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This paper describes an information theoretic approach for next best view planning in active
state estimation, and its application to three computer vision tasks. In active state estima-
tion, the state estimation process contains sensor actions which affect the state observation,
and therefore the final state estimate. We use the information theoretic measure of mutual
information to quantify the information content in this estimate. The optimal sensor actions
are those that are expected to maximally increase the information content of the estimate.

This action selection process is then applied to three seperate computer vision tasks:
object recognition, object tracking and object reconstruction. Each task is formulated as an
active state estimation problem. In these tasks, a given sensor action describes a camera
position, or view. The information theoretic framework allows us to determine the next
best view, i.e. the view that best supports the computer vision task.

We show the benefits of next best view planning in several experiments, in which we
compare the estimation error produced by planned views with the error produced by regu-
larly sampled or unchanging views.

1.1. Introduction

We present a general framework for determining the next best view in active state esti-
mation problems. In active state estimation, the state observation process is additionally
parameterized with a sensor action which is freely selectable and adaptable at run-time.
The observation taken with the action which most supports the state estimation is referred
to as the next best view. This framework is adapted to three computer vision tasks: object
recognition, object tracking, and object reconstruction. We formulate each task as a state
estimation problem and use the framework to determine the next best view.

This work is based primarily on the work of Denzler and Brown,1 who introduce a
formalism for sensor parameter optimalization in general state estimation problems and
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demonstrated its validity with a simple object classification task (which, unlike the ap-
proach outlined later in this work, does not use Reinforcement Learning, but evaluates the
mutual information directly). Such a state estimation problem produces not only an esti-
mate of the state, but also a measure of the reliability of this estimate, in that the a posteriori
estimate is of the form of a probability density function (pdf). The information theoretic
method of maximal mutual information is used to optimize the information content of this
a posteriori pdf by finding the optimal action, or view, in advance. This corresponds to
minimizing the expected entropy of the pdf. We define the next best view as the one that
maximizes the mutual information, and adapt this framework to our computer vision tasks.

The notion of a “next best view” depends strongly on the goals of the system. The
following is a short overview of related work in active next best view selection for the three
computer vision tasks:

In object recognition, a common approach for viewpoint selection is the exploitation of
a few distinctive object views computed offline, as in Sipe and Casasent2 or Dickinson.3

Others, similar to this work, apply more complex training phases, e. g. performing a cluster
analysis like Kovačič.4 Similar to our approach, which will be shown to utilize Reinforce-
ment Learning training, Arbel and Ferrie5 also combine an information theoretic measure
with a training stage by setting up entropy maps. But in contrast, thereby they do not con-
sider inaccuracies in the sensor movement. Thirdly, works like Zhou and Comaniciu6 and
Laporte7 follow the idea of omitting any training, but concentrate on passing the most sup-
porting features to information theoretic approaches, which is convenient but naturally less
reliable.

In object tracking, views have typically been changed reactively. Tordoff and Murray8

use zoom control to keep the scale of an object of interest fixed over time. Micheloni and
Foresti9 adapt this approach with a feature clustering technique to detect moving objects,
and zoom on an object if required. Both approaches do not adapt the zoom based on
any predicted information gain, unlike the methods shown here. Recently, Tordoff and
Murray10 have considered the uncertainty of the estimate for zoom planning; however their
approach considers the innovation covariance as an indicator to adapt the process noise,
not the expected gain in information. Davison11 also uses mutual information to guide the
search of features on an image for 2-D object tracking. In contrast, the tracking discussed
here optimizes the continuous parameterization of several cameras, tracking in 3-D.

In view planning for 3-D reconstruction, several authors use range scanners, e. g.
Banta,12 Pito,13 or Scott.14 However, these works are not comparable to 3-D reconstruc-
tion from intensity images, since the reconstruction process is completely different. Works
which optimize 3-D reconstruction results by next best view planning are quite rare in liter-
ature.15–17 Furthermore, those algorithms use geometrical considerations in contrast to the
information theoretical approach introduced in this work and adopted to this special task.

This paper is organized as follows: The next section describes the general problem of
state estimation, and shows how optimal views can be determined using the information
theoretic measures of mutual information and entropy. Section 1.3 then applies and adapts
this view planning process to three basic computer vision tasks. Section 1.4 contains ex-
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periments for each of the three tasks, showing the validity of the next best view planning
process. The last section contains a summary of this work.

1.2. Information theoretical approaches for Next Best View planning

In the following we treat computer vision algorithms as probabilistic state estimation prob-
lems. The unknown state is estimated by one or more observations from the environment.
The probabilistic formulation of the problem makes it possible to explicitly model uncer-
tainty, arising from using real sensors, and to use a priori information, which is sometimes
available and can improve the quality or robustness of the results. As mentioned before,
prominent examples from computer vision tackled in this article are object recognition
(discrete state space with the class label being the state), object reconstruction (continuous
state space with the object’s points in 3-D being the state) and object tracking (continuous,
time varying state space with the position, velocity and acceleration being the state).

Next best view planning is understood as acquiring those observations that are most
valuable for the subsequent state estimation process. The term view is used to indicate that
the focus in this work is on cameras, whose parameters (internal or external parameters)
are optimized during the planning approach. Optimization is done by modeling the benefit
of each new view with respect to the state estimation problem.

Strong relations can be drawn to sequential decision making. Aside from the decision
(planning), which next view is taken, fusion of the information is also an important aspect.
In the next two sections, we present a very general model for sequential decision making
and fusion for state estimation. In the later sections, this very general model is applied to
problems in computer vision.

