have been compared:

consecutive movements: Usage of relative movements between consecutive
frames. No data selection is done.

all combin.: Usage of all possible combinations of frames, i. e., all available
relative movements, but no explicit data selection step afterwards. This
method corresponds to the pre-processing step proposed in Section
4.4.2, page 100. The main purpose of these experiments is to determine
whether pre-processing only would yield sufficiently accurate results,
as well as to show the influence of the additional vector quantization
used in the remaining experiments.

VQ norm.: These are the results for the vector quantization based data se-
lection approach using normalized 3-D rotation axes with two DOF
presented in Section 4.4.4, page 103 ff. (structure chart in Figure 4.5,
page 104).

VQ polar: These are the results for the 2-D vector quantization method based
on the polar coordinate representation of the normalized rotation axes
presented in Section 4.4.4, page 106 ff. (structure chart in Figure 4.8,
page 107).

VQ a/a: These are the results for the 3-D vector quantization method with
three DOF based on the axis/angle representation of rotation axes,
where the rotation angle is encoded as the norm of the axis. This
method has been presented in Section 4.4.4, page 111 ff. (structure chart
in Figure 4.11, page 112).

VQ quat.: These are the results for the 4-D vector quantization method with
three DOF based on the quaternion representation of rotations as intro-
duced in Section 4.4.4, page 112 f. (structure chart in Figure 4.13, page
114).
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5.2 Hand-Eye Calibration Experiments

With the exception of the ‘consecutive movements’ experiments, where this
is not applicable, two different rotation angle pre-selection strategies have
been used for each experiment:

fixed thresh.: The threshold used for removing the relative movements with
small rotation angles was the same for all experiments and has been
selected manually as θt = 15◦ .

aut. thresh.: Two rotation angle thresholds have been computed automati-
cally using the method presented in Section 4.4.4, page 106 ff. (structure
chart in Figure 4.10, page 109).

The residual errors are shown in the tables; for synthetically generated data,
the ground truth residuals are given, too.

Note that for the methods ‘VQ a/a’ and ‘VQ quat’ no pre-selection of
the data with respect to small rotation angles is necessary as the angle is
treated implicitly during vector quantization. The residuals for that case are
denoted by ‘no thresh’. However, the removal of relative movements with
small rotation angles can nevertheless be done, and the results using fixed
and automatically computed thresholds are also shown in the tables.

For the ‘all combin’ experiments the row denoted by ‘no pre-sel’ gives
the results when all available relative movements are used, but where no
pre-selection with respect to the rotation angle is done.

The tables show absolute and relative residual errors for rotation and
translation. In the case of translation, the residuals were computed using
(5.1) for absolute errors and (5.2) for relative ones. The relative rotation error
was computed based on quaternions using (5.6). In order to get an impres-
sion of the order of magnitude of the absolute rotational error, it has been
decided to show these in degrees rather than to give the absolute quater-
nionic residual. For this purpose the absolute residuals have been computed
as the rotation angle of the residual rotation matrix in axis/angle representa-
tion. This value is highly correlated to the quaternionic residual. Note, how-
ever, that due to the different rotation representations, there will be slight
deviations in some cases when absolute and relative residuals from different
experiments are compared.

The calibration results including ground truth residual errors for the syn-
thetic data sets ARTSre and StCamSre can be found in Tables 5.3 and 5.4. The
Tables 5.5 and 5.6 show the results for the real data sets ART14 and ART26,
respectively.
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Method Translation Rotation Time
consecutive movements 64.9 mm 334% 7.26◦ 27.3% 39.9 msec

ground truth residual 262 mm 65.0% 18.4◦ 15.9% –
all combin., no pre-sel. 1.63 mm 8.97% 0.654◦ 4.60% 3980 msec

ground truth residual 1.20 mm 0.299% 0.204◦ 0.176% –
all combin., fixed thresh. 1.61 mm 8.85% 0.654◦ 4.60% 3260 msec

ground truth residual 0.746 mm 0.185% 0.203◦ 0.175% –
all combin., aut. thresh. 1.61 mm 8.87% 0.654◦ 4.60% 4930 msec

ground truth residual 0.827 mm 0.206% 0.200◦ 0.173% –
VQ norm., fixed thresh. 1.61 mm 8.82% 0.654◦ 4.59% 12400 msec

ground truth residual 0.964 mm 0.240% 0.154◦ 0.133% –
VQ norm., aut. thresh. 1.61 mm 8.86% 0.654◦ 4.59% 14700 msec

ground truth residual 1.17 mm 0.291% 0.185◦ 0.159% –
VQ polar, fixed thresh. 1.60 mm 8.83% 0.654◦ 4.59% 10400 msec

ground truth residual 0.441 mm 0.110% 0.161◦ 0.139% –
VQ polar, aut. thresh. 1.62 mm 8.94% 0.655◦ 4.60% 12700 msec

ground truth residual 0.928 mm 0.231% 0.196◦ 0.169% –
VQ a/a, no thresh. 1.63 mm 9.00% 0.655◦ 4.60% 14500 msec

ground truth residual 1.15 mm 0.286% 0.236◦ 0.204% –
VQ a/a, fixed thresh. 1.69 mm 9.32% 0.659◦ 4.61% 11300 msec

ground truth residual 1.75 mm 0.434% 0.312◦ 0.269% –
VQ a/a, aut. thresh. 1.60 mm 8.84% 0.655◦ 4.60% 13200 msec

ground truth residual 0.414 mm 0.103% 0.127◦ 0.110% –
VQ quat., no thresh. 1.67 mm 9.20% 0.659◦ 4.61% 16000 msec

ground truth residual 1.71 mm 0.424% 0.283◦ 0.244% –
VQ quat., fixed thresh. 1.67 mm 9.20% 0.656◦ 4.60% 12900 msec

ground truth residual 1.40 mm 0.348% 0.272◦ 0.235% –
VQ quat., aut. thresh. 1.68 mm 9.29% 0.658◦ 4.61% 15000 msec

ground truth residual 1.39 mm 0.347% 0.249◦ 0.215% –

Table 5.3: Comparison of different data selection methods, sequence ARTSre.

As predicted, using consecutive movements is always the worst case, with
residual errors that render the calibration results totally useless in most cases.
In half of the experiments the vector quantization based data selection us-
ing normalized rotation axes and a pre-selection with respect to the rotation
angle with an automatically computed threshold (‘VQ norm., aut. thresh.’)
gave the best results, followed by the vector quantization method using polar
coordinates with fixed (‘VQ polar, fixed thresh.’) and automatically com-
puted (‘VQ polar, aut. thresh.’) thresholds, respectively. The results using
rotation representations where the rotation angle is implicitly coded, like
quaternions and axis/angle representation, did not perform as well as the
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Method Translation Rotation Time
consecutive movements 442 mm 1540% 20.5◦ 111% 80.0 msec

ground truth residual 1680 mm 1470% 95.1◦ 902% –
all combin., no pre-sel. 3.40 mm 17.1% 0.827◦ 6.29% 18500 msec

ground truth residual 2.48 mm 2.17% 2.10◦ 20.4% –
all combin., fixed thresh. 3.38 mm 17.1% 0.775◦ 6.07% 13700 msec

ground truth residual 1.94 mm 1.70% 1.87◦ 18.2% –
all combin., aut. thresh. 3.37 mm 17.1% 0.767◦ 6.05% 16200 msec

ground truth residual 1.62 mm 1.42% 1.91◦ 18.7% –
VQ norm., fixed thresh. 3.37 mm 17.1% 0.719◦ 5.81% 71700 msec

ground truth residual 2.01 mm 1.76% 1.42◦ 13.9% –
VQ norm., aut. thresh. 3.38 mm 17.1% 0.784◦ 6.14% 30200 msec

ground truth residual 1.34 mm 1.18% 2.08◦ 20.3% –
VQ polar, fixed thresh. 3.36 mm 17.0% 0.675◦ 5.59% 62100 msec

ground truth residual 1.66 mm 1.46% 0.592◦ 5.78% –
VQ polar, aut. thresh. 3.37 mm 17.0% 0.747◦ 5.94% 27100 msec

ground truth residual 1.68 mm 1.48% 1.65◦ 16.1% –
VQ a/a, no thresh. 3.37 mm 17.1% 0.687◦ 5.65% 118000 msec

ground truth residual 1.99 mm 1.75% 0.865◦ 8.45% –
VQ a/a, fixed thresh. 3.36 mm 17.0% 0.668◦ 5.55% 70000 msec

ground truth residual 1.44 mm 1.26% 0.368◦ 3.59% –
VQ a/a, aut. thresh. 3.37 mm 17.0% 0.718◦ 5.79% 31200 msec

ground truth residual 1.58 mm 1.38% 1.25◦ 12.2% –
VQ quat., no thresh. 3.39 mm 17.1% 0.767◦ 6.00% 146000 msec

ground truth residual 2.27 mm 1.99% 1.57◦ 15.3% –
VQ quat., fixed thresh. 3.37 mm 17.1% 0.682◦ 5.63% 78500 msec

ground truth residual 1.96 mm 1.72% 0.836◦ 8.16% –
VQ quat., aut. thresh. 3.37 mm 17.1% 0.735◦ 5.89% 31400 msec

ground truth residual 1.70 mm 1.49% 1.57◦ 15.3% –

Table 5.4: Comparison of different data selection methods, sequence StCamSre.

others in most cases, even when rotations with small angles were removed
from the data set. It can also be observed that the data selection method
used has virtually no influence on the residual errors in rotation. Taking
into account Table 2.4 (page 47), this result is as expected, as the rotation
matrix can always be computed, even for movements which are not general
enough, while this is not true for translation. The above results are valid par-
ticularly for the real hand-eye calibration data ART14 (Table 5.5) and ART26
(Table 5.6). For both data sets the method ‘VQ norm., aut. thresh.’ proved
to yield the best results, which are considerably better than the ones using
axis/angle or quaternions.
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Method Translation Rotation Time
consecutive movements 19.9 mm 49.8% 2.89◦ 14.7% 153 msec
all combin., no pre-sel. 6.25 mm 17.0% 1.58◦ 10.4% 7800 msec
all combin., fixed thresh. 5.73 mm 15.9% 1.61◦ 10.5% 6010 msec
all combin., aut. thresh. 5.87 mm 16.2% 1.59◦ 10.4% 10000 msec
VQ norm., fixed thresh. 5.92 mm 16.2% 1.60◦ 10.5% 14900 msec
VQ norm., aut. thresh. 4.74 mm 13.6% 1.32◦ 9.58% 21400 msec
VQ polar, fixed thresh. 5.06 mm 14.3% 1.38◦ 9.72% 14100 msec
VQ polar, aut. thresh. 5.01 mm 14.2% 1.33◦ 9.59% 21200 msec
VQ a/a, no thresh. 5.96 mm 16.3% 1.55◦ 10.3% 20900 msec
VQ a/a, fixed thresh. 5.58 mm 15.5% 1.55◦ 10.3% 15400 msec
VQ a/a, aut. thresh. 5.45 mm 15.2% 1.48◦ 10.1% 20900 msec
VQ quat., no thresh. 5.84 mm 16.0% 1.54◦ 10.3% 24200 msec
VQ quat., fixed thresh. 5.50 mm 15.3% 1.56◦ 10.4% 15100 msec
VQ quat., aut. thresh. 5.37 mm 15.0% 1.45◦ 10.0% 23300 msec

Table 5.5: Comparison of different data selection methods, sequence ART14.

Method Translation Rotation Time
consecutive movements 4.98 mm 23.9% 0.854◦ 4.26% 42.7 msec
all combin., no pre-sel. 1.65 mm 8.82% 0.582◦ 3.51% 3950 msec
all combin., fixed thresh. 1.77 mm 9.43% 0.603◦ 3.57% 3370 msec
all combin., aut. thresh. 1.79 mm 9.50% 0.605◦ 3.57% 4910 msec
VQ norm., fixed thresh. 1.49 mm 7.69% 0.544◦ 3.41% 11600 msec
VQ norm., aut. thresh. 1.48 mm 7.66% 0.547◦ 3.42% 14700 msec
VQ polar, fixed thresh. 1.70 mm 8.99% 0.591◦ 3.53% 11500 msec
VQ polar, aut. thresh. 2.04 mm 10.7% 0.648◦ 3.69% 13200 msec
VQ a/a, no thresh. 1.83 mm 9.70% 0.616◦ 3.60% 14900 msec
VQ a/a, fixed thresh. 1.87 mm 9.90% 0.609◦ 3.58% 11700 msec
VQ a/a, aut. thresh. 2.49 mm 12.8% 0.707◦ 3.86% 13200 msec
VQ quat., no thresh. 1.76 mm 9.33% 0.601◦ 3.56% 15800 msec
VQ quat., fixed thresh. 1.87 mm 9.91% 0.609◦ 3.58% 12600 msec
VQ quat., aut. thresh. 1.97 mm 10.4% 0.628◦ 3.63% 14600 msec

Table 5.6: Comparison of different data selection methods, sequence ART26.

In order to get an idea of the quality of the hand-eye calibration obtained
from continuously recorded image sequences, the results were compared to
the accuracy of performing hand-eye calibration in the classic way, i. e., using
a small number of images recorded at manually selected distinct positions
that are well-suited for hand-eye calibration. For this purpose the linear dual
quaternion algorithm has been used, without an additional data selection, as
this is the way hand-eye calibration is usually done. In addition to ART14
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Data Set Translation Rotation
ART11 3.84 mm 11.3% 1.05◦ 8.88%
ART14 4.74 mm 13.6% 1.32◦ 9.58%
ART20 2.31 mm 10.2% 0.556◦ 3.46%
ART21 1.65 mm 8.02% 0.556◦ 3.47%
ART26 1.48 mm 7.66% 0.547◦ 3.42%
ART38 1.85 mm 8.41% 0.892◦ 4.34%
ART48 2.55 mm 11.4% 1.02◦ 4.52%
ART50 2.08 mm 5.49% 0.672◦ 3.21%
ART52 1.58 mm 4.68% 0.601◦ 3.06%
ART53 1.67 mm 4.87% 0.555◦ 2.93%

Table 5.7: Comparison of the continuously recorded sequences ART14, ART26, ART48,
and ART53 to data sets recorded at manually selected positions with a small
number of frames. For reasons of comparability, the residuals were com-
puted on the sequences having a large number of frames. It can be observed
that a manual selection of positions while recording images is not always
superior to the conveniently recorded continuous image sequences.

and ART26, another two sequences consisting of continuously recorded im-
ages, namely ART48 and ART53 (200 frames each), were calibrated using the
vector quantization data selection based on normalized rotation axes with
automatic threshold computation (‘VQ norm., aut. thresh.’). The camera-
endoscope configuration, i. e., the hand-eye transformation, has been differ-
ent for all the continuously recorded data sets as the camera was mounted
on the endoscope anew every time. For each such sequence, a data set (in
some cases two) with manually selected positions has been acquired using
the same camera-endoscope configuration. These sequences are denoted by
ART11 (21 frames, corresponding to the configuration of ART14), ART20 (18
frames) and ART21 (14 frames), both corresponding to ART26, ART38 (20
frames, corresponding to ART48), and ART50 (18 frames) and ART52 (20
frames), both corresponding to ART53.

Table 5.7 shows the calibration results for those sequences. In order to
make the figures comparable in the first place, the residual error has to be
computed on the same data set. The sequences containing the large number
of frames (i. e., ART14, ART26, ART48, and ART53) were chosen for residual
computation, as this yields more stable results than an evaluation on one
of the smaller data sets. This means that the figures for ART11 shown in
the table were computed using ART11 for calibration, while the residuals
have been computed on ART14. Similarly, the residuals shown for ART20
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and ART21 were computed on ART26, etc. Note that an evaluation on any
one of the other sequences of course yields different quantitative results, but
does not have much influence on the ranking. A similar table where the
evaluation was done on the manually recorded sequences can be found in
Appendix A.3 in Table A.5 (page 210).

When comparing ART11 to ART14, it can be observed that the calibration
result for ART11 is better. The reason is that the quality of the manually se-
lected positions is higher (in terms of different rotation axes) than that of the
data sets containing continuous frames, i. e., the lower accuracy for ART14
is due to the lower quality input data rather than the algorithms used for
calibration. However, a comparison of ART20 and ART21 on one hand to
ART26 on the other, shows that the manual selection of camera positions
while recording data is not always better than the conveniently recorded
continuous sequence. Particularly the translation estimate of ART26 is con-
siderably better than that of ART20. For ART38 and ART48 the result for
the manually selected positions (ART38) is much better than that of the con-
tinuously recorded ART48. The situation for the last set (ART50, ART52,
and ART53) shows again that a continuously recorded image sequence can
lead to better results than a manual selection of the positions for recording
(ART50 vs. ART53).

One fact is clear given the above comparison: Much depends on the data
set itself and the camera positions contained in it. When there is not suffi-
cient information available, the calibration results may not be good as well.
Of course, this may be more often the case for continuously recorded im-
age sequences, as the user usually does not record the camera positions as
careful as in the case where images are acquired at distinct positions.

Even though the data selection methods have been developed for con-
tinuously recorded image sequences, where they are essential, the question
remains whether applying them to the data sets containing only a small
number of frames at manually selected positions would lead to even better
calibration results. As will be shown in the following, the answer is a clear
yes. A comparison between the classic method using consecutive frames and
the method using the data selection proposed in this work is presented in
Table 5.8, which shows the residuals as given by the hand-eye calibration al-
gorithm, i. e., the information available to a user (calibration and evaluation
on the same sequence). The data selection method chosen for this com-
parison was vector quantization of normalized rotation axes with automatic
threshold computation (‘VQ norm., aut. thresh.’). In all cases, the calibra-
tion with data selection was superior to the one using consecutive frames as
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Consecutive Frames Data Selection
Data Set Translation Rotation Translation Rotation
ART11 3.99 mm 13.5% 0.993◦ 3.08% 3.13 mm 11.5% 0.786◦ 2.66%
ART20 3.21 mm 8.26% 0.641◦ 2.07% 2.67 mm 7.27% 0.521◦ 1.76%
ART21 2.05 mm 4.92% 0.420◦ 1.08% 1.83 mm 4.32% 0.325◦ 0.865%
ART38 1.30 mm 4.06% 0.273◦ 0.712% 1.14 mm 3.62% 0.217◦ 0.613%
ART50 1.42 mm 5.28% 0.388◦ 1.09% 1.39 mm 5.23% 0.295◦ 0.875%
ART52 1.15 mm 3.11% 0.302◦ 0.937% 1.14 mm 2.97% 0.282◦ 0.892%

Table 5.8: Comparison between the classic hand-eye calibration method using consec-
utive frames (left) and the method using the data selection proposed in this
work (right). Clearly, an additional data selection improves the calibration
accuracy on these data sets, which contain only a small number of frames
recorded at manually selected distinct camera positions.

is usually done for hand-eye calibration. This is valid for rotation as well as
translation. Table A.6 (page 210) shows the results when the evaluation is
done independently on a separate data set. Even though a few exceptions
can be found in that table, the basic conclusion drawn from the above results
is still valid.

The results of this section’s experiments can be summarized as follows:
The most benefit from data selection can already be gained by using all
combinations of relative movements instead of consecutive ones. In combi-
nation with a pre-selection with respect to the rotation angle the results are
on average almost as good as for the methods where an additional vector
quantization is used, in some cases even slightly better. Based on these re-
sults it is recommended to use the vector quantization based data selection
using normalized rotation axes, including the pre-selection step, which re-
moves movements with small rotations based on an automatically computed
threshold. The data selection methods proved to be superior to the standard
approach to hand-eye calibration, where consecutive frames recorded at dis-
tinct positions are used. The best results can be obtained by combining this
manual selection of recording positions with the automatic data selection
proposed in this work.

