
Resampling density values on R-lines into
density values on a Cartesian grid
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Abstract— Three dimensional cone-beam reconstruction meth-
ods based on the differentiated backprojection accurately recon-
struct objects only along measured lines. Thus, the values on a
Cartesian grid need to be interpolated from the known data. The
quality of the final reconstruction result depends on the chosen
interpolation method. In this work, we discuss three solutions
to this interpolation problem, compare them, quantify their
resolution property and discuss their computational effort. Two
of these solutions are original. Methods are tested on simulated
data of the ForBild head and thorax phantoms. Three different
source trajectories are investigated: helix, saddle and circle-plus-
line. Our results suggest that a carefully chosen interpolation
method considerably reduces the computational effort in the
reconstruction algorithm while maintaining the image quality.

I. INTRODUCTION

Recently, new cone-beam (CB) reconstruction techniques
using differentiated backprojection have been developed [1],
[3]− [9]. These techniques are attractive because they can be
used for accurate reconstruction of specific regions-of-interest
from truncated data. However, they cannot produce directly the
sought density function on a Cartesian grid. They first produce
the density function on a set of measured lines, and the values
on the desired Cartesian grid have to be obtained from there
using interpolation. In this work, we consider three solutions
to this interpolation problem, compare them, quantify their
resolution property and discuss their computational effort. Two
of these solutions are original, while the third solution was
suggested in [1]. The discussion is focused on interpolation
from density values on R-lines − lines in the euclidean space
that connect two source positions and are thus measured twice.
Extension to general measured lines is however straightfor-
ward.

II. THREE METHODS OF INTERPOLATION

For all methods outlined here, we assume that the density
values available on each R-line are finely sampled, typically
with a sampling distance equal to the sampling distance of the
desired Cartesian grid. This assumption is in agreement with
the common way to implement a differentiated backprojection.
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Fig. 1. “Ground truth” images of the ForBild phantoms. Head phantom
without ears is on the top (grayscale window [1, 1.1]) and the thorax phantom
is on the bottom (grayscale window [.9 1.1]). For each image, central axial
slice is on the left and central sagittal slice is on the right.

Method 1: Six Closest R-Lines. In this approach, the value
at each point X of the desired Cartesian grid is approximated
as an average of six values coming each from one of the
six R-lines closest to X . Interpolation weights dependent on
the distance from X to the R-lines are used in this average.
Let {Ti | i = 1, .., 6} be the set of (orthogonal) projections
of X on each of the six closest R-lines. The value of the
density function at Ti (denoted here v(Ti)) is easily and
accurately obtained using linear interpolation of the density
values available on the i-th R-line. Assuming the distance di

from X to the i-th closest line for all i is non-zero, the density
value at X is approximated by

v(X) :=
∑6

i=1 d−1
i v(Ti)

∑6
i=1 d−1

i

.

If there exists an i such that di = 0, then v(X) := v(Ti).
We take six R-lines to account for two directions coming
from each of the three vectors in the orthogonal basis of IR3.
However, this algorithm does not guarantee that the points Ti

will be spread evenly around X .
Method 2: Six Directed R-Lines. The attempt here is

to evenly spread the interpolated values around X in six
directions. In a discretized Cartesian grid, each point X can be
viewed as the center of a cuboid (rectangular parallelepiped)
of dimension ∆x × ∆y × ∆z, where ∆x, ∆y and ∆z are
the sampling distances in the direction of the Euclidean basis
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a) b) c)

σ = .072 σ = .058 σ > .225

d) e) f)

σ = .22 σ = .079 σ > .225

g) h) i)

σ = .111 σ = .056 σ = .069

Fig. 2. Results obtained using the head phantom, axial view, central slice.
Top row: helix, middle row: saddle and bottom row: circle-plus-line trajectory.
Images a), d) and g) are obtained using method 1, b), e) and h) using method
2 and c), f) and i) by method 3. Images are represented in scale [1, 1.1].
Values of the minimizing standard deviation are marked with σ and given in
centimeters.