1.2.1. General state modeling and estimation

The term state, or state vector qt, of a system at time step t comprises all the relevant
parameters of that system to be determined from observations o0 . . .ot taken by sensors.
For static systems, the state does not change over time and we can omit the parameter t.
For an estimation of the true state usually the a posteriori probability

p(qt|o0, . . . ,ot) =
p(ot|qt)p(qt|o0, . . . ,ot−1)

p(ot)
(1.1)

of the state given the observations needs to be computed using the well known Bayes for-
mula. In (1.1), the usual Markovian assumption is made, i.e. the current observation ot
only depends on the current state qt. The a posteriori density can then be the basis for
a maximum a posteriori estimation (MAP) or a minimum mean square error estimator
(MMSE). Again, for static systems the parameter t can be omitted. For dynamic systems,
the computation of the so called temporal prior p(qt|o0, . . . ,ot−1) involves the a posteri-
ori probability from the previous time step t − 1 as well as the state transition probability
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p(qt|qt−1) of the system, i.e.

p(qt|o0, . . . ,ot−1) =

∫
p(qt−1|o0, . . . ,ot−1)p(qt|qt−1)dqt−1 (1.2)

It is worth noting that for static systems, although the true state remains constant over time,
the estimated a posteriori density will change due to the collection of observations ok.
This situation will be discussed in section 1.3.1. For dynamic systems, the estimation and
tracking of an evolving density is one of the main ideas behind the Kalman filter.

If the assumptions are met, the Kalman filter is sometimes more intuitive to apply due
to its algebraic formulation. The basic model of the linear Kalman filter consists of two
equations for state transition and observation. The state transition is given by

qt+1 = F tqt +wt (1.3)

with W t being the covariance matrix of the Gaussian noise process wt. This equation
describes the dynamics of the system and is in general equivalent to the density p(qt+1|qt).
The relation between state and observation is modeled by

ot = Gtqt + rt (1.4)

withRt being the covariance matrix of the Gaussian noise process rt. Again, we can relate
this equation to the density p(ot|qt) in the probabilistic formulation of the problem. In the
extended Kalman filter the linear relationships in (1.3) and (1.4) are substituted by in gen-
eral non-linear functions f (qt) and g(qt) for state transition and observation, respectively.

The basic assumption behind the Kalman filter are Gaussian noise processes during
state transition and observation, which gives us Gaussian densities for p(qt+1|qt) and
p(ot|qt). As a consequence, the resulting a priori and a posteriori densities in (1.1) are
also Gaussian, with the notation

p(qt|o0, . . . ,ot−1) ∼ N (q̂−t ,P
−
t ) and p(qt|o0, . . . ,ot) ∼ N (q̂+

t ,P
+
t ) (1.5)

and the Kalman update step (not detailed here) containing

P+
t = (I −KtGt)P

−
t (1.6)

whereKt is the Kalman gain matrix and I the identity matrix.
Thus, both the MAP and the MMSE estimate are the mean of (1.1). In case, that

the involved densities cannot be modeled as Gaussian densities, the solution to MAP and
MMSE can be achieved using particle filters. A short introduction to particle filters in
practice is given in section 1.3.1.

1.2.2. Optimality criteria for active view planning

Having in mind that the a posteriori density from (1.1) is the basis of the state estimate
in probabilistic estimation theory, it is quite natural to search for such observations that
make (1.1) most suited for the following steps. One simple example is a MAP estimation.
Having a density that consists of local maxima makes the estimation process ambiguous.
A second example is a very flat density that makes the estimation process uncertain. Thus,
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p(xt+1)p(xt)

at at+n−1at+1

p(xt+n)

xt xt+1 xt+n

Fig. 1.1. General principle of active view planning in state estimation.

the key aspect of an optimal state estimation is the collection of those observations from the
data that the resulting density in (1.1) is at the best unimodal and with small variance. This
situation is indicated in Fig. 1.1. Starting with a uniform density over the state space (i.e.
knowing nothing at all), we choose so called actions at at each time t step to influence the
subsequent observations, such that the observation will lead to a more suited density. In our
case, an action is any change in the internal or external parameters of a camera. However,
the whole formulation is not restricted to actions for cameras. Arbitrary actions are possi-
ble, for example, one that might influence the environment (for example, the illumination
of the scene) or those which select algorithms for further processing of the data.

The problem formulation directly points to the solution. To find the best action at
each time step, we have to define a criterion that favors unambiguous densities with small
variance. The entropy

H(qt) =

∫
p(qt) log p(qt)dqt (1.7)

could serve as a criterion, as done by other researchers before. However, this criterion does
not allow to consider the sequential aspect of the whole planning process. Thus, we map the
sequential planning process to the sender-receiver model in information theory as indicated
in Fig. 1.2. The sender corresponds to the unknown state of the system. The channel and
channel parameter consists of the sensor and its parameters, respectively. At the receiver
side we observe the image. The question that is readily answered in information theory
is the amount of information that is contained in the observation about the state, and vice
versa. The quantity is the so called mutual information

I(qt;ot|at) =

∫

qt

∫

ot

p(qt|at)p(ot|qt,at) log

(
p(ot|qt,at)
p(ot|at)

)
dotdqt (1.8)

and depends in our case on the chosen action, which influences the observation at time step
t. Another information theoretic quantity is the conditional entropy18

H(qt|ot,at) = −
∫
p(ot|at)

∫
p(qt|ot,at) log p(qt|ot,at)dqtdot (1.9)
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MMI
channel observation

BAYES

parameter at
p(qt) ot

p(qt|ot,at)

Fig. 1.2. Sequential decision process of maximum mutual information (MMI) for camera parameter selection
and Bayesian update of p(qt|ot,at) based on the observed feature ot. Taken from Denzler and Brown.1

There is a nice relationship between the mutual information in (1.8) and the conditional
entropy:

I(qt;ot|at) = H(qt|at)−H(qt|ot,at) (1.10)

The reader should note that the entropy H(qt|at) of the a priori probability (which lacks
the current observation ot) usually does not depend on the chosen action at. Thus, it is also
possible to minimize the conditional entropy H(qt|ot,at), i.e. the entropy of the a pos-
teriori probability (which includes the current observation ot), averaged over all possible
observations.