5.3 Stereo SelfCalibration Experiments

This section presents results for stereo self-calibration based on the methods
described in Chapter 4. The data-sets used are described in Section 5.3.1.
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Section 5.3.2 shows the results using different self-calibration methods. As
already mentioned the methods for stereo self-calibration can also be used
for an extended hand-eye calibration based on structure-from-motion instead
of a calibration pattern. Results are presented in Section 5.3.3.

5.3.1 Description of Stereo Data Sets

The image sequences for the experiments on stereo self-calibration were ob-
tained using a stereo rig, which consists of two Sony DFW-VL 500 firewire
cameras that were directly connected to the PC. Different camera configu-
rations with non-parallel optical axes were used in order to obtain different
rigid transformations between the two cameras. The cameras were not syn-
chronized by means of hardware, which usually results in a time-lag between
corresponding images of about 1–2 frames.

In addition to the real image sequences, one synthetic (rendered) sequence
was used as well, where ground truth data are available. Five images from
each sequence recorded (or rendered in the synthetic case) by the left camera
are depicted in Figures 5.17 to 5.22. The data sets are denoted as follows:

Mask (Fig. 5.17) This is a synthetic sequence which has been rendered us-
ing the Maya system from Alias Wavefront [Bux00]. The same setup
was already used by Heigl [Hei04] for monocular 3-D reconstruction
and has been extended to stereo images for the purpose of performing
the stereo self-calibration experiments in this section. The sequence
simulates the movement of a hand-held stereo camera with parallel
optical axes, incorporating shadows and specular effects. Using these
rendered images as input, the same processing steps as for the real
camera images have been used for stereo self-calibration.

Phone (Fig. 5.18) These images were recorded using a hand-held stereo cam-
era setup with non-parallel optical axes. It consists of 400 frames.

Desk1, Desk2 (Fig. 5.19, Fig. 5.20) 200 frames each, recorded using a hand-
held stereo camera.

Head (Fig. 5.21) 150 frames, recorded using a hand-held stereo camera.

Plant (Fig. 5.22) 100 frames, recorded using a hand-held stereo camera.
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Figure 5.17: Five images of the rendered sequence Mask (200 frames)

Figure 5.18: Five images of the Phone sequence (400 frames)

Figure 5.19: Five images of the Desk1 sequence (200 frames)

Figure 5.20: Five images of the Desk2 sequence (200 frames)

Figure 5.21: Five images of the Head sequence (150 frames)
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Figure 5.22: Five images of the Plant sequence (100 frames)

5.3.2 Stereo SelfCalibration

The results for stereo self-calibration will be discussed in this section. As a
small focal length was used when recording the stereo sequences, consid-
erable radial distortions were observed in the images. Since these cannot
be treated by the currently available 3-D reconstruction methods based on
structure-from-motion used here, all images have been undistorted before
further processing [Zha98a, Zha00, Ope]. An advantage of the stereo self-
calibration methods presented in this work is that they do not rely on any
particular 3-D reconstruction method, which therefore can be substituted
with a more sophisticated reconstruction algorithm when desired without
having to change the algorithms based on it.

As described in Sections 4.1.1 (page 70 ff.) and 4.1.2 (page 72 ff.), a tempo-
ral point feature tracking followed by two mutually independent monocular
3-D reconstructions was performed at the beginning. The implementation
used for this purpose [Zin04, Zin07] is based on the Intel IPP library [IPP],
which renders the algorithm useful for real-time applications as well. A
drawback of this library is, however, that the feature tracking leads to dif-
ferent results on different CPUs. As all following computations depend on
the tracked point features, the residual errors also depend on the CPU used
for computing the stereo calibration. All experiments in this section were
computed on an Intel Pentium M processor (1.7 GHz).

Except for the ICP based method, where this is not necessary as only 3-D
points are used, a hand-eye data selection step was done. For this purpose
the vector quantization based approach using normalized 3-D rotation axes
with two DOF presented in Section 4.4.4 (page 103 ff.) was selected, in com-
bination with an automatic rotation angle threshold computation using the
method proposed in Section 4.4.4 (page 106 ff.). For all experiments (again
excluding ICP), the scale factor was estimated at the beginning using a sim-
ple standard hand-eye calibration as described in Section 4.3.3 (page 85 f.)
by solving (4.19) and (4.20). There is a difference in how this scale factor is
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treated afterwards, though: For some of the experiments it has been kept
fixed, while others use it as an initialization and re-estimate the scale. More
details are given in the description below. The experiments as shown in the
tables are denoted as follows:

linear, DQ, scale sep.: After the scale of the two 3-D reconstructions has been
equalized using the initially computed scale factor, the linear hand-
eye calibration algorithm of Daniilidis based on dual quaternions (DQ)
described in Section 2.4.1 (page 43 ff.) is used in order to determine
rotation and translation. Scale stays fixed.

nonlin., Hor., scale sep.: After the scale of the two 3-D reconstructions has
been equalized using the initially computed scale factor, the non-linear
hand-eye calibration algorithm proposed by Horaud and Dornaika de-
scribed in Section 4.3.4 (page 88 ff.) is used in order to determine rota-
tion and translation by optimization of (4.32). Scale stays fixed.

nonlin., Hor., incl. scale: In contrast to the above methods where the scale
is fixed, here it is used as an initialization for non-linear optimization.
The scale is optimized in addition to rotation and translation using the
extended Horaud/Dornaika equation (4.33) (page 89).

nonlin., DQ, incl. scale: As in the previous method the scale factor is used
as an initialization for non-linear optimization. The scale is optimized
in addition to rotation and translation using the extended dual quater-
nion equation (4.34) (page 90).

Andreff: Uses the extended hand-eye calibration method proposed by An-
dreff for computing rotation, translation, and scale as described in Sec-
tion 2.4.2 (page 45 ff.) by solving (2.105) and (2.106). In addition to
the steps described in that section, the vector quantization based data
selection was performed as well.

standard: These results were computed mainly in order to show what can
be gained from the more sophisticated hand-eye calibration methods
compared to just solving the basic hand-equations. Therefore, these
results were computed using a simple standard hand-eye calibration
as described in Section 4.3.3 (page 85 f.) by solving (4.19) and (4.20).

ICP: In contrast to all other experiments, no hand-eye calibration method
was used in order to obtain these results, but the ICP self-calibration
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algorithm described in Section 4.3.5 (page 90 ff.) instead, including
the extension for scale estimation. This algorithm relies mainly on the
computed 3-D points rather than on the reconstructed camera move-
ments.

All non-linear hand-eye calibration methods were initialized using the re-
sults of the algorithm ‘standard’. For non-linear optimization the Gauss-
Newton algorithm with Levenberg-Marquardt extension [Har03, Pre92] was
used, 15 iterations were performed in each run.

The experimental results are shown in Tables 5.9 to 5.14. Due to the fact
that both 3-D reconstructions are unique only up to a scale factor, which can
be chosen arbitrarily, no units are given for the translational residuals.

For the same reason, one has to be careful when comparing the absolute
residuals of the different algorithms: As scale is estimated slightly different
in each experiment, the absolute values vary, which means that the same per-
centage of the relative error may correspond to different absolute residuals.
Actually, the absolute residual errors could be scaled arbitrarily.

Table 5.9 shows the residual errors for the rendered Mask sequence in-
cluding ground truth residuals. Note that no relative ground truth residual
error is given for rotation, as parallel optical axes and therefore an identity
matrix was used. No ground truth residual can be given for the scale factor,
which has to be estimated for stereo self-calibration in addition to rotation
and translation. The reason is that this factor determines the scale between
the two 3-D reconstructions obtained by structure-from-motion, and there-
fore is inherent to the methods used for self-calibration rather than a ground
truth value that can be observed in reality.

The computation times shown are for stereo calibration only, i. e., with-
out feature tracking and 3-D reconstruction. As can be expected, the non-
linear methods are more time consuming than the linear ones. The times
for non-linear optimization depend mainly on the number of iterations per-
formed, which is adjustable and therefore these results should not be over-
rated. However, the variation in computation times is not high enough to
justify the usage of one algorithm over another, except for real-time appli-
cations. In this case, a re-evaluation of computation times should be done,
however, as the algorithms were not particularly optimized for speed.

It can be observed that the method labeled ‘standard’ performs consider-
ably worse than the other hand-eye calibration algorithms (which was to be
expected), and therefore should not be used. The ICP based calibration algo-
rithm is in almost every case better than standard hand-eye calibration, but
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Method Translation Rotation Time
linear, DQ, scale sep. 0.0283 1.82% 0.551◦ 2.26% 14900 msec

ground truth residual 0.0268 – 0.629◦ – –
non-lin., Hor., scale sep. 0.0238 1.72% 0.544◦ 2.25% 17400 msec

ground truth residual 0.0388 – 0.545◦ – –
non-lin., Hor., incl. scale 0.0257 1.79% 0.545◦ 2.25% 17600 msec

ground truth residual 0.0400 – 0.537◦ – –
non-lin., DQ, incl. scale 0.0291 1.84% 0.552◦ 2.27% 15400 msec

ground truth residual 0.0483 – 0.674◦ – –
Andreff 0.0240 1.75% 0.533◦ 2.22% 14700 msec

ground truth residual 0.0564 – 0.287◦ – –
standard 0.444 19.1% 0.618◦ 2.44% 14700 msec

ground truth residual 2.00 – 0.242◦ – –
ICP 0.116 5.45% 0.971◦ 3.79% 2370 msec

ground truth residual 0.623 – 5.46◦ – –

Table 5.9: Comparison of stereo self-calibration methods, sequence Mask.

Method Translation Rotation Time
linear, DQ, scale sep. 0.0649 19.4% 3.18◦ 18.1% 21200 msec
non-lin., Hor., scale sep. 0.0630 19.1% 3.25◦ 18.4% 21600 msec
non-lin., Hor., incl. scale 0.0662 19.5% 3.22◦ 18.3% 21200 msec
non-lin., DQ, incl. scale 0.0880 24.3% 3.12◦ 17.8% 21100 msec
Andreff 0.0807 23.3% 3.09◦ 17.7% 21100 msec
standard 0.301 94.7% 7.28◦ 39.1% 21100 msec
ICP 0.181 50.1% 4.17◦ 22.9% 1760 msec

Table 5.10: Comparison of stereo self-calibration methods, sequence Phone.

gives consistently worse results than the other hand-eye calibration methods
and therefore cannot be recommended.

The residual errors for the Mask sequence given in Table 5.9 show no clear
advantage for any of the remaining hand-eye based calibration algorithms.
The range of relative residuals for translation is from 1.72% to 1.84%, and
from 2.22% to 2.27% for rotation, both being comparatively low. This is dif-
ferent for the other sequences, where the differences between best and worst
result for translation are 5.2 and 7.17 percentage points for Phone and Desk1,
respectively, down to 1.74 (Desk2), 2.02 (Head), and 0.9 percentage points
(Plant). The differences are not as high for rotation, where 4.75 percentage
points for the Desk2 sequence (Table 5.12) are an exception. The other se-
quences range from differences starting at 0.6 percentage points (Plant) up
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Method Translation Rotation Time
linear, DQ, scale sep. 0.0158 6.66% 1.34◦ 15.9% 725 msec
non-lin., Hor., scale sep. 0.0219 8.54% 1.45◦ 16.6% 1390 msec
non-lin., Hor., incl. scale 0.0393 10.3% 1.56◦ 17.2% 1490 msec
non-lin., DQ, incl. scale 0.0150 6.35% 1.36◦ 16.0% 891 msec
Andreff 0.0483 13.7% 1.26◦ 15.4% 720 msec
standard 0.221 63.3% 4.82◦ 40.3% 714 msec
ICP 0.236 26.2% 3.68◦ 33.8% 2730 msec

Table 5.11: Comparison of stereo self-calibration methods, sequence Desk1.

Method Translation Rotation Time
linear, DQ, scale sep. 0.0121 7.49% 0.471◦ 7.13% 402 msec
non-lin., Hor., scale sep. 0.0137 8.27% 0.655◦ 9.58% 1090 msec
non-lin., Hor., incl. scale 0.0121 7.73% 0.634◦ 9.43% 1190 msec
non-lin., DQ, incl. scale 0.0147 8.75% 0.449◦ 6.89% 541 msec
Andreff 0.0163 9.23% 0.272◦ 4.83% 383 msec
standard 0.166 72.8% 2.30◦ 31.8% 384 msec
ICP 0.213 26.9% 2.38◦ 17.7% 202 msec

Table 5.12: Comparison of stereo self-calibration methods, sequence Desk2.

to 2.4 percentage points (Head).
For some sequences the residuals are quite high. Indeed, the best result

for Phone (Table 5.10) is 19.1% translational error, and 12.8% for Plant (Table
5.14). The question remains whether results having residuals that high are
still usable for the computation of depth maps and Augmented Reality. This
will be discussed in Section 5.4.

Table 5.15 gives an overview over the performance of the different calibra-
tion methods, separately for rotation and translation. The table shows how
often an algorithm was ranked as being the best or second best (out of a
total of 12). It can be observed that the ‘Andreff’ method performs compar-
atively good for rotation, as it was ranked best or second best in half of all
cases. However, there is only one case where this is true for the translational
residual error. It is the other way round for the ‘non-lin., Hor., scale sep.’
method, which did well for translation, but not for rotation. For practical
purposes one would prefer an algorithm that performs equally well for rota-
tion and translation. In this case it is recommended to use either one of the
dual quaternion algorithms, i. e., ‘linear, DQ, scale sep.’ or ‘non-lin., DQ,
incl. scale’.
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Method Translation Rotation Time
linear, DQ, scale sep. 0.0262 7.80% 0.493◦ 13.1% 963 msec
non-lin., Hor., scale sep. 0.0261 7.56% 0.510◦ 13.3% 1120 msec
non-lin., Hor., incl. scale 0.0437 9.58% 0.617◦ 14.6% 1140 msec
non-lin., DQ, incl. scale 0.0263 7.73% 0.502◦ 13.2% 1560 msec
Andreff 0.0356 9.21% 0.429◦ 12.2% 1030 msec
standard 0.203 36.0% 3.37◦ 55.8% 959 msec
ICP 0.220 28.8% 2.41◦ 26.8% 479 msec

Table 5.13: Comparison of stereo self-calibration methods, sequence Head.

Method Translation Rotation Time
linear, DQ, scale sep. 0.0201 13.4% 1.18◦ 15.7% 469 msec
non-lin., Hor., scale sep. 0.0192 12.8% 1.24◦ 16.3% 1120 msec
non-lin., Hor., incl. scale 0.0226 13.3% 1.24◦ 16.2% 1440 msec
non-lin., DQ, incl. scale 0.0203 13.0% 1.17◦ 15.7% 629 msec
Andreff 0.0225 13.7% 1.16◦ 15.7% 455 msec
standard 0.0927 41.6% 2.68◦ 27.8% 457 msec
ICP 0.197 49.0% 3.73◦ 33.2% 608 msec

Table 5.14: Comparison of stereo self-calibration methods, sequence Plant.

In the following some of the calibration results presented above are vi-
sualized by means of epipolar lines: As corresponding points are located
on corresponding epipolar lines (cf. Sect. 2.1.4, page 18 ff.), plotting these
lines gives a visual impression about the accuracy of the calibration. Plots of
epipolar lines using the results of the first method in the tables (labeled as
‘linear, DQ, scale sep.’) for the sequences Mask, Phone, and Head are shown
in Figures 5.23 to 5.25. The error can be measured by determining the dis-
tances of points to their epipolar lines, which would ideally be zero. This was
done at selected positions manually for these examples and therefore is not
very accurate, but it gives at least a rough impression about the calibration
accuracy.

As Mask is a rendered sequence with known ground truth, the expected
result for the plotted epipolar lines is known: The ground truth rotation is
the identity matrix, and translation is in horizontal direction only. There-
fore, the epipolar lines should coincide with scanlines and have the same
y-coordinates. It can be observed in Figure 5.23 that the results are quite
good, although the lines are not completely horizontal. The distances of
points to the corresponding epipolar line is about 4 pixels on average.
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Method Translation Rotation
linear, DQ, scale sep. 3 3
non-lin., Hor., scale sep. 4 1
non-lin., Hor., incl. scale 1 0
non-lin., DQ, incl. scale 3 4
Andreff 1 6
standard 0 0
ICP 0 0

Table 5.15: Evaluation of stereo self-calibration methods. The table shows how often
each method was ranked as best or second best, separately for rotation
and translation. As the results of different algorithms may be equal, the
numbers do not add up to the total of 12 (which is the case for rotation
only).

Epipolar lines plotted for two image pairs of the Phone sequence are de-
picted in Figure 5.24. Compared to the Mask sequence, the residual calibra-
tion errors were relatively high (roughly 19% relative error). The distance
of feature points to their corresponding epipolar line is about 7 to 12 pixels
in this experiment. Whether or not this is still acceptable for depth map
computation will be discussed in Section 5.4.

Finally, Figure 5.25 shows epipolar lines for image pairs taken from the
Head sequence. The residual errors are in between the residuals of the Mask
and the Phone sequence, and were about 8% for translation and 13% for
rotation. It can be seen that these lower residual errors compared to the
previous sequence, Phone, result in lower distances from feature points to
their corresponding epipolar lines as well, which are approximately up to 5
pixels in this case.
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Figure 5.23: Epipolar lines for two image pairs of the Mask sequence using the cali-
bration results corresponding to the experiment shown in the first row of
Table 5.9. For an ideal result the epipolar lines would be horizontal.
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Figure 5.24: Epipolar lines for two image pairs of the Phone sequence using the cali-
bration results corresponding to the experiment shown in the first row of
Table 5.10.
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Figure 5.25: Epipolar lines for two image pairs of the Head sequence using the cali-
bration results corresponding to the experiment shown in the first row of
Table 5.13.
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5.3.3 Extended HandEye Calibration in Endoscopic Surgery

This section describes the application of the extended stereo self-calibration
methods to hand-eye calibration of a camera mounted on an endoscope. Pre-
liminary results have already been published in [Sch05], and the same data
sets are used here for experimental evaluation. The hand data were acquired
using the optical tracking system smARTtrack1 and the setup already de-
scribed in Section 5.2.1 (page 126 f.).

Usually, the camera (eye) poses are computed using a calibration pattern
and standard camera calibration techniques as presented in Section 2.4 (page
41 ff.), which should be combined with a data-selection as presented in this
work in Section 4.4.4 (page 102 ff.). Experimental results for standard hand-
eye calibration using data obtained from the optical tracking system and eye
poses computed using a calibration pattern have already been presented in
Section 5.2.4 (page 146 ff.).

In contrast to that, the previously introduced stereo self-calibration method
based on hand-eye calibration can be used in order to perform hand-eye cal-
ibration without using a calibration pattern. Instead, the camera poses are
obtained solely from an image sequence recorded using a hand-held camera
by applying structure-from-motion methods.

Calibration results for two data sets are shown here, namely ART61 (190
images, cf. Fig. 5.26, top row) and ART42 (200 images, cf. Fig. 5.26, bottom
row). Both image sequences were acquired by manually moving the endo-
scope with the mounted camera, while pose data for the target was obtained
simultaneously from the optical tracking system. The images show a silicone
liver/gall-bladder model (cf. Fig. 5.27, right) that is contained in an artifi-
cial patient (cf. Fig. 5.27, left). This simulated patient consists of a box with
holes that are covered by artificial skin to allow for making incisions through
which the endoscope can be inserted. The computation steps for extended
hand-eye calibration are basically the same as for the stereo self-calibration
experiments presented in the previous section, with the difference that only
the eye poses were obtained by structure-from-motion, while the hand-poses
are provided by the optical tracking system. Therefore, the absolute scale of
the hand poses is known, and the algorithm can be modified such that it
estimates the real scaling factor between hand and eye poses. After fea-
ture tracking and 3-D reconstruction, different hand-eye calibration methods
have been evaluated. In all cases the reconstructed camera movement has
been used as eye data.

