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Abstract—1In this article, we present a novel, truncation-
flexible cone-beam (CB) reconstruction algorithm for the short-
scan circular trajectory, which is based on the theoretically-
exact factorization theory previously derived by our group. The
factorization theory demonstrates how to decompose the 3D CB
reconstruction problem into a family of independent 2D inversion
problems. Here, we use a numerical approach based on a con-
strained conjugate gradient least-squares iteration scheme to find
solutions to the 2D problems. We present reconstructions from
computer-simulated CB data and evaluate the reconstruction
behavior in terms of CB artifacts. Image results are compared
to reconstructions using the short-scan Feldkamp algorithm.

I. INTRODUCTION

Circular cone-beam (CB) computed tomography (CT) has
become a powerful tool in the clinical arena. 3D image
reconstruction on state-of-the-art scanning systems is typically
based on an algorithm that has been heuristically derived by
Feldkamp et al. [1]. For data collected along a 360-degrees
scan (full scan), the Feldkamp reconstruction method (FDK)
can be set into a firm theoretical context and yields often ac-
ceptable image quality. The mechanical design of established
medical C-arm devices, however, does not usually allow a full
scan. To apply FDK with data acquired along less than 360-
degrees (short-scan), the issue of data redundancy is handled
using Parker-like weighting methods [2]. In general, however,
these weighting schemes are a significant approximation, since
they neglect the cone-angle and therefore treat distinct data as
redundant. This approximation often results in a high level of
CB artifacts in the reconstructed images for regions outside the
plane of the circle scan (abbreviated as PCS in the following).

Recently, we introduced a novel CB inversion theory for
the circular short-scan trajectory [3]. It is based on the
factorization of the 3D reconstruction problem into a set
of independent 2D inversion problems and lies on an exact
theoretical background. In this article, we develop a CB recon-
struction algorithm using the theory from [3] while applying
an iterative approach to invert the 2D problems. Whereas in
[3], no direct reconstruction from CB data was shown, we now
present reconstructions from computer simulated CB data and
compare the performance of the algorithm to that of the short-
scan FDK method.

F. Dennerlein, F. Noo and H. Schondube are with the Department of
Radiology, University of Utah, Salt Lake City, Utah, USA

E-mail: fdenner@ucair.med.utah.edu

J. Hornegger is with the Institute of Pattern Recognition, University of
Erlangen-Nuremberg, Erlangen, Germany

G. Lauritsch is with Siemens AG, Medical Solutions, Forchheim, Germany.

This work was partially supported by a grant of Siemens AG, Medical
Solutions and by the U.S. National Institutes of Health (NIH) under grant
RO1 EB000627.

II. ACQUISITION GEOMETRY AND NOTATION

We use the notation a(\) = (Rcos ), Rsin ), 0)7 to de-
scribe the circular trajectory of radius R followed by the focal
spot of the X-ray source during data acquisition. The curve
parameter A is bounded in [0, A;,q.] and since our studies
are restricted to short-scans, we require A4, < 2m. The
spatial distribution of the linear X-ray attenuation coefficient
of the interrogated object is represented using the function
f(x) with = € IR3. We assume that f is compactly supported
in a cylinder with axis (0,0,1)7 and circular base of radius
Royj, where R,,; < R. CB projection data of the object are
acquired using an X-ray sensitive 2D detector. During the scan,
we measure integrals of f along rays, with each ray connecting
the X-ray source for a given A with an arbitrary point on the
detector. Hence, we obtain samples of the data function
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with the vector o describing ray directions. Analog to [3], the
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image volume is represented with a non-Cartesian coordinate
system, which is based on the one-parametric family of ®-
planes: Each ®-plane is orthogonal to the PCS and contains
the source position a(0), at the beginning of the short-scan.
The parameter ® describes the angle between the ®-plane and
the line connecting the origin (0, 0,0)” with a(0). The angle ®
increases in clockwise direction, is bounded in [®in, Prnaz]
and becomes & = 0 for the ®-plane that contains the rotation
axis. The interval for ® is selected such that the set of ®-
planes covers the complete region of interest (ROI). Assuming
a circular scan of adequate length (A\juqr > 7™ — 2®@p4n),
each ®-plane intersects the source trajectory twice: at a(0)
and at curve parameter \,(®) = 7 — 2®. A Cartesian (¢, z)-
coordinate system is introduced on each ®-plane, with ¢
orthogonal to (0,0,1)7 and z parallel to the axis of rotation.
The coordinate ¢ becomes 0 at the orthogonal projection of



