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Abstract
In this paper, we address the problem of two-dimensional image reconstruction
from fan-beam data acquired along a full 2π scan. Conventional approaches
that follow the filtered-backprojection (FBP) structure require a weighted
backprojection with the weight depending on the point to be reconstructed and
also on the source position; this weight appears only in the case of divergent
beam geometries. Compared to reconstruction from parallel-beam data, the
backprojection weight implies an increase in computational effort and is also
thought to have some negative impacts on noise properties of the reconstructed
images. We demonstrate here that direct FBP reconstruction from full-scan
fan-beam data is possible with no backprojection weight. Using computer-
simulated, realistic fan-beam data, we compared our novel FBP formula with
no backprojection weight to the use of an FBP formula based on equal weighting
of all data. Comparisons in terms of signal-to-noise ratio, spatial resolution and
computational efficiency are presented. These studies show that the formula
we suggest yields images with a reduced noise level, at almost identical spatial
resolution. This effect increases quickly with the distance from the center of
the field of view, from 0% at the center to 20% less noise at 20 cm, and to 40%
less noise at 25 cm. Furthermore, the suggested method is computationally
less demanding and reduces computation time with a gain that was found to
vary between 12% and 43% on the computers used for evaluation.

1. Introduction

Filtered backprojection (FBP) is a common way to achieve image reconstruction in x-ray
computed tomography (CT). For data collected in fan-beam geometry, the FBP may be
applied directly, in the measurement geometry (Kak and Slaney 1988, Noo et al 2002, Kudo
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et al 2002, Pan and Yu 2003, Arai et al 2005, Chen et al 2006), or indirectly, using first a
rebinning of the data from fan-beam geometry to parallel-beam geometry (Kak and Slaney
1988, Besson 1999, Pan 1999). Both approaches, direct and indirect, have their pros and cons,
and are currently in use in medical CT scanners. In this paper, we are interested in the direct
approach.

One disadvantage of the direct FBP approach is that the backprojection step includes a
weighting factor that varies with both the source position and the location where reconstruction
is to be performed. This weighting factor is often seen as a source of noise increase, and also
makes the direct approach more computationally demanding and more difficult to code in
hardware than the indirect approach (Besson 1999, Pan 1999). We have found that flexibility
in the FBP formula of Noo et al (2002) allows the derivation of a novel direct FBP formula
that achieves reconstruction with no backprojection weight, provided the data are collected
over 2π . We describe this novel formula assuming a curved detector geometry, which is also
called the geometry of equiangular rays in Kak and Slaney’s textbook (Kak and Slaney 1988).
Conversion of the formula to the geometry of collinear detectors is straightforward and will
not be discussed in the paper (see, e.g., Noo et al (2002) for details on this conversion).

The paper is organized as follows. In section 2, we give a complete description of the data
acquisition geometry, and we recall the expression of two direct FBP formulae, the standard
formula given in Kak and Slaney (1988) and the formula in Noo et al (2002). In particular,
we discuss how these two formulae differ in the way they allow handling of data redundancy,
as this feature is the key to the development of our novel formula. More precisely, we show
in section 3 that the insertion of a specific data weighting scheme in the formula of Noo
et al (2002) yields a direct FBP reconstruction formula with no backprojection weight, which
is the announced novel formula. Section 4 gives a comparative evaluation of reconstruction
performance in terms of resolution, noise and computational effort using computer-simulated
fan-beam data of mathematical phantoms. Finally, section 5 briefly summarizes our results
and discusses future work.

2. Background

We use the expression f (x) with x = (x, y)T to describe the spatial distribution of the x-ray
linear attenuation coefficient within the imaged object. The reconstruction of this distribution
is to be achieved from fan-beam projections that are measured on a curved detector, while
the x-ray source and detector rotates as a single assembly around the object. The source is at
distance R from the rotation axis and we assume that data acquisition occurs over a complete
2π rotation. The notation a(λ) = (R cos λ,R sin λ)T with λ ∈ [0, 2π) is used to describe the
circular trajectory followed by the focal spot of the x-ray source during data acquisition. Here
and throughout the rest of this paper, a superscript T denotes the transpose operator.

Figure 1 illustrates the data acquisition geometry as we picture it: the detector sits on a
circle of radius D centered at a(λ), the rays connecting the source to the detector elements
form a fan, and any ray within the fan is specified by an angle γ ∈ [−π

2 , π
2

]
that increases in

the clockwise direction. The value γ = 0 corresponds to the central ray of the fan, that is the
ray that passes through the origin x = (0, 0)T .