The calibration results are shown in Tables 5.16 (ART42) and 5.17 (ART61),
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Figure 5.26: Five images of the ART61 sequence (top row, 190 frames) as well as of
the ART42 sequence (bottom row, 200 frames), both showing a silicone
liver/gall-bladder model. Images by courtesy of F. Vogt [Vog06].

Figure 5.27: These pictures show the simulated patient (left) consisting of a box with
holes that are covered by artificial skin. The endoscope can be in-
serted after making an incision. The simulated patient contains a silicone
liver/gall-bladder model (right). Images by courtesy of F. Vogt [Vog06].

respectively.
Note that only the hand-eye based calibration methods are evaluated here,

as the application of the ICP based approach is not possible due to the fact
that there is only one 3-D point set available (the second one is missing as the
hand data is obtained from the optical tracking system rather than another
3-D reconstruction). It can be observed that the relative errors when using
the extended calibration are comparable to those when using standard hand-
eye calibration as presented in Section 5.2.4. Unfortunately a comparison of
calibration results using the same input images is not possible, as the images
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Method Translation Rotation Time
linear, DQ, scale sep. 0.491 17.3% 0.790◦ 9.33% 677 msec
non-lin., Hor., scale sep. 0.396 15.5% 0.787◦ 9.36% 1000 msec
non-lin., Hor., incl. scale 0.838 20.8% 0.786◦ 9.33% 1050 msec
non-lin., DQ, incl. scale 0.856 21.3% 0.786◦ 9.32% 735 msec
Andreff 0.879 24.6% 0.784◦ 9.29% 1060 msec
standard 57.9 1380% 12.8◦ 96.7% 699 msec

Table 5.16: Hand-Eye calibration using structure-from-motion instead of a calibration
pattern, sequence ART42.

Method Translation Rotation Time
linear, DQ, scale sep. 1.83 12.0% 0.629◦ 3.34% 1410 msec
non-lin., Hor., scale sep. 2.18 16.2% 0.634◦ 3.41% 2890 msec
non-lin., Hor., incl. scale 1.85 14.6% 0.606◦ 3.32% 3170 msec
non-lin., DQ, incl. scale 1.49 11.7% 0.609◦ 3.30% 1790 msec
Andreff 2.86 18.9% 0.606◦ 3.31% 1270 msec
standard 106 507% 48.2◦ 151% 931 msec

Table 5.17: Hand-Eye calibration using structure-from-motion instead of a calibration
pattern, sequence ART61.

for standard hand-eye calibration show a calibration pattern (which will,
due to its planar structure and homogeneous color, not give good 3-D re-
construction results), while the images used here show a liver/gall-bladder,
which cannot be used as input for standard hand-eye calibration.

The results presented in [Sch05] are slightly different from the ones shown
here, which is, except for the non-linear methods, mainly due to the fact that
different CPUs (Intel Pentium M here, AMD Athlon in [Sch05]) were used.
Due to the IPP library, this yields different feature points during tracking,
which is the basis for all subsequent algorithms. The results for the non-
linear methods cannot directly be compared, because in [Sch05] a different
implementation and a combination of a non-linear method followed by a
linear approach was used, while now only a non-linear optimization is done,
which is initialized by a linear one as described in the previous section’s
overview on page 157 f.

As before, these results were compared to the accuracy of performing
hand-eye calibration the classic way, i. e., using a small number of images
recorded at manually selected distinct positions that are well-suited for hand-
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Data Set Translation Rotation
ART38 1.85 mm 8.41% 0.892◦ 4.34%
ART42 35.2 mm 132% 11.8◦ 25.8%
ART52 1.58 mm 4.68% 0.601◦ 3.06%
ART61 28.4 mm 57.7% 3.53◦ 13.2%

Table 5.18: Comparison of the calibration result based on structure-from-motion for
ART42 and ART61 to the result of the classic approach using a small
number of frames at manually selected positions and a calibration pattern
(ART38 and ART52).

eye calibration. These sequences are denoted by ART38 and ART52 (20
frames each) and correspond to the camera-endoscope configuration of the
data sets ART42 and ART61, respectively. Table 5.18 shows the best result
when using the continuous sequence (i. e., method ‘non-lin., Hor., scale sep.’
for ART42, and method ‘non-lin., DQ, incl. scale’ for ART61) and compares
it to the result of the classic approach using a small number of frames at man-
ually selected positions. In order to make them comparable, the residuals of
ART38 and ART42 were evaluated on a third sequence ART48, while the
residuals of ART52 and ART61 were evaluated on ART53 (200 frames each).
It can be observed that the quality of calibration based on structure-from-
motion is still quite low compared to using a calibration pattern. The reason
why the residuals are much smaller in the Tables 5.16 and 5.17 compared
to those shown in Table 5.18 is that the scaling factor for the eye movements
was estimated incorrectly (i. e., too small). This problem is much more severe
for hand-eye calibration than for stereo self-calibration, as in the latter case
the direction of the translation vector is often sufficient (e. g., for depth map
computation). It has to be taken into account as well that the image quality
of the endoscopic camera is much worse than that of the digital firewire cam-
eras used for stereo self-calibration. Therefore, better results can be expected
when using different hardware.

The main result of this section is that the estimation of the hand-eye trans-
formation is feasible in principle without a calibration pattern, as long as
an position accuracy of 3 to 4 centimeters is still sufficient for the appli-
cation. This may not be the case when a robot is used for vision-based
grabbing of objects, but could well be satisfactory for image-based rendering
and light-field reconstruction.The proposed extended hand-eye calibration
approach without an additional calibration step using a calibration pattern
has its main advantages in a clinical setup, as hand-eye calibration has to be
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performed prior to an operation. The usage of an unsterile calibration pat-
tern in combination with a sterile endoscope and a surgeon working under
sterile conditions is difficult in practice, and can be completely circumvented
when using the methods proposed here. Additionally, a re-calibration dur-
ing an intervention would be possible, which can currently not be performed
at all. However, the calibration accuracy is currently too low for a clinical ap-
plication, particularly for an Augmented Reality setup where blood vessels
are to be rendered into a light-field or real image.

5.4 Augmented Reality Experiments

The experiments presented in the following show how to exploit the know-
ledge gained from stereo self-calibration for Augmented Reality purposes.
As soon as the parameters of the stereo system are known, they can be used
for computing depth maps for both images of a stereo pair. Passing these
depth maps on to the graphics hardware with OpenGL, they can be used
as depth buffer values for rendering computer generated objects into real
scenes with correct occlusion, i. e., virtual objects can be occluded by real
ones and vice versa.

Depth maps have been computed for the images of the sequences Mask,
Phone, and Head that were already used for the visualization of the calibration
error by means of epipolar lines in Section 5.3.2 (page 156 ff.). The algorithm
described in Section 2.5 (page 47 ff.) was used for this purpose. The results
are shown in Figures 5.28 to 5.30: The darker a point’s gray value in the
depth map, the larger the distance to the camera.

In particular for the image pairs taken from the Mask and Phone sequence
it can be observed that the overall depth structure of the scene is clearly
visible in the depth maps, i. e., the mask in the foreground in Figure 5.28 is
well separated from the background, while edges are preserved. Similarly,
in Figure 5.29 the telephone as well as the telephone arm are visibly distinct
from the background. Minor errors in the depth maps cannot be avoided,
though. These are clearly visible at positions where there are holes in fore-
ground objects (e. g., the darker spots in the mask in Figure 5.28), and less
visible where there are larger areas with slightly incorrect depth values (e. g.,
the darker area in the middle of the telephone in Figure 5.29). The effects on
the augmentation will be shown later in this section. Keeping the calibration
errors (Table 5.9) and pixel distances from corresponding epipolar lines in
mind, the good results for the Mask sequence are not surprising.
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Figure 5.28: Depth maps for an image pair from the Mask sequence: original images
(top), depth maps (bottom). The mask in the foreground is well sepa-
rated from the background, while edges are preserved. Minor errors can
be observed as darker spots (holes) in the mask or brighter spots in the
background.

This is different for the Phone sequence, however. Here, both, calibra-
tion errors (Table 5.10) as well as distances of points to their corresponding
epipolar lines were relatively high. Apparently, these calibration errors do
not necessarily result in unusable depth maps, as can be seen in Figure 5.29.

Therefore, good quality depth maps could have been expected for the Head
sequence as well, as the calibration errors (Table 5.13) are much lower com-
pared to the errors of the Phone sequence. The depth maps shown in Figure
5.30 clearly separate the person from the background, which is desirable.
Obviously there are some problems with the depth values, especially inside
of the face, where large black areas are visible. The same is true for the wall
in the background; in the latter case it does not lead to problems, though,
because the wall is further away from the camera than the person anyway.
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Figure 5.29: Depth maps for an image pair from the Phone sequence: original images
(top), depth maps (bottom). The telephone as well as the telephone arm
are visibly distinct from the background. Slightly incorrect depth values
can be observed in the middle of the telephone (darker area).

Most of the problems originate from homogeneous areas in the images,
i. e., areas which are basically of the same color, which is mainly the case for
the white wall in the background, the face, and the person’s shirt. No point
correspondences (and therefore no depth information) between left and right
image can be established in these areas, which leads to undefined values that
are treated as the maximum possible distance from the camera in the applied
algorithm, on the basis that undefined depth is due to occlusion in the error
free case. In cases where there are a lot of homogeneous surfaces in the
image, even accurate calibration results may lead to low quality depth maps.

Figures 5.31 to 5.33 show results of augmentations of real images with a
virtual object. All figures include the original image on the top left as well
as three examples where a virtual object is rendered into the real scene at
different positions using the depth maps computed previously.
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Figure 5.30: Depth maps for an image pair from the Head sequence: original images
(top), depth maps (bottom). The person is clearly separated from the
background. There are some problems with the depth values inside of
the face, where large black areas are visible, as well as on the wall in
the background. Despite good calibration results, the depth map is not
as good as expected. Most of the problems originate from homogeneous
areas in the images, where no correct point correspondences between left
and right image can be established.

Figure 5.31 shows an augmentation of the Mask scene. A torus was used as
a virtual object. It can be observed that in areas where there are small errors,
the torus is shining through the mask; on the other hand, at some positions
the background is shining through the virtual object where it is supposed to
be occluded. An important factor for a good augmentation are the transitions
from virtual to real objects, i. e., mainly the positions where a real object
occludes a virtual one. Errors in the depth map (e. g., smooth depth changes
instead of sharp edges) would be clearly visible in the augmented image.
The results for the Mask scene are quite satisfying (cf. the edges of the mask)
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Figure 5.31: Augmentation of the Mask sequence: The original image (top left) has
been augmented with a torus at different positions. The torus is shining
through the mask in areas where there are errors in the depth map, and
the background is shining through the virtual object where it is supposed
to be occluded in some places. The transition from the virtual object to
the mask is quite good as the edges are well preserved. Note the good
augmentation result in the top right image, where the thin rope on the
bottom right of the mask occludes the torus.

in this regard as the edges are well preserved. Note the good augmentation
result in the top right image of Figure 5.31, where the rope on the bottom
right of the mask occludes the torus.

A teapot was used for the augmentation of the Phone images; the results
are shown in Figure 5.32. As before, the transitions from real to virtual are
fairly good most times, due to well preserved edges. Minor problems are
visible as well, e. g., small holes in the teapot in the top right image or frayed
edges in the image on the bottom left.

Finally, Figure 5.33 shows an augmentation of the Head sequence. It is
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Figure 5.32: Augmentation of the Phone sequence with a teapot: the transitions from
real to virtual are fairly good most times, due to well preserved edges.
Minor problems are visible as well, e. g., small holes in the teapot (top
right) or frayed edges (bottom left).

clearly visible that the results for this scene are not as good as those of the
other experiments. This is due to the erroneous depth map, where there
are two major problems: The person is not sufficiently separated from the
background, and while he is clearly visible for a human looking at the depth
map, the edges are much too smooth. The second problem are the large
holes (i. e., dark areas) which are supposed to have the same depth as the
surroundings, which result in virtual objects shining through real ones again.
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Figure 5.33: Augmentation of the Head sequence: Because of the depth maps, these
results are not as good as in the other experiments. The two major prob-
lems are that the person is not sufficiently separated from the background
(the edges are much too smooth), and that there are large holes (i. e., dark
areas), which result in virtual objects shining through real ones.
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5.5 Summary and Discussion of the Results

The experiments chapter consists of two main parts: The evaluation of hand-
eye calibration data selection methods in Section 5.2, and the evaluation of
stereo self-calibration algorithms (Section 5.3) including applications to Aug-
mented Reality as well as hand-eye calibration. In the latter case, an optical
tracking system and a camera mounted on an endoscope is used, and cali-
brated without a calibration pattern, which is called extended hand-eye calibra-
tion in this work.

Real and synthetic data sets were used for performance evaluation of the
proposed vector quantization based data selection methods. In this case,
the real data were obtained from the optical tracking system (hand) and
an endoscopic camera (eye) that was calibrated using a calibration pattern.
The synthetic data sets are based on real hand data in order to get realistic
movements and contiguous hand and camera positions.

Firstly, the most important parameters that influence hand-eye calibration
accuracy when using vector quantization were evaluated: The codebook size
of the quantizer and the thresholds used for pre-selection of movements
with respect to their rotation angle. It has been found that the fluctuations
of the residual error for small codebook sizes are relatively high and become
less for increasing codebook size. Based on the experimental results it is
recommended to use about 10% of the total number of relative movements
for large sequences, and about 15% for smaller ones.

Before vector quantization, a pre-selection step is performed that removes
movements with small rotation angles from the data, as these are not suitable
for hand-eye calibration. The data left after this pre-selection has a high in-
fluence on the computation time required during vector quantization. These
experiments were performed for fixed codebook sizes (but different ones for
each data set), while the percentage of relative movements that are removed
by automatic threshold computation was varied. In most cases high residual
errors were observed when either most movements had been removed or all
movements had been left in the data used for calibration. The reason for
this behavior in the former case is that there are not sufficient data left for
calibration, and in the latter one that unsuitable movements are still left and
used for calibration. In most cases a value of 20% to 40% for the data to be
left after pre-selection with respect to the rotation angle is a good choice for
automatic threshold computation.

If there is no hard constraint on computation time, however, both param-
eters (codebook size and rotation angle threshold) are non-critical, as hand-
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eye calibration can be done for as many parameter settings as desired, and
the best result can be chosen at the end.

Next, the different data selection methods proposed earlier in this work
were compared. The new methods are based on vector quantization and dif-
fer in the parameterization used for representing 3-D rotation (normalized
rotation axes, polar coordinates, axis/angle, quaternions) and in the way the
data pre-selection with respect to the rotation angle is done (fixed threshold
or automatically computed threshold). These methods were compared to
using consecutive movements (i. e., using the movements as they are, with-
out any data selection) and using only the first steps of data selection (i. e.,
without vector quantization). As predicted, using consecutive movements
is always the worst case, with residual errors that render the calibration re-
sults totally useless in most cases. It was found that a lot can already be
gained by using all combinations of relative movements (being the first step
for vector quantization based selection) instead of consecutive ones. In cases
where computation time is more important than accuracy, it is therefore rec-
ommended to omit the subsequent steps and use this method only, together
with a pre-selection step, which removes movements with small rotations
based on an automatically computed threshold. This method corresponds
to the pre-processing step proposed in Section 4.4.2, page 100. Experimental
results are presented in Section 5.2.4 (page 146 ff.). The actual computation
time depends on the size of the data set and ranges from 212 msec to 16.2 sec,
the accuracy with respect to the residual error in translation is in between
1.61 mm and 6.6 mm (average: 3.92 mm), and the rotational residuals range
from 0.605◦ to 5.03◦ (average: 1.74◦)

As expected, the data selection method used has virtually no influence
on the residual errors in rotation, only the translational residuals differ. For
obtaining the best results regarding accuracy, it is recommended to apply
the vector quantization based data selection using normalized rotation axes,
including the pre-selection that removes movements with small rotations.
This method is approximately two to three times slower than the fastest
one discussed above. It is described in detail in Section 4.4.4 (page 103 ff.),
the experimental results can be found in Section 5.2.4 (page 146 ff.). The
translational residuals range from 1.48 mm to 7.39 mm (average: 3.80 mm),
the rotational ones from 0.547◦ to 3.75◦ (average: 1.59◦).

It has to be taken into account, however, that much depends on the data set
itself, i. e., when the information contained in the movements is not general
enough in terms of different rotation axes, there is no way to obtain good
calibration results, no matter which data selection or hand-eye calibration
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algorithm is used. The data selection methods proved to be superior to
the standard approach to hand-eye calibration, where a small number of
consecutive frames recorded at distinct positions are used (cf. Table 5.8, page
153; averages, rotation: 0.503◦ , translation: 2.19 mm). The best results can
be obtained by combining this manual selection of recording positions with
the automatic vector quantization based data selection proposed in this work
(averages, rotation: 0.404◦ , translation: 1.88 mm).

The second main part of the experiments chapter is the evaluation of the
proposed stereo self-calibration algorithms. The used data sets consist of
one rendered stereo image sequence with known ground truth and real data
recorded using a stereo camera setup with non-parallel optical axes. The
processing steps for both kinds of data sets were the same, namely temporal
feature tracking, 3-D reconstruction, and stereo calibration. Different ap-
proaches based on hand-eye calibration (linear and non-linear, scale either
estimated at the beginning and fixed during further processing, or scale esti-
mated simultaneously with rotation and translation) or ICP were compared.

It was found that the method based on solving the standard hand-eye
calibration performs considerably worse than the other hand-eye calibration
algorithms, and therefore should not be used. The ICP based calibration al-
gorithm is in almost every case better than standard hand-eye calibration, but
gives consistently worse results than the other hand-eye calibration methods
and therefore cannot be recommended.

Andreff’s method performs quite well regarding residual errors in rota-
tion, but not regarding the translational residual. It is the other way round
for the non-linear method of Horaud and Dornaika, which did well for trans-
lation, but not for rotation. As for practical purposes one would prefer an
algorithm that performs equally well for rotation and translation, it is rec-
ommended to use either one of the dual quaternion algorithms: Either the
linear method (cf. Sect. 2.4.1, page 43 ff.), where scale is estimated by solving
(4.19) and (4.20) at the beginning (cf. Sect. 4.3.3, page 85 f.) and stays fixed; or
the extended non-linear objective function (4.34) (page 90) proposed in this
work, which optimizes rotation, translation, and scale simultaneously. Ex-
perimental results can be found in Section 5.3.2 (page 156 ff.). For the linear
method, the translational residual errors range from 1.82% to 19.4% (aver-
age: 9.43%; giving a range of absolute residuals would be meaningless at
this point, because an arbitrary scale factor is involved), the residual errors
in rotation are in between 0.471◦ and 3.18◦ (average: 1.49◦). The residuals
in translation for the non-linear algorithm range from 1.84% to 24.3% (av-
erage: 10.3%), the rotational residuals from 0.449◦ to 3.12◦ (average: 1.19◦).
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Although it usually takes longer to compute the result using the non-linear
method (average: 6.69 sec) compared to the linear one (average: 6.44 sec), the
differences will normally be insignificant for practical purposes.