(0,0,0)” onto the ®-plane and increases when approaching
a(0) (see Fig. 1). An arbitrary point in the ROI can be
parametrized with coordinates (®,t,z) with a change of
variable to Cartesian coordinates provided by the function

Rsin® ® + tcos ®
Rsin®cos® — tsin® . )
z
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III. RECONSTRUCTION THEORY

The factorization method is based on the theoretically-
exact decomposition of the 3D CB reconstruction problem
into a family of independent 2D inversion problems [3]. The
decomposition applies to a full-scan as well as to a short-scan
trajectory and significantly reduces the total complexity of the
reconstruction task. Each of the 2D problems corresponds to
finding the object density on a given ®-plane, i.e. the function

f@(tvz) = f(i@(tvz)) . 3

A single 2D inversion problem is established as shown in [3]:
By backprojecting the locally filtered CB data %g(/\, a) onto
a fixed ®-plane using only the scan segment A € [0, A, ()],
an intermediate function bg (¢, z) is obtained. The equation
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then relates bg (-, -) to the sought object function f(+,-) [4]. In
(4), hy () denotes the Hilbert filter kernel in spatial domain.
Also, z1(-) and 29() define filter directions in the ®-plane
that truly also depend on ®, ¢t and z. More specifically, the
points x4 (', 21(¢')) are located on the line connecting a(0)
with 24(¢,2) and correspondingly, the points zg (¥, 22(t'))
are located on the line connecting a(\,(®)) with z4 (¢, 2).
Reconstruction of object density on the ®-plane corresponds
to solving (4) for fs(:,-). The complete ROI is reconstructed
by varying ® and repeating the steps explained earlier in this
paragraph.

It is known, however, that data along a planar trajectory
is in general not sufficient for theoretically-exact and stable
3D CB reconstruction outside the PCS, (see [5] and others).
Hence, reconstruction of fg(t,z) for z # 0 suffers from
missing data, so that edges in 2z direction cannot be resolved
accurately. Let us now consider the special case that fg (¢, 2)
is independent of z. Then, for each point (¢,z) we have
fo (', z21(t") = fo (t',22(t')) = fa (¢',0). Therefore, the
right hand side (RHS) of (4) can be reduced to the 1D convolu-
tion 2 [ dt'hy(t —t') fa (', 0). Reconstruction of fo(t, 2)
then becomes equivalent to the problem of reconstructing
fa(t,0), for which a theoretically-exact and stable solution
can be found. In conclusion, the object density at a point z
that is not located on the PCS can be recovered accurately,
if x belongs to a ®-plane on which the object density is
independent of z (see Fig. 2). In general, however, solving (4)
for fo (-, -) constitutes an ill-posed problem. We try to stabilize
the inversion by (i) introducing additional constraints on the
solution f(+,-) and (ii) by using regularization techniques

to reduce the ill-posedness of the 2D inversion problem. The
following constraints on f,(-,-) are considered:

CRAY: Knowledge about integrals of fg(-,-) along rays
diverging from a(0) and a(A,(®)). These integrals are part
of the acquired CB data.

CPOS: Knowledge that f(-,-) is a non-negative function,
since it represents object density.

CADD: This constraint overcomes the problem of missing
data on a substantial level by extending the source trajectory.
We now introduce an additional line scan £ that is attached at
a(0) and perpendicular to the PCS (see Fig.2). However, CB
data acquired along £ is not processed using a filtering-and-
backprojection scheme as in [4]. It is rather used in a similar
fashion as in CRAY to put additional constraints on fs(-,-).
This allows a very coarse sampling of £ with as few as only
one additional CB projection, if desired.

IV. 2D INVERSION APPROACH

Reconstruction of fg(-, ) is achieved by discretizing (4) and
applying a numerical inversion method. Following the strategy
of [3], we introduce the vectors f and b that denote samples of
the functions fo(-,-) and bg (-, -)_and compose a linear system
of equations M f = b that represents (4). To satisfy Shannon’s
sampling theory, a band-limited version of the Hilbert filter
kernel in (4) is applied using a rectangular apodization window
and cut-off frequency b = 1/(2At). In spatial domain, the

band-limited filter is given as

it

1
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and a sampling at the required parameters kAt with k € Z
yields

B (k) = o Thar T R is even,
" 0 if k is odd or k = 0.