a) b) c)σ = .047 σ = .04 σ > .225

d) e) f)σ = .086 σ = .065 σ > .225

g) h) i)σ = .158 σ = .052 σ = .067

Fig. 3. Results obtained using the head phantom, sagittal view, central slice.
Top row: helix, middle row: saddle and bottom row: circle-plus-line trajectory.
Images a), d) and g) are obtained using method 1, b), e) and h) using method
2 and c), f) and i) by method 3. Images are represented in scale [1, 1.1].
Values of the minimizing standard deviation are marked with σ and given in
centimeters.

vectors, e1, e2 and e3 respectively. Let {Mi | i = 1, ..., 6}
be the points at the center of each of the six faces of the
voxel centered on X . We first estimate the density value at
Mi using the density value at the orthogonal projection of
Mi onto the R-line that is closest to Mi. This estimate is
obtained using linear interpolation between the density values
available on this closest R-line. Then, the density value at X is
obtained as the equally-weighted average of values estimated
at {Mi | i = 1, ..., 6}.

Method 3: Interpolation between the R-line surfaces. The
R-lines originating from a given source form a surface which
we call an R-line surface. The surface is non-planar in general.
The method transforms the values from the R-lines into
Cartesian coordinates by interpolating between the R-line
surfaces. Each value at a point on an R-line surface is

obtained using bilinear interpolation of the density values at
four sampled locations lying on the two closest R-lines. With
this understanding, the value at (x, y, z0) for any given z0 is
obtained through linear interpolation of the density value from
the closest R-surface above (x, y, z0) in the z direction and
the other value from the closest R-surface below (x, y, z0) in
the z direction. This method, which was suggested in [1] is
primarily designed for source trajectories drawn on a cylinder
centered on the z axis.

III. EXPERIMENTAL FRAMEWORK

The interpolation methods were tested on two ForBild
phantoms, the head without ears and the thorax, for three
source paths: helix, saddle and circle-plus-line. Although the
sampling distance ∆t on the R-lines was chosen to be quite
small for all three paths (∆t = 0.075 cm), we do not require
such a fine sampling on the source positions. For the helical
and saddle trajectories, R-lines were obtained using the pairs
of source positions that can be created with 200 samples per
helix turn and 240 source positions on the saddle. The radius
and pitch of the helix were R = 57 cm and pitch p = 3 cm
respectively, while the radius and height of the saddle were
R = 57 cm and h = 3 cm respectively (see equation (16) in
[2]). Picturing the field-of-view (FOV) as a centered cylinder
of radius 25cm, the number of relevant R-lines (i.e. the R-lines
passing through the FOV) that originated from any sampled
source position was 58 for the helix and 70 for the saddle
trajectory. For the circle-plus-line, the R-lines were defined
by those that connect the sources on the line with the sources
on the circle. The circle had a radius of 57cm and was located
in the plane z = −2cm. The length of the line was L = 10cm.
There were 1600 sources on the circle and 7 sources on the
line, so that in this geometry 463 R-lines passed through the
FOV.

The density values on an R-line were simulated from the
definition of the phantoms in the following way:

• Each sample on an R-line is taken to be the average of
four samples, each coming from one of four lines in four
orthogonal directions: above, below, to the left and to
the right. These four lines are parallel to the R-line at
distance ∆t/2.

• Any sample on each of these four lines is computed as
the average of two subsamples a distance ∆t/2 from each
other.