Based on these calibration results, depth maps were generated, which are
a prerequisite for rendering virtual objects into the real images with correct
occlusion. The calibration accuracy was good enough to obtain a reasonable
augmentation. However, good calibration results are not a guarantee for
good augmentation in all cases, as much depends on the algorithm used for
depth map computation as well. This is particularly true when the images
consist of large areas with homogeneous color, as in this case no left-to-
right correspondences can be obtained, resulting in holes in the depth map
and virtual objects shining through. Experimental results are presented in
Section 5.4 (page 170 ff.).

The proposed stereo self-calibration approach can also be used for ex-
tended hand-eye calibration, where the eye poses are obtained by structure-
from-motion rather than a calibration pattern. Experiments were conducted
on data obtained from an optical tracking system and a camera mounted
on an endoscope (cf. Sect. 5.3.3, page 166 ff.). It was found that the residual
errors when using the extended calibration are currently still considerably
higher compared to those when using standard hand-eye calibration (3 to 4
cm as opposed to 2 mm translational error). This is probably due to several
factors that influence the calibration result, e. g., insufficient image quality
for 3-D reconstruction and data that is not well-suited for hand-eye calibra-
tion in the first place. The estimation of the hand-eye transformation can be
considered to be feasible without a calibration pattern in principle. How-
ever, the residual errors are currently still too high for clinical Augmented
Reality applications during an intervention. If the calibration accuracy can
be increased, this method will make the hand-eye calibration in a clinical
setup much easier, as it has to be performed prior to an operation in a sterile
environment, and re-calibration during a surgery would become possible in
the first place.
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Summary and Outlook

6.1 Summary

The main focus of this work is the development of new methods for the
self-calibration of a rigid stereo camera system. However, many of the algo-
rithms introduced here have a wider impact, particularly in robot hand-eye
calibration with all its different areas of application.

Stereo self-calibration refers to the computation of the intrinsic and extrin-
sic parameters of a stereo rig using neither a priori knowledge on the move-
ment of the rig nor on the geometry of the observed scene. The stereo param-
eters obtained by self-calibration, namely rotation and translation from left
to right camera, are used for computing depth maps for both images, which
are applied for rendering correctly occluded virtual objects into a real scene
(Augmented Reality). Note that a weak calibration, i. e., knowledge of the
fundamental matrix only, as opposed to a metric calibration which is com-
puted here, is usually not sufficient for Augmented Reality purposes. Depth
as well as rotation and translation must be known in a metric framework for
correct rendering of the virtual objects.

The proposed methods were evaluated on real and synthetic data and
compared to algorithms from the literature. In addition to a stereo rig, an
optical tracking system with a camera mounted on an endoscope was cali-
brated without a calibration pattern using the proposed extended hand-eye
calibration algorithm.

The self-calibration methods developed in this work have a number of
features, which make them easily applicable in practice: They rely on tem-
poral feature tracking only, as this monocular tracking in a continuous im-
age sequence is much easier than left-to-right tracking when the camera pa-
rameters are still unknown. Intrinsic and extrinsic camera parameters are
computed during the self-calibration process, i. e., no calibration pattern is
required. In contrast to some methods found in literature, the extension of
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the proposed algorithms from the minimum number of movements required
for calibration to an arbitrary number of stereo rig movements is straight-
forward. This allows for the use of all available data and thus more robust
calibration results. Regarding robustness, a data selection algorithm was in-
troduced, which is based on vector quantization and can be used without
further modifications for robot hand-eye calibration as well.

Two different methods for stereo self-calibration were presented. One is
based on an extended ICP (Iterative Closest Point) algorithm that uses recon-
structed 3-D points and is capable of estimating scale in addition to rotation
and translation, the other is based on an extended hand-eye calibration that
exploits knowledge on the reconstructed camera movements. The main fo-
cus of the work is on the latter one. Both methods use two image sequences
recorded by the cameras of a moving stereo rig as input. In each of the con-
tinuous image sequences, feature points are tracked monocularly from one
image to the next.

The point correspondences are used for obtaining two mutually indepen-
dent 3-D reconstructions of camera poses as well as 3-D points using a struc-
ture-from-motion approach. Note that the proposed stereo self-calibration
methods do not rely on any particular reconstruction algorithm. Therefore,
this part can easily be substituted when better 3-D reconstruction techniques
become available. Each reconstruction is only unique up to an unknown
similarity transformation, i. e., the world coordinate system can be chosen
arbitrarily and the scale of the reconstruction is unknown. This global scale
factor cannot be determined (and is not needed for the application at hand)
without further knowledge on the observed scene. However, it is possible
and necessary to compute the relative scale factor between the two recon-
structions in order to obtain the desired stereo parameters.

After an initial scale estimation, either the ICP based method or one of
the approaches based on hand-eye calibration (linear and non-linear, scale
either estimated at the beginning and fixed during further processing, or
scale estimated simultaneously with rotation and translation) can be used in
the final calibration step. Particularly, various formulations of the extended
hand-eye calibration problem have been introduced in this work: Firstly, a
linear one, which solves for rotation first, and for translation and scale in a
second step. Secondly, the scale factor estimation has been integrated into
the dual quaternion formulation of hand-eye calibration, resulting in a non-
linear objective function that can be minimized using standard optimization
methods (e. g., Levenberg-Marquardt). Additionally, an objective function
based on a non-linear criterion for standard hand-eye calibration introduced
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by Horaud and Dornaika has been extended such that scale can be estimated
as well.

The ICP based calibration algorithm performed better than a simple stan-
dard hand-eye calibration in almost every case, but gives consistently worse
results (averages, rotation: 23.0%, translation: 31.1%) than the other hand-
eye calibration methods and therefore cannot be recommended. The reason
is that even when the same scene has been observed by both cameras, the
reconstructed 3-D points are usually different due to different monocularly
tracked feature points. The main advantage of the ICP based approach is
that it can be used even if the rotational part of the camera movement was
very small, which causes problems in the hand-eye approach.

It is recommended to use either one of the dual quaternion hand-eye cal-
ibration algorithms, i. e., either the linear method, where scale is estimated
at the beginning and stays fixed, or the extended non-linear objective func-
tion proposed in this work which optimizes rotation, translation, and scale
simultaneously. The experiments showed that these algorithms yield calibra-
tion results that are equally good for rotation (linear: 12.0%, ext. non-linear:
11.9%) and translation (linear: 9.43%, ext. non-linear: 10.3%), while other
methods performed better either regarding rotation only (Andreff; rotation:
11.3%, translation: 11.8%) or translation only (Horaud and Dornaika; rota-
tion: 12.7%, translation: 9.67%). Simply solving the standard hand-eye cal-
ibration equations performs considerably worse than the above mentioned
algorithms, and therefore should not be used.

Based on these calibration results, depth maps were generated, which are
a prerequisite for rendering virtual objects into real images with correct oc-
clusion. The calibration accuracy was good enough to obtain a reasonable
augmentation. However, good calibration results are not a guarantee for
good augmentation in all cases, as much depends on the algorithm used for
depth map computation as well. This is particularly true when the images
consist of large areas with homogeneous color, where no left-to-right corre-
spondences can be obtained, resulting in holes in the depth map and virtual
objects shining through.

The proposed stereo self-calibration approach can also be used for ex-
tended hand-eye calibration, where the eye poses are obtained by structure-
from-motion rather than from a calibration pattern, which is a major advan-
tage in a clinical setup, as hand-eye calibration has to be performed prior
to each operation in a sterile environment. Additional experiments were
conducted on data obtained from an optical tracking system and a camera
mounted on an endoscope. For several reasons, the residual errors when
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using the extended calibration are currently still considerably higher than
those when using standard hand-eye calibration with a calibration pattern (3
to 4 cm as opposed to 2 mm translational error), but in principle, the method
is feasible. The observed residual errors of a few centimeters for translation
may be low enough for some applications already, but the accuracy for an
application in a clinical setup during a surgery is still too low.

The vector quantization based data selection step proposed in this work
is one of the most important steps, because it makes extended hand-eye cal-
ibration using a continuously recorded image sequence with 25 frames per
second possible in the first place. Without that step, hand-eye calibration
would be virtually impossible on these image sequences. A benefit of this
algorithm is that it can also be applied in standard robot hand-eye calibra-
tion, i. e., the impact of that method is considerably higher than that of a
mere stereo calibration data selection approach. Even in the case of standard
hand-eye calibration, where a small number of frames recorded at manually
selected distinct positions is used, an additional automatic data selection
(rotation: 0.404◦ , translation: 1.88 mm) proved to be superior to the stan-
dard approach that uses consecutive frames (rotation: 0.503◦ , translation:
2.19 mm).

The result of this step is a data set that is well-suited for hand-eye calibra-
tion in terms of fulfilling the non-parallelism criterion for the rotation axes,
mainly because it removes relative movements having small rotation angles
and selects those movements where the rotation axes are different. It has
to be taken into account, however, that much depends on the data set itself.
When the information contained in the movements is not general enough in
terms of different rotation axes, there is no way to obtain good calibration
results, no matter which data selection or hand-eye calibration algorithm is
used. The best results can be obtained by combining this manual selection
of recording positions with the automatic vector quantization based data
selection proposed in this work (cf. previous paragraph).

A variety of methods has been proposed, which differ from each other
in the dimensionality (2-D, 3-D, 4-D) of the vector quantization compared
to the degrees of freedom (two or three), and whether a fixed threshold, an
automatically computed one, or no threshold at all is used for incorporating
the rotation angle. The different dimensionalities originate from different
parameterizations used for representing 3-D rotations (normalized rotation
axes, axis/angle, polar coordinates, quaternions). The methods that use no
threshold are based on 3-D and 4-D vector quantization using the axis/angle
or quaternion representation of rotations, respectively.
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These methods were compared to using consecutive movements (i. e., us-
ing the movements as they are, without any data selection) and using only
the first steps of data selection (i. e., computation of relative movements and
removal of small rotation angles, but no vector quantization). As predicted,
the residual errors when using consecutive movements were always worse
than for the other methods, the results being virtually useless in most cases.
Much benefit can already be gained from the first step of the vector quanti-
zation based selection, namely using all combinations of relative movements
instead of consecutive ones (rotation: 1.74◦, translation: 3.92 mm). Based on
the experimental results, it is recommended to apply the vector quantiza-
tion based data selection using normalized rotation axes, including a pre-
selection step, which removes movements with small rotations based on an
automatically computed threshold (rotation: 1.59◦, translation: 3.80 mm).

6.2 Outlook

During development and experimental evaluation a number of possible ex-
tensions of the proposed algorithms that exceeded the scope of this work
arose. This section gives a short overview over the basic ideas of these ex-
tensions, and shows the possible directions of future research in the area of
hand-eye calibration as well as stereo-self calibration.

The basis of the stereo self-calibration algorithm is a reconstruction of the
3-D scene points as well as of the intrinsic and extrinsic camera parameters.
Currently, a structure-from-motion approach is used for this purpose, but
as the subsequent steps are independent of the used actual reconstruction
method, it can be substituted with more sophisticated algorithms as soon as
these are available. There are a number of drawbacks that originate from
the currently used structure-from-motion algorithm, mainly regarding the
requirements for the observed scene and the reconstruction accuracy. The
algorithm is based on a factorization method of an initial subsequence of
images, combined with an extension of the reconstruction, i. e., calibration
of the remaining camera poses. These methods assume a rigid scene, a re-
quirement that is not hard to fulfill in research, but can be difficult in a real
application. Therefore, the reconstruction part of the stereo self-calibration
method should be substituted with an algorithm that is capable of comput-
ing camera parameters and scene structure from dynamic scenes. Several
methods for the reconstruction of scenes containing moving rigid objects us-
ing a single camera have been published already. When the movement of ob-
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jects is restricted to movements along a line [Avi99, Sha01, Han03] or a conic
section [Sha99], the reconstruction of the scene as well as the objects can be
computed simultaneously. In case of arbitrarily moving objects, these have
to be separated from the scene first and can then be reconstructed separately
[Cos98, Kan01, Kan03, Vid04]. An overview over these algorithms as well
as an application to dynamic light-field rendering can be found in [Sch07].
All those approaches use only a single moving camera, which makes recon-
struction considerably harder than using two or more cameras that record
images from different positions at the same point in time. However, exploit-
ing this fact at an early stage of self-calibration would mean that the current
concept of using two mutually independent reconstructions would have to
be abandoned or at least softened, and may also include left-to-right tracking
at some stage, which is often not feasible when the camera parameters are
unknown.

Another important topic for real world applications is to update the cam-
era calibration online and thus correct small changes in the relative posi-
tioning of the cameras or focal length changes due to zooming without user
interaction. Based on an initial stereo calibration, a re-calibration of the in-
trinsic parameters and optical center (which is the position of the camera)
was presented in [Zom01]. However, the relative orientation is still assumed
to be constant over time. A method that would be worth looking at is to per-
form a stereo self-calibration as proposed in this work from time to time, and
to fuse the different estimates of the camera parameters into an updated and
more reliable estimate. This can be done, e. g., using probabilistic methods
based on particle filters [Isa98, Dou01, Den03].

The hand-eye calibration based stereo self-calibration method presented
here relies on a general movement of the stereo rig. When the movement
is not general enough, hand-eye calibration fails, which particularly means
that the translation estimate is inaccurate. While a short overview over spe-
cial cases of movements has been given, they are not treated in this work.
Additional information on this topic can be found in [And99, And01], who
discuss the cases of parallel rotation axes, pure rotation, and planar move-
ment. Especially the latter case is important in certain areas, namely stereo
rigs mounted on autonomous mobile systems moving on a planar surface
[Bea95a, Bea95b, Csu98a, Li04].

Another topic for future research could be the generalization of the pre-
sented algorithm to the self-calibration of more than two cameras that are
rigidly attached to each other, so-called multi-camera systems or omni-rigs,
where all cameras are mounted on a rig but can change there internal config-

186



6.2 Outlook

uration over time. Even though a general hand-eye calibration algorithm is
not yet available, these configurations are discussed in literature using var-
ious methods for calibration as well as re-calibration [Sha98, Zom01, Hu03,
Neu03, Fra04].

An extension that should be comparatively easy to implement while hav-
ing a large impact on the accuracy of the stereo parameters as well as on the
augmentation result is an additional left-to-right point feature tracking fol-
lowed by a (non-linear) re-calibration based on these features. As an initial
estimate of all camera parameters is readily available after using the meth-
ods proposed in this work, feature tracking becomes feasible too, because
the search can be restricted to epipolar lines or regions near those lines.
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Appendix A

HandEye Calibration Experiments

This appendix presents additional results for the hand-eye calibration exper-
iments of Section 5.2.

A.1 Codebook Size

In the following, additional experimental evaluations regarding the code-
book size used for vector quantization are shown. A detailed description
can be found in Section 5.2.2, page 131 ff.

The hand-eye calibration error (as defined in Sect. 5.1) for sequence ARTSid
dependent on the codebook size is shown in Figure A.1. Absolute errors as
well as relative errors are shown.

The residual errors with respect to ground truth data for ARTSid depen-
dent on the codebook size is shown in Figure A.2. This figure shows only
absolute errors, since the computation of relative errors for rotation is not
possible for the case of an identity rotation matrix (i. e., there was no rota-
tion).

The residual errors for StCamSid (using identity rotation and a translation
in x-direction) are shown in Figures A.3 and A.4.

The same experiments were performed for the SantaS sequence, again once
using identity rotation and a translation in x-direction (SantaSid), and once
using real stereo parameters as above (SantaSre). The results for SantaSid are
shown in Figures A.5 and A.6, the plots for SantaSre in Figures A.7 and A.8.
The number of frames contained in the SantaS sequence is much lower than
in the sequences used before. Therefore, the codebook size was evaluated
for up to 600 relative movements.
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Figure A.1: Sequence ARTSid using identity rotation matrix and translation in x-
direction: Mean relative and absolute errors in rotation and translation
dependent on the codebook size used for vector quantization.
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Figure A.2: Ground truth residuals for sequence ARTSid using identity rotation matrix
and translation in x-direction: Mean absolute errors in rotation and trans-
lation with respect to ground truth dependent on the codebook size used
for vector quantization.
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Figure A.3: Sequence StCamSid using rotation and translation based on real data:
Mean relative and absolute errors in rotation and translation dependent
on the codebook size used for vector quantization.
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Figure A.4: Ground truth residuals for sequence StCamSid using rotation and transla-
tion based on real data: Mean absolute errors in rotation and translation
with respect to ground truth dependent on the codebook size used for
vector quantization.
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Figure A.5: Sequence SantaSid using rotation and translation based on real data: Mean
relative and absolute errors in rotation and translation dependent on the
codebook size used for vector quantization.
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Figure A.6: Ground truth residuals for sequence SantaSid using rotation and transla-
tion based on real data: Mean absolute errors in rotation and translation
with respect to ground truth dependent on the codebook size used for
vector quantization.
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Figure A.7: Sequence SantaSre using rotation and translation based on real data: Mean
relative and absolute errors in rotation and translation dependent on the
codebook size used for vector quantization.
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Figure A.8: Ground truth residuals for sequence SantaSre using rotation and transla-
tion based on real data: Mean relative and absolute errors in rotation and
translation with respect to ground truth dependent on the codebook size
used for vector quantization.
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Figure A.9: Sequence ARTSid using identity rotation matrix and translation in x-
direction: Mean relative and absolute errors in rotation and translation
dependent on the fraction of relative movements left after pre-selection
with respect to the rotation angle. Codebook size: 1100.

