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Abstract. In this work we present an approach for text-independent
speaker recognition. As features we used Mel Frequency Cepstrum Co-
efficients (MFCCs) and Temporal Patterns (TRAPs). For each speaker
we trained Gaussian Mixture Models (GMMs) with different numbers
of densities. The used database was a 36 speakers database with very
noisy close-talking recordings. For the training a Universal Background
Model (UBM) is built by the EM-Algorithm and all available training
data. This UBM is then used to create speaker-dependent models for
each speaker. This can be done in two ways: Taking the UBM as an
initial model for EM-Training or Maximum-A-Posteriori (MAP) adapta-
tion. For the 36 speaker database the use of TRAPs instead of MFCCs
leads to a frame-wise recognition improvement of 12.0 %. The adaptation
with MAP enhanced the recognition rate by another 14.2 %.

1 Introduction

The extraction of speaker-dependent information out of the voice of the user,
so that a person can be identified or additional speaker specific information is
obtained, is an important task these days. Speaker-dependent information is the
identity of a speaker, the language, the age, the gender, or the channel he or she
is calling from.
These pieces of information about the identity of the speaker or specific char-
acteristics of the person are helpful for several applications. Identification of a
person can be used to allow or restrict a person the use of certain services or
the access to certain places. In these cases the user does not need to have a
password, an account, a personal identification number (PIN), or a door-key
anymore. The access is granted or denied only by the person’s voice. It is also
possible to perform the identification process in a secure way over the telephone.

In our approach each speaker is modeled by a Gaussian Mixture Model

(GMM). To train the system first of all a Universal-Background-Model (UBM)
is created comprising the complete amount of training data. This is achieved
by the EM-Algorithm. The UBM is then used to create a speaker model in two
ways: Either EM-Training is performed and the UBM is needed as an initial
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2

speaker model or Maximum-A-Posteriori (MAP) adaptation is applied, where
the UBM is combined with the speaker-dependent training data. We used two
different features in this work: Mel Frequency-Cepstrum-Coefficients (MFCCs),
which extract the features over a short temporal context (16ms) and Tempo-

RAl Patterns (TRAPs). TRAPs calculate the features over a very long temporal
context (150ms).

For training and evaluation we employed a database provided by the com-
pany MEDAV (www.medav.com). The database is called SET-M. The Verbmobil
[1] database was used to generate transformation matrices for the dimension
reduction of the TRAPs by Linear Discriminant Analysis (LDA). These two
databases are presented in the following.

2 Databases

2.1 SET-M

The SET-M-corpus contains speech recordings of 36 persons, each of them reading
two newspaper articles. The texts are semantically different. One text is a news-
paper article dealing with computer viruses, the other article is about children
who have attention deficit disorder (ADD). The data was recorded by a close-
talking microphone. In order to simulate telephone quality, the data was µ-law
coded. Additionally it was artificially corrupted by convolution with Gaussian
noise. In total 84min of speech was available, recorded with a sample rate of
22kHz and re-sampled to 16kHz. The computer virus text was used for training,
the other one for testing. The total amount of the training set was 45min and
the length of the test set was 39min respectively.

2.2 Verbmobil

The Verbmobil (VM) database (see [1]) is a widely used speech collection. We
used a German subset of the whole corpus which was already investigated in [2].
The scenario of the corpus is human-human communication with the topic of
business appointment scheduling. It contains in total 27.7 hours of continuous
speech by 578 speakers of which 304 were male and 274 were female. The size of
the vocabulary is 6825 words. On average each of the 12,030 utterances contains
22 words. The data of this corpus was transliterated and a forced alignment was
performed. This produced phonetic labels for each speech frame. These labels
are then utilized to train the transformation matrix of the Linear Discriminant
Analysis which is used to reduce the dimension of our TRAPs from 556 to 24.

3 Applied Methods

3.1 Features

As features the commonly used Mel Frequency Cepstrum Coefficients (MFCCS)
and TempoRAl Patterns (TRAPs) are employed. MFCCs calculate the features
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3

on a short temporal context but they take the complete frequency domain into
consideration. TRAPs examine each frequency band of the recordings separately
over a very long temporal context.

Mel Frequency Cepstrum Coefficients The 24dimensional MFCCs consist
of 12 static and 12 dynamic components. The 12 static features are composed
by the spectral energy and 11 cepstral features. Furthermore the 12 dynamic
features are calculated as an approximation of the first derivative of the static
features using a regression line over 5 time frames. The time frames are computed
for a period of 16 ms with a shift of 10 ms.