For this acquisition set-up, a centered circular field of view (FOV) is determined and
we assume the object is compactly supported within this FOV. The FOV radius is just small
enough so that all rays that diverge from the source and intersect the FOV hit the detector. The
value of |γ | for each of the two rays tangent to the FOV is denoted by γm; all rays through the
FOV are thus defined with |γ | � γm.
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Figure 1. Full-scan fan-beam acquisition geometry with a curved detector. The source describes a
circular trajectory of radius R, the detector is at distance D from the source. Each detector element
is addressed by a fan-angle γ . The parameters γ and λ specify a ray in the image plane, which
originates from a(λ) and has direction α.

To mathematically describe the fan-beam data, we introduce a system of two unit
orthogonal vectors: eu(λ) = (− sin λ, cos λ)T , which is tangent to the source trajectory
at a(λ), and ew(λ) = (cos λ, sin λ)T , which gives the direction from the origin x = (0, 0)T

toward the source a(λ). The fan-beam projection at position λ may then be written as

g(λ, γ ) =
∫ +∞

0
f (a(λ) − t cos γ ew(λ) + t sin γ eu(λ)) dt. (1)

By construction, g(λ, γ ) = 0 for |γ | > γm, that is no projection is truncated.
The standard direct FBP formula for reconstruction from g(λ, γ ) is

f (x) =
∫ 2π

0
dλ

R

‖x − a(λ)‖2

∫ γm

−γm

dγ hramp(sin(γ ∗ − γ ))m(λ, γ ) cos γg(λ, γ ). (2)

In this equation, hramp(t) is the ramp filter, namely the inverse Fourier transform of |ν|, and
γ ∗ is the value of γ for the ray that connects a(λ) to x, that is

γ ∗ = tan−1(u∗/D) with u∗ = Dx · eu(λ)

R − x · ew(λ)
, (3)

where the dot denotes a scalar product.
The function m(λ, γ ) in (2) allows for a proper, explicit handling of redundancies in

the fan-beam data. Here, we assume data acquisition over 2π with no projection truncation.
Hence, each line integral through the object is measured twice (since any such line has two
intersections with the source trajectory) and contributes thus twice to the reconstruction in (2).
For formula (2) to be valid, care must be taken to ensure the total contribution of each line to
the reconstruction is unity; this is achieved with m(λ, γ ). A common way to ensure unity is
to take m(λ, γ ) = 1/2, but more sophisticated weights are obviously possible (Crawford and
King 1990, Taguchi 2003).

Noo et al (2002) suggested another direct FBP formula for reconstruction from g(λ, γ ):

f (x) = 1

2π

∫ 2π

0
dλ

w(λ, x)

‖x − a(λ)‖
∫ γm

−γm

dγ hH (sin(γ ∗ − γ ))ĝ(λ, γ ). (4)



3230 F Dennerlein et al

In this equation, hH (t) is the Hilbert-transform filter, namely the inverse Fourier transform of
−i sgn(ν), and

ĝ(λ, γ ) =
(

∂

∂λ
+

∂

∂γ

)
g(λ, γ ). (5)

It can be shown (Noo et al 2002) that ĝ(λ, γ ) is the result of differentiating the fan-beam data
with respect to λ while fixing the ray direction α (see figure 1).

Function w(λ, x) in (4) plays the same role as function m(λ, γ ) in (2). In contrast with (2)
though, the redundancy weighting in (4) applies after the convolution and can thus be carried
out in the image domain as part of the backprojection step. This feature allows a definition of
the redundancy weight individually for every point x, yielding increased flexibility in the way
data redundancies can be handled. In particular, points that are on the same backprojection
ray can be assigned distinct weights without affecting the FBP structure of the reconstruction,
which is not possible with the standard FBP formula.

As in the standard case, w(λ, x) must satisfy a normalization condition for (4) to be
valid: the total contribution to the final reconstruction of each line passing through x must
be unity. A common choice for the full-scan is w(λ, x) = 1/2 and we refer to this choice as
the uniform weighting approach. However, other choices are possible, as we will discuss in
the next section.