A.2 Rotation Angle Threshold

In the following, additional experimental evaluations regarding the pre-se-
lection with respect to rotation angle are shown. A detailed description can
be found in Section 5.2.3, page 139 ff. Plots containing residual errors are
presented for the following data sets: ARTSid (Fig. A.9 and A.10), StCamSid
(Fig. A.11 and A.12), SantaSid (Fig. A.13 and A.14), and SantaSre (Fig. A.15
and A.16).
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Figure A.10: Ground truth residuals for sequence ARTSid using identity rotation ma-
trix and translation in x-direction: Mean absolute errors in rotation and
translation with respect to ground truth dependent on the fraction of rel-
ative movements left after pre-selection with respect to the rotation angle.
Codebook size: 1100.
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Figure A.11: Sequence StCamSid using rotation and translation based on real data:
Mean relative and absolute errors in rotation and translation dependent
on the fraction of relative movements left after pre-selection with respect
to the rotation angle. Codebook size: 2000.
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Figure A.12: Ground truth residuals for sequence StCamSid using rotation and transla-
tion based on real data: Mean absolute errors in rotation and translation
with respect to ground truth dependent on the fraction of relative move-
ments left after pre-selection with respect to the rotation angle. Codebook
size: 2000.
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Figure A.13: Sequence SantaSid using rotation and translation based on real data:
Mean relative and absolute errors in rotation and translation dependent
on the fraction of relative movements left after pre-selection with respect
to the rotation angle. Codebook size: 120.
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Figure A.14: Ground truth residuals for sequence SantaSid using rotation and transla-
tion based on real data: Mean absolute errors in rotation and translation
with respect to ground truth dependent on the fraction of relative move-
ments left after pre-selection with respect to the rotation angle. Codebook
size: 120.
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Figure A.15: Sequence SantaSre using rotation and translation based on real data:
Mean relative and absolute errors in rotation and translation dependent
on the fraction of relative movements left after pre-selection with respect
to the rotation angle. Codebook size: 120.
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Figure A.16: Ground truth residuals for sequence SantaSre using rotation and trans-
lation based on real data: Mean relative and absolute errors in rotation
and translation with respect to ground truth dependent on the fraction
of relative movements left after pre-selection with respect to the rotation
angle. Codebook size: 120.
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Method Translation Rotation Time
consecutive movements 1950 mm 2220% 51.1◦ 177% 42.5 msec

ground truth residual 4200 mm – 156◦ – –
all combin., no pre-sel. 3.54 mm 6.97% 0.659◦ 4.68% 3990 msec

ground truth residual 2.76 mm – 0.237◦ – –
all combin., fixed thresh. 3.50 mm 6.91% 0.656◦ 4.67% 3270 msec

ground truth residual 2.38 mm – 0.182◦ – –
all combin., aut. thresh. 3.51 mm 6.92% 0.656◦ 4.67% 4880 msec

ground truth residual 2.35 mm – 0.190◦ – –
VQ norm., fixed thresh. 3.62 mm 7.05% 0.665◦ 4.69% 12100 msec

ground truth residual 3.04 mm – 0.291◦ – –
VQ norm., aut. thresh. 3.62 mm 7.05% 0.662◦ 4.69% 14700 msec

ground truth residual 3.03 mm – 0.280◦ – –
VQ polar, fixed thresh. 3.62 mm 7.05% 0.665◦ 4.69% 10500 msec

ground truth residual 3.08 mm – 0.318◦ – –
VQ polar, aut. thresh. 3.66 mm 7.09% 0.665◦ 4.69% 12400 msec

ground truth residual 3.25 mm – 0.318◦ – –
VQ a/a, no thresh. 3.57 mm 6.99% 0.660◦ 4.68% 15400 msec

ground truth residual 2.81 mm – 0.265◦ – –
VQ a/a, fixed thresh. 3.53 mm 6.94% 0.663◦ 4.69% 11900 msec

ground truth residual 3.00 mm – 0.300◦ – –
VQ a/a, aut. thresh. 3.53 mm 6.94% 0.660◦ 4.68% 13600 msec

ground truth residual 2.92 mm – 0.264◦ – –
VQ quat., no thresh. 3.56 mm 6.98% 0.658◦ 4.68% 17200 msec

ground truth residual 2.95 mm – 0.213◦ – –
VQ quat., fixed thresh. 3.52 mm 6.93% 0.655◦ 4.67% 13500 msec

ground truth residual 3.34 mm – 0.106◦ – –
VQ quat., aut. thresh. 3.51 mm 6.93% 0.660◦ 4.68% 15200 msec

ground truth residual 2.78 mm – 0.259◦ – –

Table A.1: Comparison of different data selection methods, sequence ARTSid.

A.3 Comparison of Data Selection Methods

In the following, additional results regarding the comparison of the differ-
ent data selection strategies are presented. A detailed description can be
found in Section 5.2.4, page 146 ff. Tables containing residual errors are pre-
sented for the following sequences: ARTSid (Table A.1), StCamSid (Table A.2),
SantaSid (Table A.3), and SantaSre (Table A.4).

Table A.5 shows an additional evaluation reagrding the comparison of
continuously recorded sequences to data sets recorded at manually selected
positions with a small number of frames (cf. also Table 5.7, page 151).
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Method Translation Rotation Time
consecutive movements 1230 mm 14500% 20.8◦ 119% 79.3 msec

ground truth residual 6220 mm – 131◦ – –
all combin., no pre-sel. 4.02 mm 55.3% 6.55◦ 36.2% 18900 msec

ground truth residual 6.07 mm – 27.7◦ – –
all combin., fixed thresh. 3.76 mm 52.3% 5.48◦ 30.4% 13600 msec

ground truth residual 4.40 mm – 22.7◦ – –
all combin., aut. thresh. 3.66 mm 50.8% 5.03◦ 28.0% 16100 msec

ground truth residual 2.99 mm – 20.6◦ – –
VQ norm., fixed thresh. 3.67 mm 51.5% 4.83◦ 26.9% 69700 msec

ground truth residual 4.36 mm – 20.0◦ – –
VQ norm., aut. thresh. 3.50 mm 49.3% 3.75◦ 21.2% 32500 msec

ground truth residual 2.75 mm – 15.1◦ – –
VQ polar, fixed thresh. 3.53 mm 50.1% 3.61◦ 20.5% 63200 msec

ground truth residual 3.83 mm – 14.8◦ – –
VQ polar, aut. thresh. 3.52 mm 49.4% 3.92◦ 22.1% 26800 msec

ground truth residual 2.32 mm – 15.8◦ – –
VQ a/a, no thresh. 3.94 mm 54.3% 6.42◦ 35.5% 124000 msec

ground truth residual 5.24 mm – 27.3◦ – –
VQ a/a, fixed thresh. 3.72 mm 51.8% 5.36◦ 29.7% 70400 msec

ground truth residual 4.01 mm – 22.2◦ – –
VQ a/a, aut. thresh. 3.54 mm 49.7% 4.17◦ 23.4% 30400 msec

ground truth residual 2.72 mm – 16.9◦ – –
VQ quat., no thresh. 3.89 mm 53.8% 6.26◦ 34.5% 131000 msec

ground truth residual 5.24 mm – 26.0◦ – –
VQ quat., fixed thresh. 3.73 mm 52.0% 5.38◦ 29.9% 78000 msec

ground truth residual 4.15 mm – 22.5◦ – –
VQ quat., aut. thresh. 3.54 mm 49.7% 4.04◦ 22.7% 32100 msec

ground truth residual 2.78 mm – 16.3◦ – –

Table A.2: Comparison of different data selection methods, sequence StCamSid.

An additional evaluation regarding the comparison between the classic
calibration method using consecutive frames and the method using the data
selection proposed in this work is presented in Table A.6. The residuals
shown have been obtained by calibrating the data sets given in the table, fol-
lowed by an evaluation on a separate data set with a large number of frames,
namely on ART14 (for ART11), ART26 (ART20, ART21), ART48 (ART38), and
ART53 (ART50, ART52). Cf. also Table 5.8, page 153.
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Method Translation Rotation Time
consecutive movements 481 mm 266% 113◦ 140% 13.2 msec

ground truth residual 570 mm – 149◦ – –
all combin., no pre-sel. 7.18 mm 4.87% 2.75◦ 4.09% 161 msec

ground truth residual 81.9 mm – 28.6◦ – –
all combin., fixed thresh. 6.33 mm 4.46% 2.40◦ 3.68% 155 msec

ground truth residual 76.5 mm – 26.6◦ – –
all combin., aut. thresh. 6.60 mm 4.51% 2.49◦ 3.71% 212 msec

ground truth residual 71.3 mm – 24.9◦ – –
VQ norm., fixed thresh. 7.04 mm 4.62% 2.65◦ 3.81% 137 msec

ground truth residual 64.7 mm – 22.7◦ – –
VQ norm., aut. thresh. 4.71 mm 3.58% 1.68◦ 2.74% 199 msec

ground truth residual 54.4 mm – 19.1◦ – –
VQ polar, fixed thresh. 8.54 mm 5.35% 3.33◦ 4.60% 140 msec

ground truth residual 72.8 mm – 26.0◦ – –
VQ polar, aut. thresh. 6.19 mm 4.18% 2.31◦ 3.37% 198 msec

ground truth residual 52.1 mm – 19.3◦ – –
VQ a/a, no thresh. 15.2 mm 8.38% 7.10◦ 8.84% 119 msec

ground truth residual 96.5 mm – 31.8◦ – –
VQ a/a, fixed thresh. 5.44 mm 4.11% 2.34◦ 3.63% 133 msec

ground truth residual 77.2 mm – 27.1◦ – –
VQ a/a, aut. thresh. 6.60 mm 4.51% 2.89◦ 4.07% 198 msec

ground truth residual 73.0 mm – 24.1◦ – –
VQ quat., no thresh. 9.85 mm 5.89% 4.58◦ 5.91% 131 msec

ground truth residual 75.3 mm – 25.9◦ – –
VQ quat., fixed thresh. 6.61 mm 4.55% 3.00◦ 4.23% 169 msec

ground truth residual 75.1 mm – 25.9◦ – –
VQ quat., aut. thresh. 7.88 mm 5.19% 3.57◦ 4.91% 202 msec

ground truth residual 87.5 mm – 29.1◦ – –

Table A.3: Comparison of different data selection methods, sequence SantaSid.
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Method Translation Rotation Time
consecutive movements 15.3 mm 5.68% 7.38◦ 8.88% 13.3 msec

ground truth residual 40.4 mm 35.4% 15.6◦ 152% –
all combin., no pre-sel. 5.42 mm 2.27% 2.33◦ 3.06% 166 msec

ground truth residual 7.19 mm 6.30% 3.21◦ 31.3% –
all combin., fixed thresh. 5.09 mm 2.16% 2.17◦ 2.88% 150 msec

ground truth residual 6.90 mm 6.05% 3.04◦ 29.7% –
all combin., aut. thresh. 4.95 mm 2.12% 2.10◦ 2.81% 212 msec

ground truth residual 6.64 mm 5.82% 2.94◦ 28.6% –
VQ norm., fixed thresh. 4.23 mm 1.89% 1.80◦ 2.48% 142 msec

ground truth residual 4.48 mm 3.93% 2.08◦ 20.3% –
VQ norm., aut. thresh. 7.39 mm 2.89% 3.31◦ 4.16% 203 msec

ground truth residual 5.36 mm 4.70% 3.18◦ 31.0% –
VQ polar, fixed thresh. 4.11 mm 1.85% 1.71◦ 2.39% 139 msec

ground truth residual 5.67 mm 4.97% 2.41◦ 23.5% –
VQ polar, aut. thresh. 3.68 mm 1.72% 1.47◦ 2.13% 198 msec

ground truth residual 3.90 mm 3.42% 1.73◦ 16.9% –
VQ a/a, no thresh. 4.78 mm 2.07% 2.02◦ 2.72% 116 msec

ground truth residual 7.77 mm 6.81% 3.12◦ 30.4% –
VQ a/a, fixed thresh. 4.07 mm 1.84% 1.65◦ 2.32% 134 msec

ground truth residual 6.26 mm 5.48% 2.61◦ 25.5% –
VQ a/a, aut. thresh. 4.79 mm 2.07% 2.04◦ 2.74% 193 msec

ground truth residual 6.55 mm 5.74% 2.92◦ 28.5% –
VQ quat., no thresh. 7.33 mm 2.88% 3.23◦ 4.06% 132 msec

ground truth residual 8.42 mm 7.38% 3.94◦ 38.4% –
VQ quat., fixed thresh. 5.97 mm 2.44% 2.61◦ 3.36% 145 msec

ground truth residual 6.50 mm 5.69% 3.08◦ 30.0% –
VQ quat., aut. thresh. 4.51 mm 1.98% 1.92◦ 2.61% 202 msec

ground truth residual 7.01 mm 6.15% 2.96◦ 28.8% –

Table A.4: Comparison of different data selection methods, sequence SantaSre.
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Data Set Translation Rotation
ART11 3.99 mm 13.5% 0.993◦ 3.08%
ART14 7.46 mm 22.4% 2.65◦ 7.60%
ART20 3.21 mm 8.26% 0.641◦ 2.07%
ART21 2.29 mm 6.95% 0.631◦ 2.07%
ART26 2.18 mm 6.56% 0.534◦ 1.78%
ART38 1.30 mm 4.06% 0.273◦ 0.712%
ART48 1.98 mm 5.62% 0.375◦ 0.978%
ART50 1.42 mm 5.28% 0.388◦ 1.09%
ART52 1.45 mm 5.37% 0.613◦ 1.57%
ART53 1.93 mm 7.06% 0.729◦ 1.82%

Table A.5: Comparison of the continuously recorded sequences ART14, ART26, ART48,
and ART53 to data sets recorded at manually selected positions with a small
number of frames. The residuals were computed on ART11, ART20, ART38,
and ART50. It can be observed that a manual selection of positions while
recording images is not always superior to the conveniently recorded con-
tinuous image sequences.

Consecutive Frames Data Selection
Data Set Translation Rotation Translation Rotation
ART11 3.84 mm 11.3% 1.05◦ 8.88% 3.08 mm 9.84% 1.13◦ 9.23%
ART20 2.31 mm 10.2% 0.556◦ 3.46% 2.07 mm 9.48% 0.554◦ 3.44%
ART21 1.65 mm 8.02% 0.556◦ 3.47% 1.57 mm 8.02% 0.544◦ 3.41%
ART38 1.85 mm 8.41% 0.892◦ 4.34% 1.86 mm 8.74% 0.920◦ 4.38%
ART50 2.08 mm 5.49% 0.672◦ 3.21% 2.00 mm 5.39% 0.577◦ 2.96%
ART52 1.58 mm 4.68% 0.601◦ 3.06% 1.58 mm 4.68% 0.564◦ 2.94%

Table A.6: Comparison between the classic hand-eye calibration method using con-
secutive frames (left) and the method using the data selection proposed in
this work (right). Clearly, an additional data selection improves the cali-
bration accuracy on these data sets, which contain only a small number of
frames recorded at manually selected distinct camera positions. The resid-
uals shown have been obtained by calibrating the data sets given in the
table, followed by an evaluation on a separate data set with a large number
of frames, namely on ART14 (for ART11), ART26 (ART20, ART21), ART48
(ART38), and ART53 (ART50, ART52).
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B.2 Einleitung

In den letzten Jahren hat das Interesse an der erweiterten Realität (Augmen-
ted Reality, AR) stark zugenommen, sowohl in der Forschung als auch in
der Industrie. Tatsächlich ist die erweiterte Realität ein weites Feld, in dem
verschiedene Forschungsgebiete ein gemeinsames Betätigungsfeld gefunden
haben, um integrierte Systeme zu entwickeln und auf diese Weise gegen-
seitig aus den daraus gewonnenen Erfahrungen zu profitieren. Um einen
Eindruck von der breiten Anwendbarkeit von AR Techniken zu bekommen,
sollen im Folgenden einige Beispiele von AR Forschungsprojekten gegeben
werden, die in den letzten Jahren durchgeführt wurden.

Ziel des vom BMBF1 geförderten Projekts Arvika [Fri04, ARV] (und auch
dessen Vorgängers Artesas [ART]) war die Entwicklung eines AR Systems,
das die Entwicklung, Produktion und den Service von technischen Produk-
ten in der Industrie unterstützt. Der Hauptanwendungsbereich war die Kon-
struktion und Fertigung von Autos und Flugzeugen.

Geist [Kre01, GEI], das ebenfalls vom BMBF gefördert wurde, ist ein Pro-
jekt, welches ein mobiles AR System als historischen Führer bei Besichti-
gungen von historischen Stätten verwendet. Geist besteht aus drei Haupt-
bestandteilen: Einer Verfolgungskomponente, die die Schätzung der Positi-
on und Orientierung des Benutzers ermöglicht, einer Datenbank, die den
Zugriff auf Informationen über historische Stätten erlaubt, sowie einer in-
teraktiven Erzählkomponente, die den Benutzer unterhält, indem er in einen
historischen Roman integriert wird. Eine ähnliche Idee wurde im System Ar-
cheoguide [Vla02, ARC] (gefördert von der europäischen Union und dem
Archeoguide Konsortium) realisiert, welches ein AR-unterstützter mobiler
Führer für die Erkundung archäologischer Stätten ist, inklusive einer 3-D
Visualisierung altertümlicher Gebäude, von denen nur noch Ruinen übrig
sind.

Im Vampire Projekt [VAM], welches von der europäischen Union geför-
dert wird, wird ein System entwickelt, das die Speicherung und Analyse
von Daten erlaubt, die mit Hilfe einer in Kopfhöhe am Benutzer angebrach-
ten Kamera aufgenommen wurden. Diese Daten ermöglichen es dem Benut-
zer Anfragen an das System zu stellen (z. B. ‘Wo habe ich meine Schlüssel
hingelegt?’), wobei die Antwort mit Hilfe eines Head-Mounted Displays dar-
gestellt werden.

Ein weiteres Gebiet, in dem AR Methoden von Interesse sind, ist die Medi-

1 Bundesministerium für Bildung und Forschung
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zin [Mau01, Sal01, Sau01, Sch02c, Kha03, Vog03b, Vog04c], insbesondere die
Neurochirurgie [Lié01] und die minimal-invasive Chirurgie [Sch03a, Sch03b,
Tra04, Vog05]. Hier kann die AR z. B. zur Visualisierung prä-operativ auf-
genommener medizinischer Daten, wie CT oder MR, verwendet werden.
Während eines Eingriffs werden diese Daten dann in ihrer korrekten Po-
sition und Orientierung dargestellt und unterstützen damit den Arzt bei der
Navigation.

Diese Projekte zeigen, dass die erweiterte Realität ein facettenreiches For-
schungsgebiet ist. Deshalb kann in der vorliegenden Arbeit nur ein klei-
ner Ausschnitt aus dem Bereich erweiterte Realität behandelt werden. Der
Schwerpunkt liegt dabei auf Methoden des Rechnersehens, die für AR An-
wendungen benötigt werden.

Im Folgenden werden die Begriffe erweiterte, virtuelle und gemischte Reali-
tät definiert, und die Zielsetzung dieser Arbeit erläutert. Anschließend wer-
den in Abschnitt B.2.2 exemplarisch Probleme aus dem Rechnersehen vor-
gestellt, die in AR Anwendungen auftreten. Der Beitrag dieser Arbeit ist in
Abschnitt B.2.3 zusammengefasst. Am Ende des Einführungskapitels wird
ein Überblick über die weitere Arbeit gegeben.

B.2.1 Problembeschreibung

Zunächst soll der Begriff erweiterte Realität näher erläutert werden. Es wird
hier die Definition aus [Mil99] übernommen, wo die Begriffe Augmented Rea-
lity und Augmented Virtuality eingeführt wurden, wobei beide als Teil ei-
nes sogenannten Reality-Virtuality Continuum angesehen werden, welches in
Bild B.1 zu sehen ist.

An den beiden Enden dieses RV-Continuums befinden sich Umgebungen,
die entweder vollständig real oder vollständig computergeneriert sind. Die
letztgenannte Umgebung ist allgemein unter virtuelle Realität (Virtual Reali-
ty) bekannt, was normalerweise eine interaktive, künstlich erzeugte Umge-
bung bezeichnet. Eine virtuelle Realität kann allein mit Hilfe von Methoden
der Computergrafik erzeugt werden und wird daher in dieser Arbeit nicht
weiter betrachtet. Der Bereich des Kontinuums, der virtuelle Umgebungen
beschreibt, die durch reale Objekte erweitert wurden, wird als Augmented
Virtuality bezeichnet, wohingegen Augmented Reality bedeutet, dass reale
Szenen mit virtuellen, d. h. computergenerierten, Objekten oder Daten er-
weitert wurden. Augmented Virtuality und Augmented Reality werden un-
ter dem Begriff Mixed Reality zusammengefasst., der das gesamte Reality-
Virtuality Kontinuum ohne die beiden Extremfälle einer komplett realen
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Reality−Virtuality (RV) Continuum
Environment

Virtual

Augmented Reality

Real
Environment

Augmented Virtuality

Mixed Reality

Abbildung B.1: Das Reality-Virtuality Continuum nach [Mil99] beschreibt die ver-
schiedenen Ebenen der Erweiterung entweder einer realen oder ei-
ner virtuellen Umgebung. Die beiden Extreme sind die rein reale Um-
gebung (Reality) links und die rein virtuelle (Virtuality, auch: Virtual
Reality) rechts. Der Begriff Mixed Reality enthält sowohl die erweiterte
Realität (Augmented Reality) als auch die virtuelle (Virtual Reality),
die den linken bzw. rechten Teil des Kontinuums ohne die Endpunkte
bilden. Diese Arbeit behandelt Probleme aus der erweiterten Realität
(Augmented Reality), d. h. der Erweiterung realer Szenen durch compu-
tergenerierte Objekte oder Daten.

bzw. komplett virtuellen Umgebung bezeichnet.
Es gibt verschiedene Methoden zur Visualisierung in Augmented Reality

Anwendungen: Monitore, entweder in Form von Standardmonitoren oder
3-D Monitoren, oder Head-Mounted Displays (HMD). Ein 3-D auto-stereo-
skopischer Monitor [Dod95, Dod00, SEE] hat den Vorteil, dass der Benutzer
keine weiteren Hilfsmittel tragen muss um die erweiterte Szene zu betrach-
ten. Es existieren auch 3-D Monitore, die auf der Verwendung von polari-
siertem Licht basieren [IND], wo der Benutzer eine spezielle Brille tragen
muss, die das linke Bild vom rechten trennt. Allerdings ist ein 3-D Monitor
im Gegensatz zu einem HMD nicht tragbar. Zur Zeit sind zwei Arten von
HMDs verfügbar; die erste Art wird als optisches HMD bezeichnet (vgl. z. B.
[Aue99, Sal01]), die zweite als Video HMD, z. B. [Vog04c]. Der Hauptunter-
schied zwischen den beiden Arten ist, dass optische HMDs eine Optik, d. h.
Linsen, verwenden, um reale Szene und virtuelle Objekte zu kombinieren,
während Video HMDs (eine oder zwei) Kameras verwenden um die rea-
le Umgebung aufzunehmen. Ein Beispiel eines video-basierten Systems wie
es im Vampire Projekt verwendet wurde ist in Bild B.2 zu sehen. Die von
diesen Kameras aufgenommenen (digitalen) Bilder werden durch Softwa-
re mit computergenerierten Objekten kombiniert. Einen Vergleich zwischen
den beiden Arten von HMDs findet man in [Sch00b].