Temporal Patterns The TRAPs we used in this work are quite similar to the
original approach of Hermansky ([3]). The main difference of our approach are
the time trajectories and their processing. Fig. 1 shows the complete extraction
method. The time trajectories consider a long temporal context (150ms) of 18
mel-bands. These mel-bands are generated by a convolution of the spectrum
with triangular filter-banks. Each trajectory is smoothed by a Hamming win-
dow and transformed by application of the discrete Fast Fourier Transformation
afterwards. These magnitudes in the frequency domain are then filtered by can-
celing all frequencies except the interval from 1 to 16Hz. A detailed explanation
can be found in [4]. The fusion of the trajectories combined with a dimension
reduction is not performed by neural networks, as in the original paper, but by
concatenation of the high-dimensional features and application of either Linear

Discriminant Analysis (LDA) or Principal Component Analysis (PCA) after-
wards. The result of this dimension reduction were 24-dimensional features, as
in case of MFCCs.

To train the transformation matrices of the LDA transform, labeled data
was needed. We decided to use the Verbmobil database, because the data of this
corpus was already transliterated and forced aligned. This produced labels in
form of 47 German phonetic classes.

3.2 Classifier specifications and test phase

In this work the speakers are modeled by Gaussian Mixture Models (GMMs) as
described in [5]. Each speaker λ is modeled by M unimodal weighted Gaussian
Distributions:

p(x | λ) =

M∑

i=1

wipi(x ). (1)

with

pi(x ) =
1

(2π)D/2 | K i |1/2
e−(1/2)(x−µi)

T
K

−1

i
(x−µi) (2)

where µi denotes the mean vector and K i the covariance matrix of the Gaus-
sians. Unlike [5] we used full covariance matrices in our work, because preliminary
comparisons showed a slight advantage of fully occupied matrices. The number
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Fig. 1. Feature extraction for Temporal Patterns

of densities is varied from 16 to 2048 in 2x steps. For classification a standard
Gaussian Classifier is used. The classifier calculates for each feature vector of a
specific speaker an allocation probability for each speaker model. This is done
for all speech frames of one utterance. Then the probabilities of each model are
accumulated. The model which achieved the highest value is expected to be the
correct one.

3.3 Training

In Fig. 2 the general procedure of the training phase is shown. After feature
extraction a Universal Background Model (UBM) is generated. Therefore, we
comprised all the available training data. Then either a standard EM-Training
or MAP adaptation [6, 7] was applied to derive speaker-dependent models.

The EM-algorithm consist of the E-step (Eq. 3) where the A Posteriori prob-
abilities of a feature vector x t for every mixture i is calculated.

p(i | x t) =
ωipi(x t)∑M

j=1 ωjpj(x t)
. (3)

p(i | x t) is then used in the M-Step to reestimate the components of the new
speaker model λ′:

Mixture weights: w′

i =
1

T

T∑

t=1

p(i | x t) (4)

Mean values: µ
′

i
=

∑T
t=1 p(i | x t)x t∑T

t=1 p(i | x t)
(5)

Covariance matrices: K
′

i =

∑T
t=1 p(i | x t)∑T
t=1 p(i | x t)

(x t − µ
′

i)(x t − µ
′

i
)T (6)
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5

(x t − µ
′

i
)T in Eq. 6 describes the transposed mean subtracted feature vector.

After the M-step the model λ is replaced by the new estimated model λ′.
The MAP-adaptation also uses (Eq. 3) to estimate p(i | x t) out of the UBM

parameters and the speaker-dependent feature vectors x t. The weight (ω̃i), mean
(µ̃i) and variance (K̃ i) parameters of each mixture i are computed by:

ω̃i =

T∑

t=1

p(i | x t) (7)

µ̃
i
=

T∑

t=1

p(i | x t)x t (8)

K̃ i =
T∑

t=1

p(i | x t)x tx
T
t

(9)

Finally these newly calculated statistics are combined with the UBM statistics
to create the parameters for the adapted density i: ω̂i, µ̂i, K̂i (see [6, 7]):

ω̂i = [αiω̃i/T + (1 − αi)ωi]γ (10)

µ̂i = αiµ̃i + (1 − αi)µi (11)

K̂ i = αiK̃ i + (1 − αi)(K i + µiµ
T

i ) − µiµ
T

i (12)

The adaptation coefficient αi is defined as:

αi =
ni

ni + τ
, (13)

where τ has to be selected by the user. In preliminary experiments we distin-
guished the best value to be 50 for our database. (Eq. 10) contains the scale
factor γ, which normalizes the sum of all new estimated a priori probabilities
ω̂i, i ∈ 1, ..M to 1.

Both algorithms take the UBM as an initial model and for each single
speaker one speaker-distinguishing model is created. The difference between EM-
Training and MAP adaptation is, that MAP adaptation calculates the parame-
ters of the speaker-dependent Gaussian mixtures in only one iteration step and
combines them with the UBM-parameters.