3. Direct FBP formula with no backprojection weight

Consider the redundancy weighting function

w(λ, x) = ‖x − a(λ)‖
2R cos γ ∗ (6)

as a candidate for reconstruction using Noo’s FBP formula (4). The idea is to let the
contribution of a given ray to the reconstruction of f (x) depend on the Euclidean distance
between x and the source position during the backprojection. As will become clearer below,
among all measured rays through x, the suggested weight gives preference to the fan-beam rays
emerging from the source positions that are most away from x. This preference is accentuated
with the distance from x to the origin. For reconstruction at x = (0, 0)T , however, all rays
through x are treated equally.

To show that (6) defines a valid weighting function, we need to demonstrate that it
normalizes to one the contribution from any line through any point x within the FOV. Consider
the reconstruction of f at such a point. Then, for any arbitrary source position a(λ), there
exists a complementary source parameter λc, such that x, a(λ) and a(λc) are collinear and
define a line L (see figure 2). The integral along L is acquired twice, at source parameters λ

and λc, respectively. Using equation (6) to define the weight each measurement on L receives,
and using the relation γ ∗

c = −γ ∗ (see figure 2), we find

‖x − a(λ)‖
2R cos γ ∗ +

‖x − a(λc)‖
2R cos γ ∗

c

= ‖x − a(λ)‖ + ‖x − a(λc)‖
2R cos γ ∗

= ‖a(λc) − a(λ)‖
2R cos γ ∗ = 1. (7)

The result in (7) proves that (6) defines a valid weighting scheme.
Since the function w we suggest in (6) is proportional to ‖a(λ) − x‖, it cancels out

the backprojection weight 1/‖a(λ) − x‖ in Noo’s FBP formula (4). This means that
the computationally costly step of applying the backprojection weight in a direct FBP
reconstruction can be avoided. In compensation, the convolved fan-beam data just need to
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Figure 2. Geometric illustrations of the redundantly measured line L. The line integral
corresponding to L is obtained at source parameters λ and λc . The absolute value of the fan
angle to the line L is identical in both views, λ and λc .

be multiplied by 1/(2R cos γ ) prior to backprojection. Substituting the suggested weighting
function (6) into (4) yields the novel direct FBP formula we announced:

f (x) = 1

4πR

∫ 2π

0
gF (λ, γ ∗) dλ (8)

where

gF (λ, γ ) = 1

cos γ

∫ γm

−γm

hH (sin(γ − ω))ĝ(λ, ω) dω, (9)

with ĝ given by equation (5). This formula has no backprojection weight.

4. Evaluation

This section presents an evaluation of the suggested direct FBP formula with no backprojection
weight. We refer to this formula as the efficient formula and compare its performance to the
application of equation (4) with uniform weighting (namely, w(λ, x) = 1/2), which we refer to
as the uniform-weighting formula. The evaluation is performed in terms of spatial resolution,
signal-to-noise ratio (SNR) and computational efficiency.

Many geometric factors can affect image quality in fan-beam tomography. These factors
include the focal spot size, the anode angle, the size of detector elements, the type of x-ray
emission (pulse or continuous) and the source-to-origin distance. For our evaluation, we
selected data acquisition parameters that are representative of current medical CT scanners;
these parameters are summarized in table 1.

The two formulae we compare were implemented using the same discretization rules.
In particular, the computation of ĝ(λ, α) in equation (5) was performed using the numerical
scheme of equation (46) in Noo et al (2003). And the Hilbert transform was applied with no
apodization, using equation (53) in Noo et al (2003). For details on the implementation of the
backprojection step, see section 4.3.
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Table 1. Fan-beam parameters used for the algorithm evaluation.

X-ray source
Dimensions (width× height) 1.2 mm ×0.9 mm
Anode angle 7.0◦

X-ray emission continuous

Detector
No. of pixels 672
Pixel dimensions 1.4083 mm ×1.4083 mm
Detector offset 0.352 075 mm
Source-to-detector distance D = 104 cm

Trajectory
Radius of the circle scan R = 57 cm
No. of projections 1160

4.1. Comparison of spatial resolution

Predicting differences in spatial resolution performance between the efficient and the uniform-
weighting formulae is not straightforward. By omitting the distance-dependent backprojection
weight, the efficient formula gives more weight to fan-beam rays for which the source is further
away from the point of interest x. Using the rule of magnification, we could therefore predict
a decrease in spatial resolution compared to the uniform-weighting formula, especially in
regions far away from the origin of the image coordinate system. However, the efficient
formula also favors fan-beam data for which the discretization in λ appears under a smaller
angle. Hence, the low-pass effects of continuous x-ray exposure could be less prominent for
the efficient formula, and could overall make the efficient formula better in terms of resolution.
Altogether, we see thus that argumentation can be given in favor of each reconstruction formula.
To clarify the issue, we decided to perform a thorough evaluation of the two formulae in terms
of spatial resolution by determining the point spread function (PSF) corresponding to each
reconstruction formula at various locations within the FOV.