The optimal action a∗t with respect to the following state estimation process is now
given either by the maximum of mutual information (MMI)

a∗t = argmax
at

I(qt;ot|at). (1.11)

or equivalently by the minimum of the conditional entropy.
To complete the discussion of state estimation from Section 1.2.1, we have to add the

dependency on the chosen action at to all densities. More precisely, the likelihood p(ot|qt)
from (1.1) will become p(ot|qt,at) considering that the current observation now depends
not just on the state but also on the chosen action.

The optimal action a∗t is now used to adjust the camera parameters to acquire the next
best view. The observation taken by that view is fed into the estimation process (1.1)
(BAYES). By definition the a posteriori density from (1.1) will have minimum expected
entropy, i.e. on average minimum ambiguity and variance. Finally, this a posteriori density
can be input directly to the whole planning process at the next time step (for time invariant
systems) or by means of the temporal prior (1.2) (for dynamic systems). More details can
be found in Denzler and Brown.1 The next sections will demonstrate how this information
theoretic concept can be applied to three different state estimation problems in computer
vision.

1.3. Planning tasks

Given the theoretical background of chapter 1.2, we need to specify parameters like state,
observation or action more precisely when applied to a specific application. Next to the
consideration of possible problem based constraints, this is the decisive scientific transfer
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work one has to perform. Therefore, this chapter introduces the adaption of the theory
explained above to three applications in the research fields of computer vision. It will be
shown that in all these topics, active view planning is of distinct advantage.

1.3.1. Active Object Recognition

Taking a look at the majority of research work in the field of object recognition, problems
deal with single image processing and the assumption that the object can actually be distin-
guished from all others by that single view. In opposite, active object recognition searches
for a selectively chosen series of different images of one object in order to combine their
information for gaining the optimal improvement of certainty. So active object recogni-
tion permits the handling of more difficult classification problems, e.g. when objects show
ambiguities (see Fig. 1.5) or single image quality prohibits a reliable discrimination at all.

1.3.1.1. State representation and information fusion

With reference to section 1.2.1, we first need to define a meaningful state qt in the process
of object recognition. In the first instance, the state has to contain the attributes we are
finally interested in. Basically, always assuming a probabilistic representation of class
certainties, in the most simple case this would just be a group of κ probabilities regarding
all classes Ωl=1,··· ,κ under consideration. For each test image and object class, such a
value definitely has to be calculated by the summation over a theoretically continuous set
of poses φ = (φ1, . . . , φJ )T which represent the camera position relative to the object in
the various dimensions:

p(Ωl) =

∫

φ

p(Ωl|φ)dφ . (1.12)

So, for gaining a more distinguishing and less ambiguous state representation, it is only
meaningful and free of additional effort to augment it with the pose φ, yielding qt =

(Ωκ, φ1, . . . , φJ )T . Given this state representation we can establish (1.1) with the recogni-
tion specific parameters. Consequently, (1.1) can be considered to be a combined discrete-
continuous density, i.e. discrete regarding the class assumption and continuous in φ.

When performing a camera action

at = (∆φt1, . . . ,∆φ
t
J ) with ∆φt = φt+1 − φt (1.13)

relative to the object, we gather a new image whose pixel intensity value vector v pro-
vides the information to be fused to the current density representation, thus observation
ot = vt. This fusion is a task which is generally tackled using the Kalman filter in var-
ious state estimation problems, like in section 1.3.2. But mainly due to ambiguities in
the recognition process, we cannot generally assume the required normal distribution form
for p(ot|qt), thus making the Kalman filter unemployable here. Instead, we apply the so
called particle filters. The basic idea is to approximate the multi-modal probability distri-
bution by a set of M weighted samples yi = {xi, pi}. Each sample y consists of the point
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x = (Ωl, φ1, . . . , φJ ) within the state space and the weight p for that sample, with the
condition that

∑
i p
i = 1.

Now, each time step t a new image of the object is received—no matter if randomly
or purposefully—we initiate the fusion process. In the case of the particle representation,
this can be simple done by applying the Condensation Algorithm,19 which adapts the given
samples of the a priori density to an adequate representation of the a posteriori density, us-
ing the observation ot. Additionally, the camera action at−1 between the image acquisition
positions is considered in the sample transition:

p(qt−1| 〈o〉t−1 , 〈a〉t−2)

a posteriori (t− 1)
−→ p(qt| 〈o〉t−1 , 〈a〉t−1)

a priori (t)
−→ p(qt| 〈o〉t , 〈a〉t−1)

a posteriori (t)
(1.14)

where 〈o〉k is the sequence of observations o0 . . .ok and 〈a〉k the sequence of actions
a0 . . .ak.

1.3.1.2. Optimal action selection

So far, all discussions of section 1.3.1.1 have been so general that it does not matter whether
we acquire views randomly or purposefully, since the state representation and propagation
is identical. To meet the focus of this paper we now describe the optimality criteria for
view planning in object recognition. Unlike the data driven solutions for object tracking
and reconstruction, which will be presented in section 1.3.2 and section 1.3.3 respectively,
object recognition must be approached quite differently. For recognition, we must always
be aware of at least a probabilistic assumption of the properties of all our objects under
consideration, since we need to know whether a view is discriminative or not. Obviously
this information cannot be provided by an image sequence of just one object, which is all
we would have in a data driven setup.