4 Experiments and Results

In preliminary experiments we investigated the best TRAPs parameters. For the
preliminary experiments we used speaker models with 64 Gaussian densities and
standard EM-Training. The parameters we varied were the context (15 or 30),
the use of filtered and normal TRAPs and the application of PCA or LDA alter-
natively. For the SET-M database we used a context of 15 and filtered TRAPs.
The feature reduction was performed by LDA, because it outperformed the PCA
approach.
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Fig. 2. General proceeding of the training phase

Table 1 shows the recognition results for the EM-Training and the MAP
adaptation. It contains the results for both features: MFCC and TRAPs. fw

denotes the recognition result, reached when deciding for each frame separately
(frame-wise) and sp denotes the recognition results of the classification of all
vectors of one speaker (speaker-level). The columns named 100f and 500f contain
the recognition results after classification with 100 and 500 frames each (no
overlap).

In the case of EM-Training we observed a maximal frame-wise recognition
rate of 24.16% with TRAPs features and 32 Gaussian mixtures. The maximal
recognition rate for the speaker decision was 91.67%. For the SET-M corpus the
MAP adaptation outperforms the EM-Training. In the case of MAP adapta-
tion the highest frame-wise recognition result (27.58%) was achieved by 32-
dimensional speaker models and TRAPs. The maximal value in case of speaker

decision (100%) was accomplished with 512-dimensional models and MFCCs.
In Fig. 3 we plotted the recognition results dependent on the amount of test

feature vectors. Therefore, we classified all data of the test speakers after a given
number of frames (no overlap). One can see, that the slope of the recognition
results is almost zero when more than 500 frames are used.

5 Discussion

Using TRAPs in case of text-independent speaker recognition can improve the
recognition results, especially if the recordings are very noisy, like the database
of this paper. So the recognition could be improved from 21.57% to 24.84%
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EM-Training MAP

MFCC TRAPs MFCC TRAPs

Density fw 100f 500f sp fw 100f 500f sp fw 100f 500f sp fw 100f 500f sp

32 21.6 76.4 79.7 92 24.2 70.2 86.7 92 24.8 80.7 91.7 92 27.6 76.3 90.6 97

64 19.2 67.5 79.7 83 23.2 68.8 85.1 92 24.4 81.4 92.6 92 26.9 77.0 90.2 97

128 16.7 65.6 77.0 86 22.4 66.5 84.0 92 23.4 81.2 92.1 97 24.9 73.9 86.7 92

256 14.5 61.7 74.6 83 21.5 60.5 83.4 92 22.3 80.4 91.7 94 22.4 73.3 85.8 92

512 12.5 36.4 39.6 33 21.2 52.6 63.2 67 19.9 78.5 91.9 100 20.2 72.6 86.7 92

1024 12.0 48.2 59.5 64 16.1 34.0 36.7 36 16.8 73.7 90.4 97 16.9 67.4 86.9 94

2048 9.5 20.7 19.5 14 15.9 31.0 34.4 31 12.4 64.5 82.3 97 15.1 64.4 88.4 94

Table 1. frame-wise (fw) and speaker-level (sp) recognition results achieved on the
SET-M corpus

(12.0%) in case of frame-wise recognition. Due to the fact, that the amount of
training data was very low in this database, the use of more Gaussian mixtures
even decreased the frame-wise recognition result. The speaker recognition reaches
its maximum (91.67%) at speaker models with 32 densities.

The training with MAP-adaptation improves the frame-wise recognition rate
by another 14.2% from 24.84% to 27.58%. But an increase of the number of
Gaussian densities does not achieve an improvement of the recognition rate of
the TRAPs. On speaker-level MFCCs obtain better results than TRAPs, if a
larger number of densities is chosen.

Therefore, we conclude that TRAPs have a better recognition rate on frame-
level due to the larger context and that the properties of a speaker can be
modeled with TRAPs using fewer Gaussian densities than MFCCs. We will
examine this aspect further in future experiments.

6 Summary

In this paper we evaluated a system for speaker-independent speaker recognition.
We used 2 different kinds of features: MFCCs and TRAPs. Both analyze the
spectrum of a given recording. MFCCs examine the complete frequency domain
on a short temporal context and TRAPs calculate features by analyzing different
frequency bands over a longer time period. For the training we created a UBM by
standard EM-Training on all the available training data. To build one model for
every speaker we took this UBM as an initial model and applied EM-Training or
MAP adaptation respectively. For this step we only used the speaker-dependent
training data. For the evaluation of our system we performed experiments on
the SET-M database.

We improved the frame-wise recognition result by 12.0% when using TRAPs
instead of MFCCS. The application of MAP adaptation improved the frame-wise
recognition results by additional 14.2%. The speaker recognition result also was
increased and for 512 Gaussian densities 100% were reached.
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Fig. 3. Speaker recognition results dependent on the amount of test feature vectors
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