The simulated R-line density values were then interpolated
using the three methods described in Section II. The inter-
polation was done to obtain the density values in volumes
partially containing the FOV. Separate images were created
by taking the central slice in axial and sagittal view of the
interpolated volume using ∆x = ∆y = ∆z = 0.075 cm (the
spacing was taken to be the same as ∆t). The resolution of
each interpolated image, denoted fk, k = 1, 2, . . . , N , was
compared to the “ground truth” image f by finding the value
σk > 0 for which

min
σk>0

∥
∥
∥
∥

1
2πσ2

k

f ∗ e−(x2+y2)/2σ2
k − fk

∥
∥
∥
∥ (1)
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a) b) c)

σ = .06 σ = .056 σ > .225

d) e) f)

σ = .158 σ = .077 σ > .225

g) h) i)

σ > .225 σ = .051 σ = .064

Fig. 4. Results obtained using the thorax phantom, axial view, central slice. Top row: helix, middle row: saddle and bottom row: circle-plus-line trajectory.
Images a), d) and g) are obtained using method 1, b), e) and h) using method 2 and c), f) and i) by method 3. Images are represented in scale [.9, 1.1].
Values of the minimizing standard deviation are marked with σ and given in centimeters.

is attained. Here, the original image f was chosen to be the
central slice through the mathematical phantom f (Fig. 3)
with each pixel value obtained as the average of 2 × 2 × 2
subsamples.

In terms of adaptive filtering, the convolution in (1) means
blurring the image f using Gaussian low pass filter. The
parameter σk is the standard deviation of the Gaussian filter
which needs to be applied to the “ground truth” image f so
that the filtered image minimally differs from the computed
image fk. The smaller the value of σk, the closer the image
fk is to image f in terms of resolution.

IV. RESULTS AND DISCUSSION

Images obtained in our experiments are presented in Figures
2, 3, 4 and 5. When compared with the “ground truth” image f ,
the lowest values of σ in (1) were attained always for method
2. Values of σ obtained from method 1 and method 2 are
less then the values of σ obtained for method 3 except in case
of circle-plus-line trajectory. For the circle-plus-line trajectory,
the value of σ for method 3 were comparable to the values
obtained using method 2, but we found that the method 3
returned images with incorrect density values for some of the
objects within the phantoms.

Method 3 performed well in [1] because the R-lines were
much more finely sampled than in this report. Here, the helix
and saddle scenario for a fixed source position had less than 70
R-lines going through the object per sampled source position.
This produced R-line surfaces with a very low resolution.
These low resolution surfaces are then used in another in-
terpolation which was performed in only two directions; e3

and −e3. The new interpolation methods interpolate between

a) b) c)σ = .041 σ = .038 σ = .175

d) e) f)σ = .049 σ = .044 σ = .143

g) h) i)σ = .104 σ = .049 σ = .055g) h) i)σ = .104 σ = .049 σ = .055

Fig. 5. Results obtained using the thorax phantom, sagittal view, central
slice. Top row: helix, middle row: saddle and bottom row: circle-plus-line
trajectory. Images a), d) and g) are obtained using method 1, b), e) and h)
using method 2 and c), f) and i) by method 3. Images are represented in scale
[.9, 1.1]. Values of the minimizing standard deviation are marked with σ and
given in centimeters.

values from six directions all around each desired target point,
disregarding the R-line surfaces.

For the circle-plus-line trajectory, there were in each R-line
surface much more R-lines going through the object, so the
images obtained by method 3 seem as sharp as those produced
by method 2. However, method 3 produced images with
incorrect densities for objects in certain regions. The cause of
the wrong densities lies in the sparse spacing of the line portion
of the path, which led to a large distance between successive
R-line surfaces. For example, in figure 4i), each voxel in the
(right) rib area was interpolated between the values on two
R-line surfaces with z coordinates being far away from the
considered voxel. This explains why we see three additional
ribs from the slices with higher z coordinates. Additionally,
corresponding sagittal view obtained by method 2 (Figure 5h)
is clearly closer to the “ground truth” image than the image
obtained by method 3 (Figure 5i).
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Images produced by method 1 have a lower quality than
images produced by method 2 because the R-lines partic-
ipating in interpolation are in general better distributed in
method 2 than in method 1. Method 1 simply takes the closest
R-lines for the interpolation, while these are not necessarily
evenly distributed around the voxel. Method 2 involves not
only the distance from the R-lines to the voxel, but also their
orientation. See Fig. 6a) for an illustration (X , Ti and Mi