Thus, a model-based method was created, representing the features of equidistantly
taken images from a circle around all possible objects. Appropriate feature vectors c are
calculated by applying the well known PCA to the pixel values of these input images, repre-
sented in vector form v. At this point, please note that our objective is not the improvement
of an individual classifier but the determination of an optimal image acquisition strategy
for an arbitrary classifier. Accordingly, the measure of quality is not so much the absolute
classification ratio, but its increase within the the process of active image acquisition com-
pared to a random proceeding. Thus, while omitting further details in this work, it should
just be mentioned that for experimental results an eigenspace classifier20 was used.PSfrag replacements
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Fig. 1.3. Reinforcement learning loop

Regarding the optimization we decided
for a Reinforcement Learning (RL)21 ap-
proach utilizing a training phase, consist-
ing of ε episodes with maximally ε̃ steps
each. In every single step, a closed loop be-
tween sensing st and acting at is performed
(Fig. 1.3). The generally randomly chosen
action at corresponds to the executed cam-
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era movement. Accordingly, the RL-state

st := p(qt| 〈o〉t , 〈a〉t−1) (1.15)

is the density as given in (1.1). Additionally, the classification module returns a so called
reward rt, which measures the quality of the chosen action. Clearly, the definition of the
reward is an important aspect as this reward shall model the goal that has to be reached.
Section 1.2 named the entropy to be a suitable measure of a distribution’s information
content, i.e. the discriminability potential in classification tasks. So setting

rt = −H(st) = −H
(
p(qt| 〈o〉t , 〈a〉t−1)

)
(1.16)

we highly reward views that increase the information observed so far in a training episode
and thus supports the goal of maximally improving the classification at every time step.

In order to optimize the viewpoint planning in an anticipatory manner, Reinforcement
Learning provides the so called return:

Rt =

∞∑

n=0

γnrt+n+1 with γ ∈ [0; 1] . (1.17)

Instead of the immediate reward rt, a γ-weighted combination of all rewards arising in
later steps n of the episode is applied. During training, this is done subsequently after
having finished the episode. Consequently, all acquired combinations of current state st−1,
ensuing action at−1 and resulting return Rt are stored in a training database.

Switching from the training phase to the later evaluation phase, naturally the future
rewards cannot be observed at time step t. Thus, the following function, called the action-
value function

Q (s,a) = E {Rt|st = s,at = a} (1.18)

is defined. It describes the expected return when starting at time step t in presumption state
s with action a. Please note that by calculating the expectation value of the γ-weighted
and added up entropy in (1.18), Q (s,a) is nothing but the conditional entropy which we
postulated to be a meaningful optimization criterion in (1.9).

Trying to optimize the camera action in the evaluation phase, the first task is to extract
those entries from the database that are relevant for the current state. So, for determining
the similarity between the current state and each one in the database, the extended Kullback-
Leibler distance function dEKL(sn, s

′
m) = dKL(sn, s

′
m) + dKL(s′m, sn, ) with

dKL(sn, s
′
m) =

∫
p(q| 〈o〉n , 〈a〉n−1) log

p(q| 〈o〉n , 〈a〉n−1)

p(q| 〈o′〉m , 〈a′〉m−1)
dq (1.19)

is used. Please note that in general there is no analytic solution for dEKL, but as we repre-
sent our densities as sample sets anyway (see section 1.3.1.1) there are well-known ways
to approximate dEKL by Monte Carlo techniques.22

In order to provide a continuous search space to the optimization problem, we calculate
a weighted sum of the action-valuesQ (s′,a′) of all previously collected state/action pairs
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(s′,a′) :

Q̂ (s,a) =

∑
(s′,a′)K (dEKL (θ(s,a), θ(s′,a′))) ·Q (s′,a′)
∑

(s′,a′)K (dEKL (θ(s,a), θ(s′,a′)))
. (1.20)

Thereby, the transformation function θ(s,a) transforms a presumption state s with
a known action a with the intention of bringing a state to a “reference point” (required
for the distance function in the next item). Actually, it simply performs a shift of the
density according to the action a. The kernel function K(·) finally weights the calculated
distances. A suitable kernel function is, for example, the Gaussian K(x) = exp(−x2/D2)

where D denotes the width of the kernel.
Using (1.20), the viewpoint selection problem of finding the optimal action a∗ can now

be written as a continuous optimization problem

a∗ = argmaxa Q̂ (s,a) . (1.21)

1.3.2. Active Object Tracking

For the task of visual object tracking, one is interested in the motion of a given object, often
called the “target” and treated as a point-sized entity. To acquire this motion, the target is
observed by several cameras. Using object tracking on the camera images, each camera
effectively generates a two-dimensional observation from the target position. These obser-
vations are then used to recover the 3-D position of the target, as well as other indirectly
observable motion parameters, such as the velocity and the acceleration. The dimension-
ality of the observations and the position alone require that more than one camera be used
for tracking. In practice, two cameras are sufficient, though more may be used.

1.3.2.1. State and observation representation

The relatively low-dimensional, single-target nature of object tracking makes it an ideal
candidate for the Kalman filter. In our object tracking tasks, we use a Newtonian position-
velocity-acceleration motion model. The state vector qt ∈ IR9 at time step t, which is part
of the discrete-time dynamic system being observed by the Kalman filter, is defined as

qt = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T (1.22)

where the component triplets correspond to the position, velocity and acceleration of the
target, in world coordinates, respectively. The state transition function function f(·), de-
scribed in (1.3), transforms one state to the next according to

xt+1 = xt + ∆t · ẋt + 1
2 (∆t2) · ẍt ẋt+1 = ẋt + ∆t · ẍt ẍt+1 = ẍt

yt+1 = yt + ∆t · ẏt + 1
2 (∆t2) · ÿt ẏt+1 = ẏt + ∆t · ÿt ÿt+1 = ÿt

zt+1 = zt + ∆t · żt + 1
2 (∆t2) · z̈t żt+1 = żt + ∆t · z̈t z̈t+1 = z̈t (1.23)

plus an additive white Gaussian noise. In time-discrete systems, such as discussed here, ∆t

is a unitless factor with value 1. Note that this state and state transition system observes the
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Markov property, in that the next state only depends on the current state, and not on past
states. This property is necessary for applying the Kalman filter.