To obtain the PSF at a specific location x, a cylindrical object with a tiny circular base
was placed at x. Then, we simulated fan-beam data of this object and achieved from this
data reconstruction on a fine Cartesian grid centered at x. The cylindrical object is intended
to be an approximation of the 2D delta function (Dirac impulse). For its radius, we selected
0.15 mm, which is almost ten times smaller than the width of each detector pixel, and for its
attenuation coefficient we selected 12.2 mm−1, so that a ray passing through its center suffers
an attenuation equivalent to the attenuation caused by a homogeneous water cylinder of
200 mm diameter. Because of discretization effects, the reconstruction of our cylindrical
object looks like a blurred spot rather than a disk with a perfectly delineated boundary and
this spot represents our estimate of the PSF at x.

Let us denote by PSF data the fan-beam data of the tiny cylindrical object. To simulate
PSF data, all finite-size geometric entities were represented by several points rather than just
by their midpoint. In other words, we simulated fan-beam data in an upsampled scenario and
subsequently performed binning to obtain PSF data corresponding to the desired sampling
pattern and geometric dimensions. In the upsampling scenario, each detector pixel was
divided into 14 × 14 pieces uniformly covering its area, and the focal spot of the x-ray
source was divided into a grid of 3× 3 subspots. Furthermore, to account for the effect of
continuous x-ray emission during data acquisition, five projections were simulated for each
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Figure 3. Point spread function (PSF) at position (0.5 cm, 0 cm)T (left two images) and at position
(24.5 cm, 0 cm)T (right two images). In each case, the PSF corresponding to the uniform-weighting
formula is on the left side, while the PSF for the efficient formula is on the right side.

fan-beam projection, using five different positions for the focus–detector assembly, which were
uniformly distributed over 2π/1160 around the nominal position for the desired projection.
Altogether, 8820 line integrals were thus computed to simulate each PSF data sample, and
binning proceeded by first converting these line integrals into attenuation factors.

The PSF estimate at an arbitrary position of interest x was obtained on a Cartesian grid
of 64 × 64 square pixels of side 0.04 mm. For a detailed analysis, we extracted profiles of
the PSF along half-lines, with each half-line starting at x and describing some angle ω with
the x-axis. Let p be the distance from x along each half-line; typically, the extracted profiles
are monotonously decreasing functions of p with maximum value at p = 0 i.e., at point x.
Hence, a coordinate phalf at which half the maximum value is reached may be defined. This
coordinate, phalf , characterizes the spatial extent of the PSF as a function of angle ω and
we call 2phalf the full-width at half maximum (FWHM) of the PSF at ω. If the PSF were
a radial function, the FWHM would be independent of ω. However, this is not the case in
our evaluations. Hence, we computed the FWHM for 256 profiles corresponding to ω values
uniformly sampled over the interval [0, 2π). The mean value of the obtained 256 FWHMs as
well as their standard deviation were then computed as a characterization of the achievable
spatial resolution at x.

Due to the symmetry of the full-scan reconstruction problem, the spatial resolution is
essentially a radial function i.e., a function only of the distance d from the origin. To compare
the resolution given by the two formulae over the complete FOV, PSFs were generated
and evaluated as explained above at 25 different distances d, starting at d = 0.5 cm and
incrementing in steps of �d = 1.0 cm. For convenience, all PSFs were located on the positive
side of the x-axis.

Figure 3 shows the PSFs obtained with the uniform-weighting formula and the efficient
formula at two locations, d = 0.5 cm and d = 24.5 cm, while variations in the PSF shape
across the FOV are presented in figure 4, using the FWHM concept. In particular, figure 4
includes a plot of the ratio between the FWHM given by each formula at each sampled ω;
both mean and standard deviation of this ratio are displayed.