Since every other sample of hY (-) becomes 0, a straight-
forward application of the discrete convolution implies a
suboptimal use of data and a loss in resolution. To overcome

o—plane

Fig. 2. On the illustrated ®-plane, the object density is independent of z.
Therefore, reconstruction of the corresponding function fg(+,-) constitutes a
well-posed problem. In the general case, we optionally consider CB data for
an additional line scan L to stabilize the 2D inversion problem.



this problem, we oversample in ¢ by a factor of 2 on every ®-
plane, by duplicating each sample of bg prior to inversion. The
oversampling is compensated by a corresponding averaging
operation in the resulting f. Reconstructed images with and
without the oversampling strategy are presented in Section V.

The discrete modeling allows a straight-forward handling
of the constraints CRAY and CADD. We extend the linear
system by adding equations that represent the knowledge about
additional ray integrals of fg(-,-) to obtain

M b
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In (6), the submatrix C corresponds to equations for CRAY,
Cs corresponds to equations for CADD and ¢; and ¢, denote
samples of the corresponding ray integrals. The coefficients 31
and (5 allow to adjust the impact of the considered constraints.
Because the large dimension of A forbids a direct inversion,
an iterative scheme is applied to find a solution to the 2D
problem. In practice, the ideal data vector of the RHS of (6)
is not available. Instead, we need to consider a system A i = é,
where d is an approximation of the ideal d that is contaminated
by discretization, quantization and noise effects. We aim at
finding a non-negative, least-square (LS) estimate f for f by
applying a conjugate-gradient (CG) iteration scheme on the

normal equations
ATAf = A"d. (7

CG-LS methods provide fast speed of convergence [6] and
are considered to be a good choice for tomographic inversion
problems because of their initial modification of the data vec-
tor with the operator AT [7]. To account for constraint CPOS,
we closely follow the projected restarted iteration scheme of
[8]: a non-negative estimate f is determined by alternating
CG-LS iterations and orthogonal projections of intermediate
results onto the set of vectors with non-negative components
(see Algorithm 1). The iterative inversion approach is stopped
after a certain number of iterations. By that, we implicitly
regularize the linear system to allow a stable and meaningful
estimate i in the context of our ill-posed problem.

Initial estimate fo) =0;
for j =1...NOUT do
compute residual 7 = d — Afjil) ;
find LS estimate @) for Au'Y) = r) using NIN
CG-iterations ; L
update i(]) —p (i(r ) +@(j)) :
Algorithm 1: Applied iteration scheme. The operator P describes
the projection onto vectors with non-negative components.

V. NUMERICAL EVALUATION

The suggested reconstruction algorithm is now evaluated
using computer simulated CB data. We consider a typical
C-arm geometry (R = 750mm, A € [0,216] deg., A\ =
0.4 deg.) and use a virtual, planar detector that contains the
rotation axis. An analytically defined disk phantom of limited
vertical extent is investigated; its ground-truth is displayed in

Fig. 3. True density values of the disk phantom in [—500HU, 500HU].

Fig. 4. The slice ® = 0 for z € [0, 15¢m] through the reconstruction using
parameter set 1: (left) no oversampling, but using CPOS (center) oversampling
by a factor 2 in ¢ and using CPOS, (right) oversampling, but not using CPOS.
Grayscale window [—500HU; 500HU)

Fig. 3. Reconstructions are performed from ideal and noisy
CB data and are presented next to the image results obtained
with the short-scan FDK method. The investigated phantom
consists of a stack of six cylindrical disks embedded in a water
cylinder of radius 10 mm. Each disk has a radius of 8 cm and
a thickness of 1 cm. The phantom is centered at the axis of
rotation and shifted, such that the center of the lowest disk
is located on the PCS. Also, it is entirely contained in the
field-of-view yielding transaxially untruncated CB data.