Since the state transition function is linear and time-invariant, we can express it as the
state transition matrix F t ∈ IR9×9. This matrix is defined as

F t =




1 0 0 ∆t 0 0 1
2 (∆t2) 0 0

0 1 0 0 ∆t 0 0 1
2 (∆t2) 0

0 0 1 0 0 ∆t 0 0 1
2 (∆t2)

0 0 0 1 0 0 ∆t 0 0

0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




(1.24)

with, again, ∆t being equal to 1 in our time-discrete system. The process noise covariance
W t ∈ IR9×9 is set to a diagonal matrix for simplicity, see section section 1.4.2 for an
example.

The target is observed by m cameras, each of which produce a 2-D observation: the
projection of the point-sized target on each camera image. The observation ot ∈ IR2m is
defined as the concatenation of all individual 2-D observations at time t:

ot = (ox1, oy1, . . . , oxm, oym)T (1.25)

with oxj and oyj being the horizontal and vertical coordinates reported by the jth camera
and typically measured in pixels. The observation ot is derived from the state qt by the
observation function (1.4), which is based on the perspective projection in the cameras.

For perspective projection, each camera is parameterized with its internal and external
parameters. The internal parameters are the focal lengths ξu, ξv , the principal point σu, σv
and possible skew or distortion parameters (not included here). The external parameters
define the affine transformation between the camera coordinates and the world coordinates,
given as a rotation matrix Φ = (Φi,j) ∈ IR3×3 and a translation vector (τx, τy , τz)

T. The
actual projection of a 3-D point in world coordinates (x, y, z)T to 2-D screen coordinates
is typically modeled as a matrix multiplication in homogeneous coordinates:



u

v

w


 =



ξu 0 σu
0 ξv σv
0 0 1






Φ0,0 Φ0,1 Φ0,2 τx
Φ1,0 Φ1,1 Φ1,2 τy
Φ2,0 Φ2,1 Φ2,2 τz







x

y

z

1


 (1.26)

where the final observation is derived by
(
ox
oy

)
=

(
u
w
v
w

)
(1.27)

Since this function is not linear (due to the division), we use the extended Kalman
filter and obtain the observation matrix Gt ∈ IR2m×9 as the derivative of the observation
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function about the estimated state q̂−t , shown here for m = 1:

Gt =

(
ξu·(ηz·Φ0,0−ηx·Φ2,0)

η2
z

ξu·(ηz·Φ0,1−ηx·Φ2,1)
η2
z

ξu·(ηz·Φ0,2−ηx·Φ2,1)
η2
z

0 · · · 0
ξv ·(ηz·Φ1,0−ηx·Φ2,0)

η2
z

ξv ·(ηz·Φ1,2−ηx·Φ2,1)
η2
z

ξv ·(ηz·Φ1,2−ηx·Φ2,2)
η2
z

0 · · · 0

)
(1.28)

where η = (ηx, ηy, ηx)T are the target world coordinates rotated and translated into the
camera coordinate system, i.e. η = Φq̂−t + τ . The zeroes to the right of the matrix
correspond to the non-observable parts of the state.

Active object tracking parameterizes the observation function with an action vector at
for each time t. This action directly affects the internal parameters, such as changing the
focal length, or the external parameters, such as panning and tilting of the camera. For
example, for a purely zooming camera, at = (a1) is a one-dimensional factor for the focal
lengths, i.e.

ξu = a1 · ξu0 (1.29)

ξv = a1 · ξv0 (1.30)

for starting focal lengths ξu0 and ξv0. For a camera on a pan-tilt unit, at = (apan, atilt)

would describe the pan and tilt angles apan and atilt, respectively. These angles change
the rotation matrix Φ and possibly the translation vector τ . The observation matrix Gt is
changed equivalently.

For systems with more than one camera, as is usually the case, the corresponding obser-
vation matrix is achieved by vertical concatenation of the single-camera observation matrix
shown above.

1.3.2.2. Optimal action selection

Given the above definitions of F t and Gt, the motion of the target can be reconstructed
for any action at by use of the Kalman filter. More specifically, this allows us to predict
the effect any given action will have on the uncertainty of the estimate, measured by the
a posteriori state covariance matrix P +

t after observation ot has been integrated into the
estimate, since P+

t does not depend on ot, seen in (1.6).
As mentioned before, we find the optimal actiona∗t by minimizing the expected entropy

of the state estimate. Since the state estimate is in the form of a normal distribution, qt ∼
N (q̂t,P

+
t ), its conditional entropy has the closed form

H(qt|at) =
n

2
+

1

2
log(2πn|P+

t |), (1.31)

where |·| denotes the determinant of a matrix. Since the covariance matrixP +
t as calculated

in eq. (1.6) depends on at but not on ot, we can simplify eq. (1.9) by pullingH(qt|at) out
of the integral. The remaining integral now integrates a probability density function and is
therefore 1. If we further disregard constant terms and factors, the optimality criterion is

a∗ = argmin
at

log |P+
t | . (1.32)

The logarithm could even be dropped due to its monotony. Due to the independence of P +
t

from ot, we can find the optimal action before the associated observation is made.
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1.3.2.3. Visibility

However, even though the actual value of ot is not relevant, the presence of an observation
is. If no complete observation can be made at a certain time step, the Kalman update step
cannot be performed. In this case, the a posteriori state estimate uncertainty is unchanged
from the a priori state estimate uncertainty. In other words, P +

t = P−t .
In many cases, this availability of an observation depends on the camera action. Con-

sider the classic focal length dilemma. Using a large focal length (zooming in) gives the
best view of an object, but the object risks moving outside the field of view of the camera.
Using a small focal length (zooming out) reduces the risk of losing the object, but the object
is now very small in the image, and a tracking error of one pixel translates to a much larger
world coordinate distance. So the optimal focal length is most likely in between: small
enough not to lose the object, but large enough to gain the most information.