The results show that both formulae yield a very similar resolution across the FOV. Near
the origin, a nearly radial PSF of FWHM smaller than 1.2 mm is obtained. As d increases,
the mean of the FWHMs continuously increases to reach a value of approximately 1.9 mm
at the edge of the FOV. Furthermore, the standard deviation of the FWHMs over all profile
angles gets larger, indicating a decrease in PSF symmetry. We note that this decrease appears
slightly worse when using the uniform-weighting formula. The ratio between the FWHMs
shows there is less than 2% difference in resolution between the uniform-weighting formula and
the efficient formula. This difference is in favor of the efficient formula in region d < 200 mm,
and in favor of the uniform-weighting formula in region d > 200 mm. In length units, the
worst difference in FWHM is 0.025 mm.
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Figure 4. Mean value and standard deviation of FWHMs obtained from 256 radial profiles through
the PSF. These quantities are shown as a function of d, the distance from the PSF to the origin.
(Left) Using the uniform-weighting approach. (Middle) Using the efficient formula. (Right) Ratio
of the FWHMs (‘uniform-weighting’ over ‘efficient’).

4.2. Comparison of discretization errors and noise propagation

Discretization errors and noise propagation were investigated using reconstructions from noisy
fan-beam data of a slice through the FORBILD thorax phantom. For this investigation, the
size of the phantom was enlarged using a bigger ellipse for the body contour; the new ellipse
was of size 49 cm by 28 cm, and was centered at (0 cm, 2 cm)T . The reconstructions were
performed from 800 distinct noise realizations, each on a Cartesian grid of square pixels of
side 0.75 mm. Thus, 800 images were obtained from each reconstruction formula. Variations
in the intensities of each pixel across these 800 images give statistics on the uncertainty that
can be expected in the reconstruction of the real, sought density function at each pixel location,
due to data noise.

Data simulation for each noise realization was performed as in section 4.1, using
upsampling and then binning to model all geometric factors. The upsampling parameters
were the same as in section 4.1, except for the detector pixels which were represented each by
a Cartesian grid of 3 × 3 subpixels (instead of 14 × 14), to speed up the simulation. Poisson
noise was added to the noise-free fan-beam data after binning to the desired dimensions,
assuming an emission of 150 000 photons per ray.

Figure 5 (left) shows the mean of the 800 reconstructions obtained from each formula.
These means are displayed using a highly compressed grayscale to exhibit the discretization
errors. Compared to the ground-truth, which is also displayed in figure 5, we observe that
both formulae perform very well. However, the uniform-weighting formula yields a bit more
discretization errors away from the origin (see the regions within the dashed circles).

Figure 5 (right) shows the reconstructions obtained from each formula when using only
a single set of noisy data. In each figure, differences in noise level that increase with the
distance from the origin can be observed between the two reconstructions. To analyze further
these differences, we computed on a pixelwise basis the standard deviation across the 800
reconstructions obtained from each formula. Figure 6 shows the resulting standard deviation
images, and figure 7 shows the ratio between these images, again computed pixelwise. These
figures show that each formula yields a similar standard deviation near the FOV center, but
away from this center the efficient formula performs better. At a distance of 15 cm from
the origin, reconstructions from the uniform-weighting formula show a 5% higher noise level
compared to the efficient formula and this percentage increases rapidly with the distance from
the origin; the percentage is 20% at 20 cm and as high as 40% at 25 cm. Hence, the efficient
formula is more robust to noise than the uniform-weighting formula, and the difference in
robustness is not negligible off-center.
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Figure 5. Reconstructions of the slice z = 0 cm through the FORBILD thorax phantom
with enlarged body contour. (Left) Comparison between the ground truth and the mean over
800 reconstructions obtained from distinct noise realizations; grayscale: [−20, 20] HU. (Right)
Comparison between the ground truth and the reconstruction obtained from a single noisy data
set; grayscale: [−110, 100] HU. In each case, left and right, the top image is the ground truth, the
middle image is the result from the uniform-weighting formula, and the bottom image is the result
from the efficient formula. The three dashed circles in the middle image of the left column indicate
regions where the reconstruction with the uniform-weighting formula exhibits slight differences in
discretization errors.
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Figure 6. Standard deviation images obtained from reconstructions of the FORBILD thorax
phantom with enlarged body contour; 800 distinct Poisson noise realizations were considered with
150 000 photons per ray. (Left) Result for the uniform-weighting formula. (Right) Result for the
efficient formula.
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Figure 7. Close inspection of the standard deviation images in figure 6. (Left) Noise behavior
comparison using pixelwise computation of the ratio between the standard deviation images
(‘uniform-weighting’ over ‘efficient’). (Right) Plot along the central horizontal line of the ratio
image shown to the left.