Das Szenario in dieser Arbeit ist eine Augmented Reality Umgebung, in
der reale Szenen mit künstlich erzeugten Objekten erweitert werden kön-
nen, die durch reale Objekte verdeckt werden und umgekehrt. Mögliche An-
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Abbildung B.2: Dieses Bild zeigt eine Person, die ein Video HMD trägt, welches im
Projekt Vampire verwendet wird. Zwei Kameras sind an einem Helm
unmittelbar über dem HMD angebracht. Diese werden als Stereoka-
meras zur Visualisierung der (erweiterten) Szene im HMD eingesetzt.

wendungen sind beispielsweise die Architektur, wo Gebäude oder Teile von
Gebäuden, die erst noch gebaut werden sollen, korrekt erweitert werden,
wodurch man einen Eindruck davon bekommt, wie das Endergebnis wahr-
scheinlich aussehen wird.

Die Daten, die notwendig sind um korrekte Verdeckungen zu berechnen
und eine 3-D Visualisierung zu erzeugen, werden von einem Stereokame-
rasystem aufgenommen. Dieses ist entweder am Kopf des Benutzers ange-
bracht, der ein videobasiertes HMD trägt um die erweiterten Bilder zu be-
trachten; oder es wird manuell bewegt und an Stelle eines HMD wird ein
Standard- oder 3-D Monitor zur Visualisierung verwendet. Im letztgenann-
ten Fall kann das System auch off-line, d. h. ohne Echtzeitbeschränkungen,
verwendet werden.

Wenn Stereokameras zur Berechnung von Verdeckungen eingesetzt wer-
den tritt das Problem der Kamerakalibrierung auf, was hauptsächlich be-
deutet, dass die starre Transformation (Rotation und Translation) von einer
Kamera zur anderen bekannt sein muss. Normalerweise wird diese Transfor-
mation mit Hilfe eines Kalibriermusters mit bekannter Geometrie bestimmt,
was die Bestimmung aller (intrinsischer und extrinsischer) Kameraparame-
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ter erlaubt. Dieser Ansatz hat den Nachteil, dass ein solches System oft nicht
‘plug-and-play’-fähig ist. D. h. der Benutzer kann nicht einfach das HMD
aufsetzen und anfangen zu arbeiten, sondern muss erst Bilder des Kalibrier-
musters aufnehmen und die Kalibrierung durchführen. Das ist insbesondere
dann ein Problem, wenn ein Kamerasystem verwendet wird, bei dem die
Kameras entweder separat vom Benutzer angebracht werden können (und
die damit jedesmal eine andere relative Lage haben), oder bei Systemen, die
zwar starr sind aber wo die Kamerapositionen sich durch Wackeln während
der Benutzung leicht ändern können. Letzteres ist nicht nur zu Beginn der
Benutzung des Systems ein Problem, sondern auch während der Benutzung,
da die Kamerapositionen sich leicht verändern können während der Benut-
zer sich bewegt, was inkorrekte Verdeckungen zur Folge hätte.

Daher ist es wünschenswert ein System zu haben, das in der Lage ist sich
selbst zu kalibrieren, und zwar ohne dass ein Kalibriermuster verwendet
wird und ohne explizite Benutzeraktion, sondern während der Benutzung
des Systems indem man sich kurz umsieht, und das die Kalibrierung online
durchführen und somit kleine Veränderungen in der relativen Lage der Ka-
meras korrigieren kann, ebenfalls ohne Eingriff des Benutzers. Diese Arbeit
behandelt hauptsächlich das erste Problem der Stereo-Selbstkalibrierung,
und die vorgestellten Algorithmen können auch zur Rekalibrierung wäh-
rend der Laufzeit verwendet werden.

B.2.2 Erweiterte Realität und Rechnersehen

In diesem Abschnitt wird ein Überblick über die in der erweiterten Realität
gemeinhin auftretenden Probleme aus dem Bereich des Rechnersehens ge-
geben und an Hand von Beispielen erläutert. Da dies ein weites Gebiet mit
vielen verschiedenen Anwendungsmöglichkeiten ist, beschränkt sich dieser
Überblick auf Methoden, die mit den Problemen der Stereo- bzw. Kamera-
kalibrierung in Zusammenhang stehen.

Eine wichtige Aufgabe in der erweiterten Realität ist die Verfolgung (Track-
ing) der Position und Orientierung des Benutzers, die für eine korrekte Er-
weiterung der Szene benötigt werden. Es existieren verschiedene Methoden
(z. B. mechanisch, magnetisch, trägheitsmessend, akustisch, GPS, optisch)
um diese Aufgabe zu bewältigen, wofür oft zusätzliche Tracking-Hardware
benötigt wird. Einen Überblick findet man in [Aue00]. Bei vielen Anwendun-
gen ist die Verwendung einer einzelnen Trackingmethode nicht ausreichend
und es müssen verschiedene Methoden kombiniert werden. Dies wird als
hybrides Tracking bezeichnet [Aue00, Neu99, Rib02, Rib03, Rib04].
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(a) Originalbild (b) Augmentiertes Bild

Abbildung B.3: Beispiel eines Augmented Reality Systems: Der im linken Bild zu se-
hende reale Farbwürfel kann durch ein beliebiges computergenerier-
tes virtuelles Objekt wie die hier verwendete Teekanne ersetzt werden
(Bilder aus [Sch01b])

Ein in der Augmented Reality Gemeinde weit verbreiteter Ansatz beim
optischen Tracking ist die Verwendung von Markern (die oft als ‘fiducials’
oder ‘target’ bezeichnet werden), welche ein festes Referenzkoordinatensy-
stem definieren [Neu99, Vog02, Cha03a, Cha03b]. Diese erlauben die Kali-
brierung einer Kamera (normalerweise einer einzigen) mit Hilfe von stan-
dard Kamerakalibrierverfahren, was bedeutet, dass die Kameraposition und
Orientierung bezüglich eines gegebenen Weltkoordinatensystems zu jedem
Zeitpunkt bekannt sind. Normalerweise werden Verdeckungen dabei nicht
weiter behandelt, und die Marker sind in der erweiterten Szene weiterhin
sichtbar.

Ein System, das ebenfalls standard Kamerakalibrierungsmethoden ver-
wendet, aber bei dem die benutzten ‘Marker’ in der erweiterten Szene nicht
mehr sichtbar sind, wird in [Sch01b, Sch01c, Sch00b] beschrieben. Die grund-
legende Idee bei diesem System ist es, ein kleines transportables Objekt mit
bekannter Geometrie als Kalibriermuster zu verwenden und dieses reale Ob-
jekt in der endgültigen erweiterten Szene durch ein virtuelles zu ‘ersetzen’.
Ein Beispiel eines als Eingabe verwendeten Bildes und des zugehörigen er-
weiterten Bildes ist in Abbildung B.3 zu sehen. Das verwendete reale Objekt
wird in Bild B.3(a) gezeigt: Es ist ein Metallwürfel mit einer Seitenlänge von
6 cm, der auf jeder Seite eine andere Farbe besitzt, was die Bestimmung der
Lage des Würfels erlaubt. Der Würfel wird mit Hilfe einer Farbsegmentie-
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Abbildung B.4: Beispiel eines Augmented Reality Systems, bei dem die Verdeckungen
richtig sind: Ideale Stereobilder wurden zur Berechnung von dichten
Disparitätskarten verwendet. Die obere Reihe zeigt die linken, die un-
tere Reihe die rechten Bilder in der folgenden Reihenfolge: Original,
Disparitätskarte, Erweiterung mit einem und mit drei virtuellen Ob-
jekten. Das Original-Stereobildpaar stammt von [Tsu], die Ergebnisse
aus [Vog01, Sch02a].

rung detektiert. Nachdem die Lage des Würfels im Bild bekannt ist, können
seine Ecken zur Kamerakalibrierung verwendet werden. Die berechneten Ka-
meraparameter werden benutzt, um mit Hilfe von OpenGL ein beliebiges
Objekt in der gleichen Position und Orientierung in das Bild zu rendern; das
Ergebnis ist in Bild B.3(b) zu sehen.

Eine Methode zur Berechnung von dichten Disparitätskarten aus Stereo-
bildern und die Anwendung zur Verdeckungsbehandlung in der erweiter-
ten Realität wurde in [Vog01, Sch02a] vorgestellt. Dieser Algorithmus kann
in Echtzeit dichte Disparitätskarten berechnen, die konsistent für die lin-
ke und rechte Kamera sind und Kanten erhalten. Eine Voraussetzung ist
aber, dass die intrinsischen und extrinsischen Kameraparameter exakt be-
kannt sind. Beispiele von Ergebnissen, die mit diesem Algorithmus erzielt
wurden, sowie erweiterte Szenen sind in Abbildung B.4 und B.5 zu sehen. In
beiden Abbildung befinden sich die Originalbilder ganz links. Während das
Stereobildpaar in Abbildung B.4 mit einer idealen Stereokamera gemacht
wurde, wurden die Originalbilder in Abbildung B.5 zu zwei verschiedenen
Zeitpunkten mit einer einzelnen handgeführten Kamera aufgenommen. Im
letzteren Fall wurden die Kameraparameter mit Hilfe eines Struktur-aus-
Bewegung Verfahrens berechnet, wie es in [Hei04] beschrieben ist.
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Abbildung B.5: Beispiel eines Augmented Reality Systems, bei dem die Verdeckungen
richtig sind: Zwei Bilder, die mit einer einzelnen handgeführten Kame-
ra aufgenommen und als Stereosystem interpretiert wurden, wurden
zur Berechnung dichter Disparitätskarten verwendet. Die obere Reihe
zeigt die linken, die untere Reihe die rechten Bilder in der folgen-
den Reihenfolge: Originalbilder, rektifizierte Bilder, Disparitätskarte,
Erweiterung. Die Bilder stammen aus [Vog01, Sch02a].

B.2.3 Beitrag dieser Arbeit

Ziel dieser Arbeit ist die Durchführung der Selbstkalibrierung eines star-
ren Stereokamerasystems ohne Wissen über die Szenenstruktur oder über
Kameraparametern aus einer Bildsequenz, die gleichzeitig von beiden Ka-
meras aufgenommen wird. Die so bestimmten Stereoparameter können zur
Berechnung von Tiefenkarten für beide Bilder verwendet werden, die nötig
sind um virtuelle Objekte verdeckungsrichtig in eine reale Szene rendern zu
können.

Die hier beschriebene Methode basiert auf drei grundlegenden Ideen: Als
erstes ist zu nennen, dass nur zeitliche Punktkorrespondenzen erzeugt wer-
den müssen, d. h. Punktmerkmale werden von einem Bild einer Kamera zum
nächsten Bild derselben Kamera verfolgt, nicht jedoch von links nach rechts.
Dies ist vorteilhaft, da eine zeitliche Punktverfolgung in einer Bildfolge rela-
tiv einfach ist, weil die Unterschiede zwischen zwei von derselben Kamera
nacheinander aufgenommenen Bildern klein sind. Links-Rechts Verfolgung
dagegen ist oft nicht machbar wenn die Kameraparameter unbekannt sind,
insbesondere wenn die optischen Achsen der Kameras beinahe parallel sind
und die Basis groß ist.
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Zweitens basiert der verwendete Ansatz auf zwei unabhängig voneinan-
der durchgeführten 3-D Rekonstruktionen der aufgenommenen Szene mit-
tels Struktur-aus-Bewegung. Wichtige Zwischenergebnisse dieses Schrittes
sind die Kamerapositionen und -orientierungen der linken und rechten Ka-
mera. Diese befinden sich jedoch in verschiedenen Koordinatensystemen
und haben eine unterschiedliche Skalierung, da eine 3-D Rekonstruktion
nur bis auf einen unbekannten Skalierungsfaktor eindeutig ist, wenn kein
a-priori Wissen über die Szene oder die Kamera verwendet wird.

In einem dritten Schritt wird die starre Transformation von der linken zur
rechten Kamera aus den zwei Rekonstruktionen berechnet, wobei die aus der
Robotik bekannte Hand-Auge Kalibrierung als Grundlage verwendet wird.
Der Hauptunterschied zum klassischen Ansatz in der Robotik ist der zu-
sätzlich zu schätzende Skalierungsfaktor. Es wird in dieser Arbeit gezeigt,
wie das erweiterte Hand-Auge Kalibrierproblem – die Schätzung einer Ähn-
lichkeitstransformation bestehend aus Rotation, Translation und Skalierung
– mit Hilfe von dualen Quaternionen formuliert werden kann.

Ein der Hand-Auge Kalibrierung inhärentes Problem ist, dass mindestens
zwei allgemeine Bewegungen der Kameras zur Berechnung der starren Trans-
formation benötigt werden. Ist die Bewegung nicht allgemein genug (z. B.
eine reine Translation oder Rotation), so kann nur ein Teil der gesuchten Pa-
rameter berechnet werden, was für die Berechnung von Tiefenkarten nicht
ausreichen würde. Daher werden in einem Hauptteil dieser Arbeit Methoden
zur Datenselektion diskutiert, die die Robustheit der Hand-Auge Kalibrie-
rung erhöhen. Verschiedene neue Ansätze werden erläutert, wobei die nütz-
lichsten auf Vektorquantisierung basieren. Die in dieser Arbeit entwickelten
Datenselektionsmethoden können nicht nur zur Stereo-Selbstkalibrierung
verwendet werden, sondern auch in der klassischen Hand-Auge Kalibrie-
rung. Sie sind zudem unabhängig vom tatsächlich verwendeten Hand-Auge
Kalibrieralgorithmus. Die Verfahren wurden bereits erfolgreich zur Kalibrie-
rung eines Endoskopieroboters im Projekt SFB 603/B6 [Sch03c] als auch zur
Kalibrierung eines optischen Trackingsystems eingesetzt [Sch04a].

Die hier vorgestellte Stereo-Selbstkalibriermethode kann auch zur Hand-
Auge Kalibrierung in der Robotik eingesetzt werden, wo an Stelle eines Kali-
briermusters – das in der Originalmethode notwendig ist – Algorithmen zur
3-D Rekonstruktion verwendet werden, die eine beliebige Bildfolge als Ein-
gabe benutzen und damit ein Kalibriermuster überflüssig machen [Sch05].
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B.2.4 Übersicht

Diese Arbeit ist wie folgt strukturiert: Das nächste Kapitel trägt den Titel
Grundlagen des Rechnersehens und stellt den theoretischen Hintergrund vor,
der zum Verständnis der restlichen Arbeit notwendig ist. Es werden mathe-
matische Modelle von Kameras zur Projektion vom 3-D in den 2-D ebenso
eingeführt wie die geometrischen Eigenschaften eines Stereokamera-Systems
(Abschnitt 2.1). Verschiedene Darstellungen von 3-D Rotationen und Trans-
lationen werden in Abschnitt 2.2 vorgestellt, da diese im neuen Stereo-Selbst-
kalibrieralgorithmus, der auf unabhängigen 3-D Rekonstruktionen der Sze-
nengeometrie und Bewegung der zwei Kameras basiert, eine wichtige Rolle
spielen. Daher werden auch grundlegende Rekonstruktions- und Selbstka-
librieralgorithmen eingeführt (Abschnitt 2.3). Einer der Hauptteile der neu-
en Methode basiert auf einer erweiterten Hand-Auge Kalibrierung. Klassi-
sche und aktuelle Hand-Auge Kalibriermethoden aus der Robotik werden
in Abschnitt 2.4 beschrieben. Am Ende des Kapitels wird in Abschnitt 2.5
die Berechnung von dichten Tiefenkarten erläutert. Diese Tiefenkarten wer-
den zur Darstellung von virtuellen Objekten in realen Szenen mit korrekter
Verdeckung verwendet, wozu ein kalibriertes Stereosystem benötigt wird.

In Kapitel 3 werden verschiedene Methoden zur Selbstkalibrierung eines
starren Stereokamerasystems beschrieben, wie sie in der Literatur zu finden
sind. Nach einer Einführung in das Problem der Stereo-Selbstkalibrierung
enthält dieses Kapitel zwei Hauptteile, die mit den beiden Hauptklassen
der Selbstkalibrieralgorithmen korrespondieren: Die einen benötigen links-
rechts Merkmalskorrespondenzen (Abschnitt 3.2), die anderen dagegen nicht
(Abschnitt 3.3).

Der Hauptbeitrag dieser Arbeit wird in Kapitel 4 vorgestellt: Ein neuer
Algorithmus zur Stereo-Selbstkalibrierung, der auf zwei voneinander unab-
hängigen Rekonstruktionen der Kameraparameter der linken und rechten
Kamera basiert (Abschnitt 4.2). Diese Rekonstruktion wird verwendet, um
die Parameter des Stereosystems sowohl linear als auch nichtlinear zu schät-
zen (Abschnitt 4.3). Methoden für die Selektion von zur Hand-Auge Kali-
brierung gut geeigneten Daten werden in Abschnitt 4.4 vorgestellt.

Experimente zur Evaluation der vorgeschlagenen Algorithmen befinden
sich in Kapitel 5. Nach einem Überblick über die Experimente werden die
verwendeten Fehlermetriken erläutert; in den daran anschließenden beiden
Abschnitten werden die Hand-Auge Kalibrierung (Abschnitt 5.2) und die
Stereo-Selbstkalibrierung (Abschnitt 5.3) sowohl auf synthetischen als auch
auf realen Daten evaluiert. Es wird außerdem gezeigt, wie der Algorith-
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mus zur Hand-Auge Kalibrierung eines optischen Trackingsystems in der
minimal-invasiven Chirurgie eingesetzt wurde. Ergebnisse zur Augmented
Reality werden in Abschnitt 5.4 präsentiert. Das Kapitel schließt mit einer
Diskussion der Ergebnisse.

Den Abschluss der Arbeit bilden eine Zusammenfassung und ein Ausblick
in Kapitel 6.
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B.3 Zusammenfassung und Ausblick

B.3.1 Zusammenfassung

Diese Arbeit befasst sich hauptsächlich mit der Entwicklung von neuen Me-
thoden zur Selbstkalibrierung eines starren Stereokamera-Systems. Viele der
hier eingeführten Algorithmen haben jedoch einen viel größeren Einfluss,
insbesondere in der Hand-Auge Kalibrierung mit ihren unterschiedlichen
Einsatzgebieten.