In object tracking, each observation is a point on the image plane of a camera (or con-
catenation of several such points). Since the camera sensor is finite, there are points on this
plane which do not lie on the sensor. We will call observations on the camera sensor visi-
ble observations, and those outside the sensor non-visible observations. The impact of this
classification is that states that the observation function maps to non-visible observations
would not generate any observation at all, i.e. the update step would be skipped.

Assume that we could partition the set of observations into the sets of visible observa-
tions Ov and non-visible observationsO¬v, and revisit equation (1.9):

H(qt|ot,at) =

∫
p(ot|at)H(qt|at)dot (1.33)

=

∫

ot∈Ov

p(ot|at)H(qt|at)dot +

∫

ot∈O¬v

p(ot|at)H(qt|at)dot (1.34)

due to the summation rule of integers. Given that H(qt|at) is independent of ot in the
Kalman filter case, except for the membership of ot in Ov or O¬v , the entropy H(qt|at)
can only have (or rather, be proportional to) one of two values:

H(qt|at) ∝
{

log |P+
t | if a visible observation occurs,

log |P−t | otherwise.
(1.35)

This simplifies equation (1.34) to

H(qt|ot,at) ∝
∫

ot∈Ov

p(ot|at) log |P+
t |dot +

∫

ot∈O¬v

p(ot|at) log |P−t |dot (1.36)

= log |P+
t | ·

∫

ot∈Ov

p(ot|at)dot + log |P−t | ·
∫

ot∈O¬v

p(ot|at)dot (1.37)

= w · log |P+
t |+ (1− w) · log |P−t | (1.38)

with w being the probability that the to-be-acquired observation will be visible.
Obviously, w depends on at. The probability w can be calculated for each at by

regarding the observation estimate. In the Kalman filter case, the observation follows a
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normal distribution, with ot ∼ N (g(q̂−t ,at),St). The probability w is then the integral
over the area of visible observations:

w =

∫

ot∈Ov
p(ot|at)dot =

∫

ot∈Ov
N (g(q̂−t ,at),St)dot (1.39)

In object tracking, Ov is a rectangular area in the observation space (for each camera). A
closed solution exists for this problem. For more than one camera, we will assume that the
Kalman update step can only be performed if all cameras produce a visible observation. In
this case, w is the product of all individual visibility probabilities.

1.3.2.4. Multi-step action selection

The above method selects the optimal view if all sensor actions are equally valid and reach-
able. However, in real world systems, the range of actions available for the next camera
image may be considerably reduced. For example, in zoom planning, the speed of the
zoom motor in the camera determines how far the zoom settings can be changed in the
time between two camera images.

Generally, we associate a cost with each action. If the costs of different actions are not
equal, and depend on the previous action (available zoom settings depend on the current
motor position, for example), the above method may not yield the optimal settings. Instead,
we must evaluate a sequence of future views. Planning a sequence of actions, especially
given computation time constraints, is discussed in more detail in Deutsch et al.23

1.3.3. Active Object Reconstruction

We study the problem of finding the next best view in 3-D reconstruction from intensity
images, using the above introduced information theoretical algorithm. We show how the
general algorithm can be adopted to the special task and discuss some boundary conditions.

1.3.3.1. State and observation representation

Similar to active object tracking (cf. section 1.3.2), we use a Kalman filter approach.24

Therefore, we use the same notations. The 3-D reconstruction is represented by a list of
i 3-D points, concatenated to the state vector qt ∈ IR3i. Since the coordinates of the
reconstructed 3-D points are constant in time, the state transition matrix F t is the identity
matrix I ∈ IR3i and there is no noise in this process, i. e. the noise covariance W t = 0.
Further, the state does not depend on time: q = qt.

The state estimate is represented by the state vector, as defined above, and the covari-
ance P t. We assume each estimate of the 3-D point coordinates is independent of the other
ones, so the covariance P t has a block diagonal structure with 3 × 3 blocks. As we will
see below this allows a efficient evaluation of a certain view.

The observation ot is a concatenation of the 2-D projections of the 3-D points in each
time step t. In contrast to section 1.3.2, we do not have one object, which is observed bym
cameras, but we have i points, which are observed by one camera. So the dimension of ot
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Fig. 1.4. SCORBOT (left) and turn table (right)

is IR2i. The observation is assumed to be noisy, with an additive Gaussian Noise with zero
mean and covariance Rt. The observation function g(qt,at) depends on the modifiable
camera parameters at (focal length, rotation and translation of the camera), non modifiable
ones (principal point, skew and distortion parameters), which are not denoted explicitly,
and projects the vector of the 3-D points qt to the 2-D image plane by the perspective
projection model. Therefore, we can use equations (1.26) and (1.27) to evaluate g(·, ·).

Since g(·, ·) is a nonlinear function, we have to use the extended Kalman filter, which
uses a first order Taylor approximation to linearize g(·, ·). Thus, we need the Jacobian G
of g(·, ·), which is derived analytically from equations (1.26) and (1.27). Incidently, it is
easy to show that the first order Taylor approximation and the paraperspective projection
model, well known in computer vision, is equivalent.