Technically, noise properties should be compared at equal spatial resolution, which is not
achieved according to the results in section 4.1. However, these results show that resolution, if
not equal, is at least very similar, so much that the gain observed in standard deviation may not
be the cause of differences in resolution. In particular, note that if the difference in resolution
was thought to be the cause of the difference in standard deviation, then this latter difference
should follow the shape of the PSF plot in the right side of figure 4. Nevertheless, we have
investigated resolution matching through a modeling of the PSFs as Gaussian functions. As
expected, this investigation yielded no measurable difference in standard deviation.

4.3. Computational efficiency

The efficiency of the two reconstruction formulae was evaluated using direct counting of the
number of required additions, multiplications and divisions, and also using measurements
of execution times on three different systems. We concentrated this evaluation on the
backprojection step since this step is typically the most demanding one, and furthermore
the significant difference between the two reconstruction formulae lies in the backprojection
step.

Clearly, any evaluation of efficiency depends on the amount of sophistication attached
to the implementation of the reconstruction formulae. For example, a direct implementation
of the uniform-weighting formula based on (4) is bound to be much slower than a direct
implementation of the efficient formula because the backprojection weight in (4) requires
the computation of a square root for each source position for each pixel. We aimed at a
deeper comparison and decided to use the following relation in the implementation of the
uniform-weighting formula (Noo et al 2003):

‖a(λ) − x‖ = R − x cos λ − y sin λ

cos γ ∗ . (10)

Using this relation yields a much more efficient implementation of the uniform-weighting
formula as the square root is avoided and the cos γ ∗ factor can be taken care of prior to
backprojection by just multiplying the filtered data by cos γ .
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Figure 8. Pseudo-code for the backprojection step corresponding to (left) the uniform-weighting
formula and (right) the efficient formula. The resampled data g2(λ, u) are defined with a sampling
distance �u and the quantity û = u∗/�u gives the detector coordinate where x is projected to,
measured in multiples of �u. The quantity NUM is the numerator of u∗ in (3), divided by �u;
DEN stands for the denominator in (3). The increments that NUM and DEN experience when
incrementing x at fixed y are defined by T1 and T2. Initialization of NUM and DEN refers to
their calculation from the current value of y and the first sampled value in x. Finally, note that U0
denotes in pixel units the location where the origin projects to, so that Uidx gives the index of the
sample closest to û.

Now, note that a direct implementation of both formulae requires the computation of
an inverse tangent to obtain γ ∗ from u∗ in (3). When using (10), this requirement largely
dominates the effort for the backprojection weight in the uniform-weighting formula, so that
little difference could be observed between the two reconstruction formulae. This issue was
circumvented by resampling the filtered data on a fine grid in u = tan γ prior to backprojection.
This resampling not only eliminates the need to compute the inverse tangent but also enables
us to access data during backprojection using nearest-neighbor interpolation rather than the
more costly linear interpolation.

A sketch of our implementation of the two reconstruction formulae is given in figure 8.
In addition to avoiding the square root and the inverse tangent, these sketches also show that
we aimed at a minimization of the number of operations within the most inner loop, as this
number has major impact on computation time. For the uniform-weighting formula, one
division (line 10), two multiplications (lines 11 and 13) and four additions (lines 12, 13, 15
and 16) are required4. For the efficient formula, one division (line 0.10) and four additions
(lines 0.11, 0.12, 0.14, 0.15) are required. Hence, in terms of operations, there is a gain of
two multiplications out of seven operations total in favor of the efficient formula.

How the gain observed in the number of operations converts into actual benefits on real
systems is not trivial, as it highly depends on the system architecture, on the status of the
system at initialization time, on the compiler and on internal optimizations transparent to
the software developer. For illustration, a C-implementation of both formulae was tested on
three different platforms, called Vanda, Hailfire and Anakin. These platforms all operated

4 The division plus the two multiplications could be replaced by two divisions, but the outcome was slower on the
systems we used.
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Table 2. Execution times for the two algorithms (‘Unif.’ and ‘Effic.’ denote the uniform-weighting
and the efficient formula, respectively) on three different systems as absolute values (in seconds)
and as a ratio (uniform-weighting over efficient).