Als Stereo-Selbstkalibrierung wird die Berechnung der intrinsischen und
extrinsischen Parameter einer Stereokamera bezeichnet, ohne dass dabei a-
priori Wissen über die Bewegung der Kameras oder die Szenengeometrie
verwendet wird. Die bei der Selbstkalibrierung berechneten Stereoparame-
ter, nämlich Rotation und Translation von der linken zur rechten Kamera,
werden zur Generierung von Tiefenkarten für beide Bilder verwendet. Die-
se werden benutzt, um virtuelle Objekte verdeckungsrichtig in eine echte
Szene zu rendern (erweiterte Realität). Im Gegensatz zu der hier berechne-
ten metrischen Kalibrierung ist eine schwache Kalibrierung, d. h. alleinige
Kenntnis der Fundamentalmatrix, normalerweise für Anwendungen in der
erweiterten Realität nicht ausreichend. Sowohl Tiefe als auch Rotation und
Translation müssen in einem metrischen System bekannt sein, damit virtu-
elle Objekte korrekt gerendert werden können.

Die vorgeschlagenen Methoden wurden an Hand von echten und syntheti-
schen Daten evaluiert und mit aus der Literatur bekannten Algorithmen ver-
glichen. Zusätzlich zu einer Stereokamera wurde mit Hilfe des vorgeschla-
genen erweiterten Hand-Auge Kalibrieralgorithmus ein optisches Trackings-
ystem mit einer endoskopischen Kamera kalibriert, ohne dass dabei ein Ka-
libriermuster verwendet wurde.

Die im Rahmen dieser Arbeit entwickelten Selbstkalibriermethoden haben
eine Reihe von Merkmalen, die sie in der Praxis einfach anwendbar machen:
Sie basieren auf einer rein zeitlichen Punktverfolgung, da diese monokulare
Verfolgung in einer kontinuierlichen Bildsequenz viel einfacher ist als eine
links-rechts Verfolgung solange die Kameraparameter noch unbekannt sind.
Die intrinsischen und extrinsischen Kameraparameter werden während der
Selbstkalibrierung berechnet, d. h. es ist kein Kalibriermuster notwendig. Im
Gegensatz zu einigen aus der Literatur bekannten Methoden ist die Erwei-
terung der vorgeschlagenen Algorithmen von der minimal zur Kalibrierung
benötigten Anzahl an Bewegungen auf eine beliebige Anzahl direkt möglich.
Dies erlaubt es, alle vorhandenen Daten zu verwenden und so robustere Ka-
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librierergebnisse zu erhalten. Zur Erhöhung der Robustheit wurde ein Algo-
rithmus zur Datenselektion eingeführt, der auf Vektorquantisierung basiert
und ohne weitere Modifikationen auch zur Hand-Auge Kalibrierung in der
Robotik eingesetzt werden kann.

Es wurden zwei verschiedene Methoden zur Stereo Selbstkalibrierung vor-
gestellt. Die eine basiert auf einem erweiterten ICP (Iterative Closest Point)
Algorithmus, der rekonstruierte 3-D Punkte verwendet und zusätzlich zu
Rotation und Translation einen Skalierungsfaktor schätzen kann. Die ande-
re basiert auf einer erweiterten Hand-Auge Kalibrierung, die das Wissen
über die rekonstruierten Kamerabewegungen ausnutzt. Das Hauptgewicht
dieser Arbeit liegt auf dem letztgenannten Verfahren. Beide Methoden ver-
wenden zwei Bildsequenzen als Eingabe, die von den Kameras eines sich
bewegenden Stereosystems aufgenommen wurden. In jeder der kontinuier-
lichen Bildsequenzen werden Punktmerkmale monokular von einem Bild
zum nächsten verfolgt.

Die so ermittelten Punktkorrespondenzen werden verwendet, um mit Hil-
fe eines Struktur-aus-Bewegung Verfahrens unabhängig voneinander zwei
3-D Rekonstruktionen der Kamerabewegung und der 3-D Punkte zu berech-
nen. Es sei an dieser Stelle darauf hingewiesen, dass die vorgeschlagenen
Stereo Selbstkalibriermethoden nicht auf die Verwendung eines bestimm-
ten Rekonstruktionsalgorithmus angewiesen sind. Daher kann dieser Teil
auf einfache Weise ersetzt werden, wenn bessere Verfahren vorhanden sind.
Jede Rekonstruktion ist nur bis auf eine unbekannte Ähnlichkeitstransfor-
mation eindeutig, d. h., das Weltkoordinatensystem kann beliebig gewählt
werden und die Skalierung der Rekonstruktion ist unbekannt. Dieser globa-
le Skalierungsfaktor kann ohne weiteres Wissen über die beobachtete Szene
nicht berechnet werden (und für die vorliegende Anwendung wird er auch
nicht benötigt). Es ist jedoch möglich und notwendig, den relativen Ska-
lierungsfaktor zwischen den zwei Rekonstruktionen zu berechnen, um die
gewünschten Stereoparameter zu erhalten.

Nach einer anfänglichen Skalierungsschätzung kann im letzten Schritt der
Kalibrierung entweder das ICP basierte Verfahren verwendet werden oder
einer der Ansätze, die auf Hand-Auge Kalibrierung aufbauen (linear und
nichtlinear, Skalierung entweder am Anfang geschätzt und während der
Verarbeitung fest, oder Skalierungsschätzung gleichzeitig mit Rotation und
Translation). Insbesondere wurden in der vorliegenden Arbeit eine Reihe
von Formulierungen für das erweiterte Hand-Auge Kalibrierproblem einge-
führt. Als erstes eine lineare, in der zuerst die Rotation berechnet wird und
die Translation in einem zweiten Schritt. Zweitens wurde die Skalierungsfak-
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torschätzung in die Formulierung der Hand-Auge Kalibrierung mit dualen
Quaternionen integriert. Dies ergibt eine nichtlineare Zielfunktion, die mit
Hilfe von Standardmethoden (z. B. Levenberg-Marquardt) minimiert werden
kann. Zusätzlich wurde eine Zielfunktion, die auf einem nichtlinearen Kri-
terium für die Standard-Hand-Auge Kalibrierung basiert, das von Horaud
und Dornaika publiziert wurde, um die Schätzung der Skalierung erweitert.

Die Verwendung des ICP basierten Kalibrieralgorithmus kann nicht emp-
fohlen werden, da er zwar in fast allen Fällen bessere Ergebnisse lieferte als
eine einfache Standard-Hand-Auge Kalibrierung, aber wesentlich schlech-
tere (Durchschnittswerte, Rotation: 23.0%, Translation: 31.1%) als die ande-
ren Hand-Auge Kalibrierverfahren. Der Grund dafür ist, dass die rekonstru-
ierten 3-D Punkte trotz gleicher Szene normalerweise verschieden sind, da
während der monokularen Punktverfolgung unterschiedliche Punkte ver-
folgt werden. Der Hauptvorteil des ICP Ansatzes liegt darin, dass er auch
dann verwendet werden kann, wenn der rotatorische Anteil der Kamerabe-
wegung sehr klein ist, was bei den Hand-Auge Methoden Probleme bereitet.

Es wird empfohlen, einen der auf dualen Quaternionen basierenden Hand-
Auge Kalibrieralgorithmen zu verwenden, d. h., entweder die lineare Metho-
de, bei der die Skalierung zu Beginn geschätzt wird und dann fest bleibt,
oder die nichtlineare Zielfunktion, die in dieser Arbeit vorgeschlagen wur-
de, welche Rotation, Translation und Skalierung gleichzeitig optimiert. Die
Experimente zeigten, dass diese Algorithmen Kalibrierergebnisse liefern, die
bezüglich der Rotation (linear: 12.0%, erw. nichtlinear: 11.9%) und Translati-
on (linear: 9.43%, erw. nichtlinear: 10.3%) gleich gut sind, wohingegen andere
Methoden entweder nur für die Rotation (Andreff; Rotation: 11.3%, Trans-
lation: 11.8%) oder nur für die Translation gute Ergebnisse lieferten (Ho-
raud und Dornaika; Rotation: 12.7%, Translation: 9.67%)). Nur die Standard-
Hand-Auge Kalibriergleichungen zu lösen liefert erheblich schlechtere Er-
gebnisse als die oben genannten Algorithmen und sollte daher nicht ver-
wendet werden.

Basierend auf diesen Kalibrierergebnissen wurden Tiefenkarten erzeugt,
die eine Voraussetzung für das verdeckungsrichtige Rendern von virtuel-
len Objekten in reale Bilder sind. Die Genauigkeit der Kalibrierung war gut
genug, um eine vernünftige Erweiterung der Szene zu erhalten. Allerdings
sind gute Kalibrierergebnisse nicht in allen Fällen eine Garantie für eine gute
Augmentierung, da auch viel von dem zur Tiefenkartenberechnung verwen-
deten Algorithmus abhängt. Das ist insbesondere dann der Fall, wenn die
Bilder aus großen Regionen mit homogener Farbe bestehen, wo keine links-
rechts Korrespondenzen erstellt werden können, was Löcher in der Tiefen-

227



Appendix B German Title, Contents, Introduction and Summary

karte und durchscheinende virtuelle Objekte zur Folge hat.
Der vorgeschlagene Stereo Selbstkalibrierungsansatz ist auch zur erwei-

terten Hand-Auge Kalibrierung verwendbar, bei der Auge-Positionen durch
Struktur-aus-Bewegung an Stelle eines Kalibriermusters berechnet werden,
was ein großer Vorteil in einer klinischen Umgebung ist, da die Hand-Auge
Kalibrierung vor jeder Operation in einer sterilen Umgebung durchgeführt
werden muss. Zusätzliche Experimente wurden mit Daten durchgeführt, die
von einem optischen Trackingsystem und einer auf einem Endoskop ange-
brachten Kamera stammen. Aus mehreren Gründen sind die Fehler bei Ver-
wendung der erweiterten Kalibrierung zur Zeit noch wesentlich größer (3 bis
4 cm verglichen mit 2 mm translatorischer Fehler) als die bei einer Standard-
Hand-Auge Kalibrierung mit einem Kalibriermuster, aber grundsätzlich ist
die Methode durchführbar. Die beobachteten Fehler von einigen Zentimetern
bei der Translation könnten für manche Anwendungen bereits klein genug
sein, allerdings ist die Genauigkeit für eine klinische Anwendung während
einer Operation noch zu niedrig.

Die in dieser Arbeit vorgeschlagene Datenselektion basierend auf Vektor-
quantisierung ist einer der wichtigsten Schritte, da sie die erweiterte Hand-
Auge Kalibrierung mit einer kontinuierlich aufgenommenen Bildfolge mit
25 Bildern pro Sekunde überhaupt erst möglich macht. Ohne diesen Schritt
wäre auf solchen Bildsequenzen eine Hand-Auge Kalibrierung praktisch un-
möglich. Ein Vorteil dieses Algorithmus ist es, dass er auch in der Standard-
Hand-Auge Kalibrierung in der Robotik eingesetzt werden kann, d. h., die
Bedeutung ist wesentlich größer als bei einem reinen Datenselektionsver-
fahren zur Stereokalibrierung. Sogar im Fall der Standard-Hand-Auge Kali-
brierung, wo eine kleine Anzahl Bilder an manuell ausgewählten Positionen
verwendet wird, zeigte sich die Überlegenheit einer automatischen Datense-
lektion (Rotation: 0.404◦ , Translation: 1.88 mm) gegenüber dem Standardan-
satz (Rotation: 0.503◦ , Translation: 2.19 mm), der aufeinanderfolgende Bilder
verwendet.

Das Ergebnis dieses Schritts ist ein Datensatz, der zur Hand-Auge Kali-
brierung gut geeignet ist, d. h., er erfüllt das Kriterium der Nichtparallelität
der Rotationsachsen, hauptsächlich weil relative Bewegungen mit kleinem
Rotationswinkel entfernt und Bewegungen mit verschiedenen Rotationsach-
sen ausgewählt werden. Es muss dabei jedoch berücksichtigt werden, dass
viel vom Datensatz selbst abhängt. Wenn die in den Bewegungen enthalte-
ne Information nicht allgemein genug in Bezug auf die Verschiedenheit der
Rotationsachsen ist, dann gibt es keine Möglichkeit gute Kalibrierergebnis-
se zu erhalten, egal welcher Datenselektions- oder Hand-Auge Algorithmus
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verwendet wird. Die besten Ergebnisse können durch eine Kombination der
manuellen Auswahl von Positionen bei der Aufnahme mit der automati-
schen Selektion basierend auf Vektorquantisierung, die in dieser Arbeit vor-
geschlagen wurde, erzielt werden (vgl. vorheriger Absatz).

Eine Vielzahl von Verfahren wurden vorgestellt; sie unterscheiden sich
voneinander in der Dimension (2-D, 3-D, 4-D) der Vektorquantisierung ver-
glichen mit den Freiheitsgraden (zwei oder drei), und ob ein fester Schwell-
wert, ein automatisch berechneter, oder überhaupt kein Schwellwert zur
Berücksichtigung des Rotationswinkels verwendet wird. Die unterschiedli-
chen Dimensionen entstehen durch die verschiedenen Parametrisierungen
der 3-D Rotationen (normalisierte Rotationsachsen, Achse/Winkel, Polarko-
ordinaten, Quaternionen). Die Methoden, die keinen Schwellwert verwen-
den, basieren auf einer 3-D oder 4-D Vektorquantisierung unter Verwendung
der Achse/Winkel- bzw. Quaternionen-Darstellung der Rotationen.

Diese Verfahren wurden verglichen mit der Verwendung von aufeinander-
folgenden Bewegungen (d. h., Verwendung der Bewegungen wie sie sind,
ohne Datenselektion), und der Verwendung nur der ersten Schritte der Da-
tenselektion (d. h., Berechnung der Relativbewegungen und Entfernung der
kleinen Rotationswinkel, aber keine Vektorquantisierung). Wie vorhergesagt
waren die Fehler bei der Verwendung aufeinanderfolgender Bewegungen
immer schlechter als bei den anderen Methoden, wobei die Ergebnisse in
den meisten Fällen praktisch unbrauchbar waren. Man kann bereits mit dem
ersten Schritt der auf Vektorquantisierung basierenden Datenselektion viel
gewinnen, nämlich durch Verwendung aller Kombinationen von Relativ-
bewegungen an Stelle von aufeinanderfolgenden (Rotation: 1.74◦ , Transla-
tion: 3.92 mm). Basierend auf den experimentellen Ergebnissen wird emp-
fohlen, die auf Vektorquantisierung basierende Datenselektion mit norma-
lisierten Rotationsachsen zu verwenden, inklusive eines Vorverarbeitungs-
schrittes, in dem Bewegungen mit kleinen Rotationen mit Hilfe eines auto-
matisch berechneten Schwellwerts entfernt werden (Rotation: 1.59◦ , Transla-
tion: 3.80 mm).

B.3.2 Ausblick

Während der Entwicklung und experimentellen Evaluation kamen mehrere
mögliche Erweiterungen der vorgestellten Algorithmen auf, die den Rahmen
dieser Arbeit gesprengt hätten. Dieser Abschnitt gibt einen kurzen Überblick
über die grundlegenden Ideen dieser Erweiterungen und zeigt mögliche
Richtungen der weiteren Forschung im Bereich der Hand-Auge Kalibrierung
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und Stereo-Selbstkalibrierung.
Die Grundlage des Stereo-Selbstkalibrieralgorithmus ist eine Rekonstruk-

tion der 3-D Szenenpunkte sowie der intrinsischen und extrinsischen Ka-
meraparameter. Zur Zeit wird dafür ein Struktur-aus-Bewegung Ansatz ver-
wendet, aber da die nachfolgenden Schritte unabhängig von der tatsächlich
verwendeten Rekonstruktionsmethode sind, kann dieser durch bessere Al-
gorithmen ersetzt werden, sobald diese verfügbar sind. Auf Grund der Ver-
wendung des Struktur-aus-Bewegung Algorithmus ergeben sich eine Rei-
he von Nachteilen, die hauptsächlich die Anforderungen an die beobach-
tete Szene und die Genauigkeit der Rekonstruktion betreffen. Der Algorith-
mus basiert auf der Faktorisierung einer anfänglichen Teilsequenz der Bilder
kombiniert mit einer Erweiterung der Rekonstruktion, d. h., der Kalibrierung
der verbleibenden Kamerapositionen. Diese Methoden nehmen eine starre
Szene an – eine Anforderung, die zwar in der Forschung einfach zu erfüllen
ist, aber in einer echten Anwendung Probleme bereiten kann. Daher sollte
der Rekonstruktionsteil der Stereo-Selbstkalibrierung durch einen Algorith-
mus ersetzt werden, der Kameraparameter und Szenenstruktur aus dynami-
schen Szenen berechnen kann. Mehrere Methoden zur Rekonstruktion von
Szenen, die sich bewegende starre Objekte enthalten, wurden bereits ver-
öffentlicht. Wenn die Bewegung der Objekte eingeschränkt ist auf Geraden
[Avi99, Sha01, Han03] oder Kegelschnitte [Sha99], können Szene und Objek-
te zusammen rekonstruiert werden. Im Fall von sich beliebig bewegenden
Objekten müssen diese erst vom Hintergrund separiert werden und kön-
nen dann einzeln rekonstruiert werden [Cos98, Kan01, Kan03, Vid04]. Einen
Überblick über diese Algorithmen sowie deren Anwendung zum Rendering
dynamischer Lichtfelder findet man in [Sch07]. All diese Ansätze verwenden
nur eine einzige sich bewegende Kamera, was die Rekonstruktion erheblich
schwieriger macht als die Verwendung von zwei oder mehr Kameras, die
gleichzeitig Bilder aus verschiedenen Positionen machen. Allerdings würde
die Verwendungen dieser Tatsache zu Beginn der Selbstkalibrierung bedeu-
ten, dass das aktuelle Konzept der zwei unabhängigen Rekonstruktionen
aufgegeben oder zumindest aufgeweicht werden muss. Dies kann auch eine
links-rechts Punktverfolgung beinhalten, die oft nicht durchführbar ist wenn
die Kameraparameter noch unbekannt sind.

Ein weiterer wichtiger Punkt für Anwendungen ist die Aktualisierung
der Kamerakalibrierung zur Laufzeit, um kleine Änderungen der relativen
Position der Kameras oder Brennweitenänderungen auf Grund von Zoo-
ming ohne Benutzerinteraktion zu korrigieren. In [Zom01] wurde ein Re-
-Kalibrierungsverfahren für die intrinsischen Parameter und das optische
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B.3 Zusammenfassung und Ausblick

Zentrum (die Position der Kamera) basierend auf einer anfänglichen Ste-
reokalibrierung vorgestellt. Allerdings wird hier die relative Orientierung
noch als zeitlich konstant angenommen. Eine Methode, die eine weitere Be-
trachtung verdient, ist die wiederholte Durchführung einer Stereo-Selbstka-
librierung wie sie in dieser Arbeit vorgestellt wurde, und die Fusion der
verschiedenen Schätzungen der Kameraparameter in eine aktualisierte und
verlässlichere Schätzung. Dies kann z. B. mit probabilistischen Methoden ba-
sierend auf Partikelfiltern geschehen [Isa98, Dou01, Den03].