1.3.3.2. Optimal action selection

The goal of next best view selection is to find the optimal next view point a∗t to improve the
reconstruction accuracy. One optimality criterion is to reduce the uncertainty in the state
estimation, which is measured in information theory by its entropyH(q |at). This entropy,
however, has to be calculated a priori to optimize the view before obtaining a new image.

Therefore, we need to determine the expected entropy H(q |ot,at). The expected en-
tropy is the mean of the entropy of q over all observations and was introduced in equation
(1.9). The optimality criterion is the determination of the view a∗t which maximizes the
mutual information (cf. eq. (1.11)), which is equivalent to minimizing the conditional en-
tropy. As in (1.32), this corresponds to minimizing the logarithm of the determinant of P t.
Since P t is a block diagonal matrix with blocks P (k)

t , k = 1, . . . i the calculation can be
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simplified to

a∗ = argmin
at

log

i∏

k=1

|P (k)
t | = argmin

at

i∑

k=1

log |P (k)
t |. (1.40)

So the high computational complexity of calculation of the determinant of a 3i×3i covari-
ance can be reduced to i calculations of the determinant of 3× 3 matrices.

Some constraints on the modifiable camera parameters at must be considered. Not
every optimal view point, in the sense of (1.32), results in a usable image. Some examples
of effects that can make a view point completely or partly unusable are:

• Field of view: all 3-D points to be reconstructed have to be visible in the image,
otherwise they cannot observed by the camera. We can ensure this by backproject-
ing the mean of 3-D estimate of the points to the image plane. If this projection is
in the image, we assume that this point is visible.
• Occlusion: again, the 3-D points must be visible in the image. But this constraint

may fail for a point, because the point is occluded by parts of the object itself
or by the robot arm. This condition is independent of the upper one, since the
projection of one point can be in the image, but it is not visible if it lies behind
another surface. This constraint is not modeled for the experiments, because we
analyze only flat objects. So self occlusions do not occur in this case.
• Reachability: the view point must be reachable by the robot. To ensure this, we

use the 4 by 4 Denavit-Hartenberg matrix,25 which depends on the angles of the
rotation axes and the distances between the joints, to calculate the transformation
to a fixed world coordinate system. Since the lengths are fixed, only the angles are
relevant.

These constraints determine the search space for our optimization. We are able now to
search for the optimal view point a∗t with an exhaustive search over the discretely sampled
action space. The action space in our case is the space with all reachable angles of the
joints of the robot. If the expected observation contains image points outside the field of
view, we discard this sample. The best-rated undiscarded sample is the next best view.

1.4. Experiments

1.4.1. Evaluation for Active Object Recognition

In order to show the benefit of active object recognition we should be able to point out
that—compared to an unplanned proceeding—we gain an enhancement in classification
results after the same number of views. To satisfy the demands of arbitrary applications for
our approach, non-synthetic objects with ambiguities are favorable to be evaluated. So we
decided on the toy manikins shown in Fig. 1.5, provided with a quiver, a lamp, a bib, or
any of the eight possible combinations of these equipments, consequently arranging a clas-
sification problem with eight classes. Image acquisition was done by fixing the manikins
on a turntable while getting images from a camera located at a fixed position. Moving the
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turntable, we cover a circular action space with J = 1, as mentioned in section 1.3.1.1.
For providing perfect ambiguities to our algorithm at times, we work on fixed croppings
of the original images, which can be regarded as zoomed-in image acquisition. This way,
decisive equipments can just drop out of the scope, thus from time to time even the best
classifier cannot decide reliably on the object class when given a single image.

PSfrag replacements
no quiver no bib no lamp

quiver bib lamp

Fig. 1.5. Views of the toy manikin object classes

For our purpose, we chose steps of 1.0 degree in the horizontal direction to gain a
fundamental image set of 360 entries per class. Taking every other image and calculating
its features (see 1.3.1.2), we can construct the underlying model.

Given the classifier model, we now take the other half of all taken images for the pur-
pose of the Reinforcement Learning based training phase as well as for the ensuing evalu-
ation phase. This way we avoid getting wrongly conditioned results by working on images
that already appear in the model representation.

During the Reinforcement Learning training phase, for each class in the database we
now provide ν episodes of randomly chosen sensor actions and resulting images to the
algorithm. Each episode contains at most eight steps of image retrieval and consecutive
information fusion. Following the intent of this paper, we consequently applied the entropy
reward (1.16) during Reinforcement Learning for rating positions, i.e. camera actions. Han-
dling the two-dimensional space, the density representation depends on M = 2880 parti-
cles altogether, that is 360 particles per class.

Concerning the influence of variable parameters, in a first instance we chose two differ-
ent values for the number of training episodes ν ε {3, 50}which provides us with two differ-
ently reliable databases. Additionally we tested two variations of the weighting γ ε {0, 0.5}
and two kernel parameters D ε {2, 5}. Fig. 1.6 shows the corresponding classification re-
sults in each step, compared to those generated by unplanned sensor action. Results of the
planned and random sequences were computed relying on 250 episodes with a maximum
of eight steps for each parameter combination and object class.

Taking a look at the results, our choice of reward as well as the complete view planning
approach is justified since we almost universally get higher classification rates when not
performing arbitrary sensor movements. Especially early steps within an episode (t = 2, 3)

partially gain a benefit of more then 10% in classification rate.
Furthermore, it is observable that the kernel parameterD and the step influence param-
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Fig. 1.6. Classification rate after t time steps of planned and unplanned viewpoint selection. For the planned
variation combinations of the free parameters ν, γ and D are evaluated. Ratios at the first time step differ, because
initial viewpoints were selected randomly.

eter γ can be altered within an adequate range of values without loosing the view planning
benefit compared to the random proceeding. Additionally, a quite small database with only
ν = 3 training episodes per class already causes a significant advantage of the planned pro-
ceeding. Thus, a possibly desired adaption of training time because of computation time
constraints appears to be feasible within a very wide range.