Filtering Backprojection Total

Unif. Effic. Ratio (%) Unif. Effic. Ratio (%) Unif. Effic. Ratio (%)

Vanda 0.711 0.723 98.3 4.483 3.873 115.7 5.194 4.596 113.0
Hailfire 0.655 0.661 99.1 3.394 2.842 119.4 4.048 3.503 115.5
Anakin 0.707 0.713 99.2 6.447 3.371 191.3 7.154 4.084 175.2

under Linux, and we compiled each code separately on each of them using the C compiler
of the GNU library (gcc) while enabling code optimization using the compiler option -O4.
After compilation, the code was executed 20 times for reconstruction on a Cartesian grid of
512 × 512 square pixels of side 1 mm, assuming a centered circular region-of-interest (ROI)
of radius 25 cm (the object was a water cylinder of radius 24 cm). The mean CPU time of
the 20 executions was recorded on each of the three systems, and is presented in table 2. Not
surprisingly, significant differences were observed from one platform to the other, with the
global gain in favor of the efficient formula being as high as 43% on Anakin. Note that Vanda
has a 32-bit Intel Pentium 4 CPU with 3.40 GHz, 1 MB cache and 2 GB RAM; Hailfire has
a 64-bit AMD Opteron CPU with 2.00 GHz, 1 MB cache and 7 GB RAM; and Anakin has a
64-bit Intel Pentium 4 CPU with 3.30 GHz, 2 MB cache and 4 GB RAM.

5. Discussion and conclusion

We developed a novel direct FBP formula that allows full-scan fan-beam reconstruction with
no backprojection weight. The development was based on Noo’s fan-beam FBP formula
(Noo et al 2002). In contrast to the standard direct FBP formula with ramp filter (Kak and
Slaney 1988), this formula has the data-redundancy weighting operation embedded in the
backprojection step. This allows the attribution of different weights to points that lie on a
same backprojection ray without affecting the FBP structure of the reconstruction. We showed
that this feature authorizes the use of a weighting function that cancels out the backprojection
weight in Noo’s formula, thus yielding the novel formula.

The performance of our novel formula was evaluated against the use of Noo’s formula
with uniform weighting of data redundancy. We observed a gain in terms of computation time
in a software implementation: depending on the system used this gain varied from 14% to
47% in backprojection effort with no significant difference in filtering time. A gain may also
be expected in a hardware implementation, but quantification of this gain was not performed.
Besides efficiency gain, we also observed a gain in terms of noise properties: the standard
deviation on the reconstructed values was reduced by a factor that rapidly increases from 0%
at the center of the FOV to 40% at the edge of the FOV; this improvement may be significant
for large patients. On the other hand, spatial resolution and discretization errors appeared very
similar across the FOV.

We have not compared our novel formula against the classical fan-beam FBP method
described in Kak and Slaney (1988). However, a superior performance may be anticipated,
both in computation time and in image quality. The gain in computation time is straightforward
since our formula does not require any backprojection weight, while the effort in data filtering
is essentially the same. For the gain in image quality, we refer the reader to the paper of
Zamyatin et al (2006), which shows that the classical formula is less robust to data noise
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and discretization errors than the uniform-weighting formula, which we compared the novel
formula to. To achieve this superiority in image quality, it may however be needed to compute
ĝ(λ, γ ) in equation (5) using the approach suggested in Zamyatin et al (2006) rather than our
discretization scheme.

Recently, several new direct and indirect fan-beam reconstruction formulae have been
suggested (Pan 1999, Pan and Yu 2003, Wang et al 2005, You et al 2007). These formulae
were shown each to achieve improvements in image quality over the classical fan-beam FBP
formula. It would therefore be of interest to compare their performance to that of our formula,
and we may perform such a comparison in the future.

The novel formula was derived exclusively for reconstruction from full-scan fan-beam
data. Direct fan-beam FBP reconstruction with no backprojection weight may not be possible
when the data are only measured on a short-scan or a super short-scan. However, partial
elimination of the backprojection weight may be achieved using the same data weighting
strategy as presented here. More specifically, the backprojection weight in Noo’s formula
(2002) can be eliminated for each ray that corresponds to a line integral that is measured twice,
by weighting each such ray with function w(λ, x) of equation (6) during the backprojection.
On the other hand, for the rays that correspond to line integrals that are only measured once,
only w(λ, x) = 1 can be applied, so that our approach does not allow elimination of the
backprojection weight for singly-measured rays.
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