Die in der vorliegenden Arbeit vorgestellte, auf Hand-Auge Kalibrierung
basierende, Stereo-Selbstkalibriermethode verlässt sich auf eine allgemeine
Bewegung des Stereosystems. Wenn die Bewegung nicht allgemein genug
ist, versagt die Hand-Auge Kalibrierung, was insbesondere bedeutet, dass
die Translationsschätzung ungenau ist. In der vorliegenden Arbeit wurde
zwar ein kurzer Überblick über spezielle Bewegungen gegeben, aber sie wer-
den ansonsten nicht weiter behandelt. Weitergehende Informationen dazu
findet man in [And99, And01], wo die Fälle von parallelen Rotationsachsen,
reiner Rotation und planarer Bewegung behandelt werden. Insbesondere der
letztere Fall ist in bestimmten Gebieten interessant, nämlich für Stereokame-
ras, die auf autonomen mobilen Systemen angebracht sind, die sich in einer
Ebene bewegen [Bea95a, Bea95b, Csu98a, Li04].

Ein weiteres Thema für weitere Forschung ist die Generalisierung des vor-
gestellten Algorithmus auf die Selbstkalibrierung von mehr als zwei Ka-
meras, die starr aneinander befestigt sind. Diese werden als Multikamera-
Systeme oder Omni-Rigs bezeichnet. Hier sind alle Kameras an einer ge-
meinsamen Vorrichtung befestigt, sie können aber ihre interne Konfigura-
tion verändern. Ein generalisiertes Hand-Auge Kalibrierverfahren ist zwar
noch nicht verfügbar, aber die genannten Konfigurationen werden in der Li-
teratur diskutiert, wobei verschiedene Methoden zur Kalibrierung und Re-
Kalibrierung verwendet werden [Sha98, Zom01, Hu03, Neu03, Fra04].

Eine Erweiterung, die vergleichsweise einfach zu implementieren ist und
die dennoch einen großen Einfluss sowohl auf die Genauigkeit der Stereo-
parameter als auch auf das Ergebnis bei der Erweiterung von realen Sze-
nen hat, ist eine zusätzliche links-rechts Punktverfolgung gefolgt von einer
(nichtlinearen) Neukalibrierung basierend auf diesen Merkmalen. Da nach
der Verwendung der in dieser Arbeit vorgeschlagenen Methoden eine erste
Schätzung aller Kameraparameter verfügbar ist, wird auch die Punktverfol-
gung durchführbar, da die Suche auf Epipolarlinien oder Regionen um diese
Linien eingeschränkt werden kann.
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Appendix C

Mathematical Symbols

This appendix axplains all mathematical symbols and notations used in this
work. At the beginning, general notations are given that are used together
with different symbols.

• Scalar values are denoted by italic letters like a, b, c.

• Vectors are denoted by bold italic letters like x

• Matrices are denoted by capital bold italic letters X .

• The determinant of a square matrix is denoted by det (X)

• The trace of a square matrix (the sum of diagonal elements) is denoted
by tr (X).

• The element at the i-th row and j-th column of a matrix X is denoted
by xij.

• The i-th element of a vector x is denoted by xi.

• The transposed of a vector x and a matrix X is denoted by xT and XT.

• The inverse of a matrix X is denoted by X−1, the pseudo-inverse by
X+.

• The inverse of XT is denoted by X−T.

• The Euclidean norm of a vector is denoted by ‖x‖, the Frobenius norm
of a matrix by ‖X‖.

• A homogeneous vector is underlined like x.

• x ∼ y means that x and y are equal up to scale.
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• The inner product between the vectors x and y is denoted as xTy

• An estimate of a value x is denoted by x̂.

• A provisional result for a value x is denoted by x .

• A sub-matrix of a matrix X is denoted by X̆.

• The symbols a, b, c, i, j, k, x, y, x, y, X , and Y do not have any global
meaning. They are used as temporary variables and are applied in the
text with different meanings.

The following table lists the used symbols, their meaning, and the page of
their first occurrence.

b Homogeneous image point vector 12

w Homogeneous scene point vector 12

P Camera projection matrix 12

K Calibration matrix 12

PM Projection model matrix 12

E Extrinsic parameter matrix 12

F Focal length in pixel units 12

pu Horizontal coordinate of principal point 12

pv Vertical coordinate of principal point 12

dx Horizontal size of sensor elements in mm 12

dy Vertical size of sensor elements 12

xF Effective horizontal focal length 12

β Skew factor 12

yF Effective vertical focal length 12

b 2-D image point vector 13

db 2-D distorted image point vector 13
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t 3-D translation vector 14

xr First column of rotation matrix 14

yr Second column of rotation matrix 14

zr Third column of rotation matrix 14

R 3-D rotation matrix 14

03 The 3-D column null–vector 15

w 3-D scene point 15

gw Center of gravity of scene points 15

I3×3 The 3 × 3 identity matrix 16

tl 3-D translation vector, left camera 18

tr 3-D translation vector, right camera 18

e Epipole 18

l Homogeneous line vector 18

el Homogeneous epipolar line vector 18

RS 3-D rotation matrix of stereo rig (point
transformation, left to right camera)

18

tS 3-D translation vector of stereo rig (point
transformation, left to right camera)

18

cwl 3-D scene point, given in camera coordinates of left
camera of a stereo system

18

cwr 3-D scene point, given in camera coordinates of right
camera of a stereo system

18

Pl Camera projection matrix of left camera 19

Kl Calibration matrix, left camera 19

Rl 3-D rotation matrix, left camera 19

Pr Camera projection matrix of right camera 19

Kr Calibration matrix, right camera 19
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Rr 3-D rotation matrix, right camera 19

F Fundamental matrix 19

EM Essential matrix 19

α Rotation angle, Cardan, rotation about x-axis 21

β Rotation angle, Cardan, rotation about y-axis 21

γ Rotation angle, Cardan, rotation about z-axis 21

RCz 3-D rotation matrix, Cardan rep., rotation about
z-axis

21

RCy 3-D rotation matrix, Cardan rep., rotation about
y-axis

21

RCx 3-D rotation matrix, Cardan rep., rotation about
x-axis

21

φ Rotation angle, Euler, rotation about x-axis 21

ψ Rotation angle, Euler, rotation about y-axis 21

ϕ Rotation angle, Euler, rotation about z-axis 21

REz′′ 3-D rotation matrix, Euler rep., rotation about z′′-axis 21

REx′ 3-D rotation matrix, Euler rep., rotation about x′-axis 21

REz 3-D rotation matrix, Euler rep., rotation about z-axis 21

r Rotation axis 22

θ Rotation angle 22

ω Combined axis/angle vector 22

q Quaternion 23

qR Real part of quaternion 23

q Imaginary parts of quaternion 23

qim Imaginary parts of quaternion in vector notation 24

q∗ Conjugate quaternion 24

p 3-D point on the screw axis 27
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l Pitch in screw representation 27

z̃ Dual number 28

z̃∗ Conjugate dual number 29

l̃ 3-D line as a dual vector 29

θ̃l Dual skew angle 29

θl Real part of θ̃l 29

dl Dual part of θ̃l 29

q̃ Dual quaternion 29

q̃r Real part of dual quaternion 29

q̃im Imaginary parts of dual quaternion in vector notation 29

qnd Non-dual part of dual quaternion 29

qd Dual part of dual quaternion 29

q̃∗ Conjugate dual quaternion 30

q∗nd Conjugate non-dual part of dual quaternion 30

q∗d Conjugate dual part of dual quaternion 30

θ̃ Dual rotation angle 30

r̃ Dual rotation axis 30

Ψ Factorization: camera matrix 33

Φ Factorization: scene matrix 33

Γ Factorization: measurement matrix 33

D 3-D projective transformation matrix (4 × 4
homography)

33

TPM Transformation for update projective – metric 34

t Frame number / discrete time value 34

h Scene point number 34

A 3-D affine transformation matrix 34
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m∞ Plane at infinity 34

s Scaling factor 34

aC Matrix describing the absolute conic 34

aQ Matrix describing the absolute quadric 34

C Matrix describing a conic 36

cC Matrix describing the image of the absolute conic 36

C⋆ Matrix describing the dual conic 36

cC⋆ Matrix describing the dual image of the absolute
conic

36

TPA Transformation for update projective – affine 36

TAM Transformation for update affine – metric 36

m∞ First three components of plane at infinity 36

m∞ Last component of plane at infinity 36

TE Eye movement 41

THE Hand-Eye transformation 41

TH Hand movement 41

H Gripper (hand) position 42

E Camera (eye) position 42

RE Rotation matrix (eye) 42

tE Translation vector (eye) 42

RHE Rotation matrix (hand-eye) 42

tHE Translation vector (hand-eye) 42

RH Rotation matrix (hand) 42

tH Translation vector (hand) 42

q̃E Dual quaternion representing the eye transformation 43

q̃HE Dual quaternion representing the hand-eye
transformation

43
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q̃H Dual quaternion representing the hand
transformation

43

sE Scaling factor for translation 45

Nt Number of frames 55

Rl 3-D rotation matrix, relative movement of left
camera, always used with two time step indices

57

tl 3-D translation vector, relative movement of left
camera, always used with two time step indices

57

Rr 3-D rotation matrix, relative movement of right
camera, always used with two time step indices

57

tr 3-D translation vector, relative movement of right
camera, always used with two time step indices

57

Nw Number of scene points 61

H∞ Infinite image homography 62

qS Quaternion corresponding to stereo rotation 65

ql Quaternion corresponding to relative rotation of left
camera

65

qr Quaternion corresponding to relative rotation of
right camera

65

slr Ratio of scaling factors 65

Pl 3-D point set from reconstruction of left sequence 75

Pr 3-D point set from reconstruction of right sequence 75

El Set of cameras of left image sequence 79

tb First frame of camera sub-sequence 79

te Last frame of camera sub-sequence 79

fsub Quality function for sub-sequence selection 79

fsub,C Quality function using covariance matrix 80

Σ Covariance matrix 80

Σax Covariance matrix of rotation axes 80
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rl rotation axis, left camera 80

f ′sub,C Quality function using trace of covariance matrix 80

Λ PCA transformation matrix 80

Σ
′
ax Covariance matrix of rotation axes after PCA 80

ωl rotation axis/angle, left camera 81

lmin Minimum length of sub-sequence 82

slr Scaling factor from left to right 84

Tlr Left-right transformation 84

Nrel Number of relative movements 85

q̃slr Dual quaternion representing the left-right
transformation and scale

86

q̃l Dual quaternion representing the left movement 87

q̃r Dual quaternion representing the right movement 87

Q Function mapping a 3-D vector to a purely imaginary
quaternion

88

RICP 3-D rotation matrix for ICP registration 91

tICP 3-D translation for ICP registration 91

W Set of pairs of corresponding 3-D points 91

ǫICP Registration error for ICP 91

U Left matrix of singular value decomposition 94

S Middle matrix of singular value decomposition 94

V Right matrix of singular value decomposition 94

sICP Scaling factor for extended ICP registration 96

ς Singular value 100

θt Rotation angle threshold 101

Nrs Number of relative movements after data-selection 102
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C Codebook for vector quantization 102

c One codebook vector for vector quantization 102

λ Polar coordinates of rotation axis, first angle 106

ρ Polar coordinates of rotation axis, second angle 106

rpol Rotation axis in polar coordinates 106

θtu Upper rotation angle threshold 108

θtl Lower rotation angle threshold 108

L List for storing rotation angles 108

ξ Weight factor 108

ξl Weight factor for lower threshold 108

ξu Weight factor for upper threshold 108

A Set of parameters to be estimated 116

Nr Number of random samples 116

Nest Minimum number of measurements required for
estimation

116

Pr Only-inlier probability 116

η Outlier rate 116

θLMedS Outlier threshold 116

mmin Smallest median in LMedS 116

NLMedS Number of relative movements after oulier removal 116

ǫtabs Absolute error, translation 123

N Number of poses used for error computation 123

ǫtrel Relative error, translation 124

ǫRabs Absolute error, rotation, quaternions 124

ǫRrel Relative error, rotation 124

Rres Residual rotation matrix 125
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θres Rotation angle of residual rotation matrix 125

ǫ′Rabs Absolute error, rotation, axis/angle 125
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68, 71, 73, 75, 78, 116, 119, 129,
156, 182, 185

Absolute Conic, 35, 36, 36, 37, 38, 61–63
Absolute Quadric, 35, 37, 37, 39, 40
AESOP, 115
Affine Transformation, see Transformation,

affine
Augmented Reality, 1, 2, 2, 5, 7, 48, 49, 53,

99, 170, 174–177, 181, 218
Axis/Angle, see Rotation, axis/angle

Calibration Matrix, 12, 13
Camera Models

orthographic, 16
paraperspective, 17
perspective, 15
stereo, 18
weak perspective, 17

Camera Parameters
extrinsic, 4, 7, 11, 14, 19, 52, 55, 57,

68, 69, 75, 76, 118, 181, 185
focal length, 12, 12, 38, 39, 57, 76, 156,

186
intrinsic, 4, 7, 11, 12, 19, 36, 38, 39, 52,

55–59, 62, 63, 68–70, 72, 75, 76,
118, 181, 185, 186

lens distortions, 12, 13, 75, 156
optical axis, 8, 12, 16–18, 76, 154, 158,
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optical center, 14, 16, 18, 20, 49, 57,

78, 99, 186
principal point, 12, 14, 39, 40, 56–58,

68
skew, 12, 38, 57, 58, 68, 70, 76

Cardan Angles, see Rotation, Cardan angles
Cholesky decomposition, 36, 63, 68

Data Selection
exhaustive search, 74, 98, 101, 106
pre-processing, 100

vector quantization, see Vector Quan-
tization

Depth Map, 8, 9, 11, 47, 53, 55, 123, 170–176,
180, 181, 183

consistency, 51
real-time approach, 49
requirements, 48
similarity accumulator, 49, 50

Disparity Map, see Depth Map
Dual Number, 28
Dual Quaternion, 8, 20, 27, 29, 30, 30, 31,

42–45, 52, 84, 86, 87, 90, 99,
121, 150, 157, 160, 179, 182, 183

Dual Vector, 29, 30

Endoscopy, 8, 10, 115, 123, 126–130, 151,
166, 167, 169, 177, 180, 181, 183

Epipolar
constraint, 19
geometry, 18
line, 20, 49–52, 161–165, 170, 171, 187

Epipole, 20
Error Metric, see Residual Error Metric
Essential Matrix, 19
Euclidean Transformation, see Transforma-

tion, Euclidean
Euler Angles, see Rotation, Euler angles
Extended Hand-Eye Calibration, 8, 9, 73,

74, 77, 78, 85, 87, 88, 90, 119–
121, 154, 157, 166, 177, 179–
184, see Hand-Eye Calibration,
Andreff’s method

Extrinsic Camera Parameters, see Camera
Parameters, extrinsic

Factorization, 32, 33, 38–40, 52, 185
Fair Parameterization, 25
Feature Tracking, see Point Tracking
Fiducial, 5
Focal Length, see Camera Parameters, focal

length
Fundamental Matrix, 19, 32–34, 39, 52, 56–

63, 65, 66, 68, 181
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Grassmann Coordinates, see Plücker Coor-
dinates

Hand-Eye Calibration
Andreff’s method, 43, 45, 157, 160,

179, 183
critical factors, 98
definition, 41
dual quaternion method, 42, 43, 84,

150, 157, 160, 179, 183
extended, see Extended Hand-Eye Cal-

ibration
Horaud and Dornaika method, 42, 88,

157, 179, 183
Head-Mounted Display (HMD), 3, 4
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ICP
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standard, 61, 70, 71, 77, 91, 119

Image Skew, see Camera Parameters, skew
Intrinsic Camera Parameters, see Camera Pa-
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Lens Distortions, see Camera Parameters, lens
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Levenberg-Marquardt, 158, 182
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Liver/Gall-Bladder Model, 166–168

Measurement Matrix, 33
Metric Transformation, see Transformation,

metric
Mixed Reality, 2

Optical Axis, see Camera Parameters, opti-
cal axis

Optical Center, see Camera Parameters, op-
tical center

Optical Tracking System, 8, 10, 103, 115,
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145, 166, 167, 177, 180, 181, 183

Orthogonal Camera, see Camera Models, or-
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Orthographic Camera, see Camera Models,
orthographic

Paraperspective Camera, see Camera Mod-
els, paraperspective

PCA, 81
Perspective Camera, see Camera Models, per-

spective
Pinhole Camera, see Camera Models, per-

spective
Plane at Infinity, 35, 36, 36, 37, 61, 62
Plücker Coordinates, 27, 27, 28, 29
Point Tracking, 8, 32, 59, 63, 66–70, 72, 75,

76, 119, 156, 158, 166, 168, 179,
181, 186, 187

Principal Point, see Camera Parameters, prin-
cipal point

Projection Matrix, 12, 17, 33, 35, 38, 52, 61,
62, 75, 79

Projective Depth, 33, 39, 40
Projective Transformation, see Transforma-

tion, projective

Quadrifocal Tensor, see Tensor, quadrifocal
Quaternions, see Rotation, quaternions

Radial Distortions, see Camera Parameters,
lens distortions

Reality-Virtuality Continuum, 2
Rectification, 49
Residual Error Metric, 123
Rotation

axis/angle, 22, 25–27, 42, 52, 81, 103,
111–113, 115, 120, 125, 146–149,
178, 184

Cardan angles, 21, 26, 52, 129
dual quaternions, see Dual Quaternions
Euler angles, 21, 26, 52
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47, 65, 66, 80, 88, 97, 113, 124,
125, 129, 132, 147, 149

quaternions, 23, 25–27, 31, 42, 52, 65,
81, 86–89, 112–115, 120, 124, 146,
148, 149, 178, 184

Rotation Angle Threshold, 101, 103, 104, 106,
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Scale Estimation
Andreff, see Hand-Eye Calibration, An-

dreff’s method
classic, 85, 87, 156–158
dual quaternions, 87, 90, 157
extended Horaud, 89, 157
heuristic, 83, 91, 119

Screw, 27, 27, 31
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57, 59–64, 67–74, 76, 84, 92, 95,
97, 99, 119, 123, 153, 154, 156,
158–162, 166, 177, 179–183, 185,
186

Similarity Transformation, see Transforma-
tion, similarity

smARTtrack1, 126, 166, see Optical Tracking
System

Stereo Camera, see Camera Models, stereo
Stereo Self-Calibration

definition, 55
from fundamental matrices, 57
new method, 69
temporal correspondences, 63
using homographies, 60

Stratified Self-Calibration, 36, 61, 63, 68
Structure-from-Motion (SFM), 7, 8, 14, 31,

45, 55, 119, 154, 156, 158, 166,
169, 180, 182, 183, 185

SVD, 45–47, 65, 94, 97, 100

Tangential Distortions, see Camera Parame-
ters, lens distortions

Tensor
quadrifocal, 33, 34
trifocal, 33, 34

Tracking
optical, see Optical Tracking System
point features, see Point Tracking

Trail, 32, 75
Transformation

affine, 34, 35, 36, 37, 61
Euclidean, 34, 35
metric, 34, 35, 36, 37, 57, 61
projective, 34, 35, 36, 37, 39, 40, 57, 61
similarity, 8, 34, 34, 37, 38, 72, 85, 96,

119, 182
Trifocal Tensor, see Tensor, trifocal

Vector Quantization
axis/angle, 111, 146, 147, 149, 178,

184
basics, 102
LBG algorithm, 102
normalized rotation axes, 103, 131, 146,

148, 152, 178, 184
polar coordinates, 106, 146, 148, 178,

184
quaternions, 112, 146, 147, 149, 178,

184
Virtual Reality, 2

Weak Calibration, 19, 181
Weak Perspective Camera, see Camera Mod-

els, weak perspective
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