The parameters used for reconstruction are given in set 1 in
Table I. Fig. 4 illustrates the effects of the constraint CPOS
and the oversampling strategy on reconstruction quality. The
planes & = 0 through reconstructions from ideal and noisy
CB data are presented in Fig. 5. Results in the bottom row
of Fig. 5 were obtained using the constraint CADD and four
CB projections acquired along the additional line-scan £ (see
Fig. 2). The additional source positions were located at z =
{3,6,9,12}cm, i.e., at the gap between two disks (for z =
{3, 9}cm), at the center of a disk (for z = 6 cm) or at the top of
the phantom, respectively. Reconstructions of the slice z = 0
from non-noisy CB data are shown in Fig. 6. Reconstructions
were obtained using parameter set 2 and bilinear rebinning
of the densities from the ®-plane coordinate system onto a
Cartesian grid.

TABLE I
EVALUATION PARAMETERS
Set 1 Set 2
detector pixel size 0.5 x 0.5mm? 1.0 x 1.0mm?
®-plane sampling 0.5 x 0.5mm?2 1.0 x 1.0mm?2
pixel columns in ®-plane nt = 440 nt = 220
image voxel size 0.5 x 0.5 x 0.5mm? 1.0 x 1.0 x 1.0mm3
constraints 51 =1/nt 81 =1/nt
B2 = 10/nt B2 =5/nt
iterations (NIN, NOUT) (12, 20) (12,7)
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Fig. 5. Reconstruction of the slice ® = 0 with z € [0, 13cm], from (top) to
(bottom): short scan FDK, factorization approach, factorization approach and
4 additional CB projections on L. (left) using non-noisy CB data, (right) using
CB data containing Poisson noise with 100, 000 photons per ray. Grayscale
window [—500HU; 500HU]
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Fig. 6. Reconstruction of the slice z = 0 mm with z € [0, 13em]: (left)
Image result in [—500HU; 500HU], (right) profile along (z,y) = (0,0)
compared against the true phantom values (dashed). (top) Short-scan FDK,
(bottom) factorization approach.

VI. DISCUSSION

Reconstructions of the disk phantom from a circular short-
scan using the factorization approach show a remarkable re-
duction of CB artifacts compared to results from the short-scan
FDK method: The shadow-regions enclosing each cylinder are
less prominent and CB artifacts are shifted to locations more
remote from the PCS. In particular, accurate reconstruction is
achieved as expected for ®-planes that do not intersect the
disks (see left/right of each disk in the bottom of Fig. 6).

Fig. 4 shows that the oversampling approach adequately
avoids vertical streaks in the reconstruction results (center
image). Also, considering the positivity constraint CPOS
contributes to more reconstruction accuracy after a constant
number of iterations (compare center and right of Fig. 4).

The introduction of only four CB projections along an
additional line scan improves image quality significantly and
almost completely overcomes the phenomena of CB artifacts
in the investigated scenario.

The right column in Fig. 5 illustrates that the factorization
method is robust with respect to noise in the CB data. Its noise
propagation, however, is visually of different nature compared
to that of the short-scan FDK approach.

Since the factorization method requires only local filter-
ing of CB data prior to backprojection, reconstruction from
partially transaxially-truncated projections becomes feasible in
practically-relevant scenarios (see also [9]). Investigations on
the reconstruction behavior in presence of transaxial truncation
involving the FORBILD head phantom are planned in the near
future.

VII. CONCLUSIONS

We suggested a novel, flexible 3D CB reconstruction ap-
proach which is based on the theoretically-exact factorization
theory from [3] and allows reconstruction from less than a
short scan. The algorithm decomposes 3D CB reconstruction
into a set of independent 2D inversion problems, each of which
is solved numerically using a constrained conjugate gradient
least-squares iteration scheme. This reduction in complexity
allows an efficient, parallel implementation of the algorithm.
Since a global filter operation in the projection domain is
avoided, reconstruction in presence of transaxial data trunca-
tion becomes feasible in practically-relevant scenarios.

In contrast to [3], where no direct reconstruction from CB
data was shown, we here presented a numerical evaluation
of the suggested algorithm from computer-simulated CB data.
The reconstruction results show a noticeable improvement in
image quality in terms of CB artifacts compared to the short-
scan FDK approach. Utilizing the flexibility of the factor-
ization approach by considering four more CB projections
acquired along an additional line scan helps to overcome the
phenomena of CB artifacts almost completely in the studied
scenario.
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