are defined in Section II and Vi are orthogonal projections of
Mi to the closest R-lines). One important assumption is that
the dimension of the voxels is selected so that not too many
R-lines pass through the voxel cube. Fig. 6b) illustrates that
if this dimension is chosen to be too large, then method 1
has an advantage over method 2. Method 1 will find a better
value for voxel X as it will interpolate between the values on
R-lines r1, r2, r3 and r4. Method 2 will interpolate between
the values on R-lines r2, r3, r5 and r6. However, this also
means that the voxel size could be chosen to be smaller, in
which case an image with higher resolution and better quality
is produced by method 2.

An efficient implementation of method 1 and method 2 is
obtained by sorting the closest R-lines and interpolating only
for the voxels that belong to a small, yet large enough cylinder
around each R-line. Details on the efficient implementation
and estimation of the size of the cylinder will be published
elsewhere. In this report, both methods are implemented in
C on a computer with single central processing unit AMD
AthlonTM 64 Processor 3800+ and clock speed of 2400 MHz.
Table I gives execution times for the two interpolation methods
introduced in this paper. For each experiment, the first column
contains amount of voxels and second column contains amount
of R-lines participating in the interpolation. Third and fourth
column give the execution times for method 1 and method 2
respectively. All times are given in minutes.

V. CONCLUSIONS

In a brute force implementation, the number of operations
needed for methods 1, 2 and 3 are respectively proportional
to

• 6NRNxNyNz ,
• 4NR(Nx + 1)(Ny + 1)Nz and
• NsNxNyNz ,

where NR is the number of R-lines, Nx×Ny×Nz is the size of
the required output volume, and Ns is the number of source
positions. For the helix, NR = Ns(Ns − 1), for the saddle
NR = N2

s /2 and for the circle-plus-line, NR = NscNsl,
where Nsc is the number of sources on the circle and Nsl is the
number of sources on the line. In appearance methods 1 and 2
are much more demanding in terms of computational effort.
However, the efficient implementation does not consider all
voxels for each R-line, but only those that lie close to it. This
dramatically reduced the number of operations required for
execution of both algorithms.

The two interpolation methods introduced in this report
perform with similar speed, whereas method 2 obtains images
with the highest quality. Both methods reveal a strong potential
for a large decrease in the number of R-lines onto which

TABLE I

EXECUTION TIMES FOR THE TWO NEW INTERPOLATION METHODS

Number Number Execution time
Scenario of of (in seconds)

voxels relevant
R-lines method 1 method 2

thorax, helix 580 × 380 × 62 17429 510 687
thorax, saddle 580 × 380 × 62 8435 198 287
thorax, cpl∗ 580 × 380 × 62 3241 86 92
head, helix 312 × 338 × 62 10217 225 261

head, saddle 312 × 338 × 62 4820 75 90
head, cpl∗ 312 × 338 × 62 1897 51 45

∗cpl = circle-plus-line

backprojection and deconvolution needs to be achieved ac-
cording to the reconstruction steps presented in [1]. This could
ultimately decrease the total computational effort required for
reconstruction. Tying up the reconstruction steps with the new
interpolation method will be the topic of our future research.
Preliminary results also suggest that method 2 has certain
advantages over method 1. The resulting images obtained by
method 2 are interpolated between the values that are more
evenly spread around the voxels and therefore produce less
distortion. Table I shows that our implementation of method 2
takes a slightly longer time to execute than the implementation
of method 1.

Fig. 6. Figure a) illustrates the distribution of interpolation points for method
1 and method 2. Figure b) illustrates that if the dimension of the voxels is
chosen to be large, then method 1 performs better than method 2.
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