1.4.2. Evaluation for Active Object Tracking

The next best view planning for active object tracking is evaluated in a simulation. Object
tracking is a relatively easy task to simulate, and ground truth and repeatability are also
present. The experimental setup is visible in figure 1.7(a). Two cameras, at right angles,
observe a point-shaped tracking target moving in an ellipsis in the center of the scene.
The target is tracked by a Kalman filter using a polynomial motion model, as described
in section 1.3.2.1. The axes have lengths 400mm and 800mm, respectively. The state
transition noise matrix W t ∈ IR9×9 is a constant diagonal matrix, corresponding to a
standard deviation in the position of 100mm, in the velocity of 100mm/∆t and in the
accelleration of 10mm/(∆t)2.

The generated observations are perturbed by white Gaussian noise with zero mean and
a known covariance matrix Rt ∈ IR4×4, corresponding to a standard deviation of 1% of
the image width and height for both cameras. If a perturbed observation lies outside the
simulated camera field-of-view, it is discarded and is not used to update the Kalman filter.
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(a) simulation setup
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(b) ground truth and estimations

Fig. 1.7. Overview of the object tracking simulation (1.7(a)). Two cameras with variable focal lengths observe
an object moving on an elliptical path. Fig. 1.7(b) shows the ground truth object path for two full cycles and the
estimated positions without and with view planning.

A time step without update results in the a posteriori state probability being the same as the
a priori state probability, with a much larger state entropy H(qt|at) and a larger expected
estimation error. This reflects the fact that we have lost information about the target due
to the noisy state transition, but not regained it with up-to-date observations. This forces
the view optimization system to incorporate the expected visibility in order to avoid such
information loss. The target is (potentially) reacquired in the next time step.

Each camera can change its focal length within a certain range, i.e. at = (a1, a2)
T with

aj the focal length factor for camera j. For comparison, we also run the experiment with a
fixed focal length, chosen in such a way that the object is always visible.

Figure 1.7(b) shows the ground truth path of the target and the estimated positions with
and without zoom planning. It can be seen that the estimation is error-prone due to the
observation noise. The average error was 15.11mm without planning vs. 6.93mm with
planning. This is a reduction to 45.9% of the original error.

Figure 1.8(a) shows the zoom levels each camera assumes at each of 200 time steps
(two full object cycles) during zoom planning. Higher focal length values correspond to
a narrower field of view. Each camera follows the object, keeping the expected projection
close to its image borders. This allows the maximal focal length to be used at all times,
minimizing the effect of the observation noise on the estimation. One should note that this
is entirely emergent behavior, resulting solely from the minimization of expected entropy.

Figure 1.8(b) shows the distribution of the Euclidian distance between the estimated po-
sition and the ground truth position, the estimation error. These distributions were obtained
by acquiring the error at each time step, and then sorting all errors by magnitude. This
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Fig. 1.8. The zoom levels assumed assumed by the two cameras during zoom planning. (1.8(a)) and the dis-
tribution of the Euclidian estimation error for simulations with planned and non-planned views, sorted by error
value (1.8(b)).

representation allows us to see that view planning gives an error which is generally lower
than without view planning. However, the error can rise almost high as the non-planned
case (near the right side of the graph), in the event of an object loss in one or both cameras.

1.4.3. Evaluation for Active Object Reconstruction

We verify our approach for next best view planning for 3-D reconstruction with real world
experiments. We use a Sony DFW-VL500 firewire camera, whose intrinsic parameters
were calibrated by Tsai’s algorithm.26 The camera is moved by the SCORBOT in the
first experiment and by the turn table with tilting arm in the second one (cf. Fig. 1.4).
The extrinsic parameters are calculated by the Denavit-Hartenberg matrix and the hand-
eye transformation, which is acquired by the algorithm of Schmidt.27 The first experiment
reconstructs a calibration pattern, the second a mouse pad.

In both experiments, we start with an initial estimation, obtained by triangulation from
an image pair from two view points. This gives us an initial estimate of q . The initial
covariance matrix P 0 is set to a diagonal matrix diag(10, . . . , 10), as we assume that the
uncertainty is equal in each direction.

To evaluate the expected uncertainty, we calculate the determinant of P t (eq. (1.32)).
The Jacobian Gt(at) of the observation function depends on the axis values of the robot
and must be calculated for each candidate view point. The computation time for the next
best view for the SCORBOT (5 degrees of freedom, due to its 5 axes, 384000 view points
analyzed, 49 3-D points) is about 9 minutes on a system with an Pentium IV processor
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(a) calibration pattern (b) mouse pad

Fig. 1.9. Images taken during the experiments (1.9(a) from first and 1.9(b) from second)

with 3 GHz, and 1 GB RAM, and about 45 seconds for the turntable (2 degrees of freedom,
2000 view points analyzed, 50 3-D points). The computation time is linear in the number
of points.

1.4.3.1. Reconstructing a Calibration Pattern

A calibration pattern (cf. Fig. 1.9(a)) is viewed from the top of the SCORBOT. The pattern
simplifies the acquisition of 2-D points, and allows us to compare our results with ground
truth data. After the initialization, we start the optimization process to take new images
from the optimal view point.

Table 1.1 shows the results for the first 5 iterations in the optimized case and a non-
optimized one. The images for the non-optimized view points were taken by alternating
between the two initial positions.

By construction, the determinant of P t is reduced faster in the optimized case than in
the non-optimized case. Additionally, the mean of the errors of all points decreases after
each time step, except for some outliers. This rise in error is not a contradiction to the
decrease in uncertainty, since the Kalman filter cannot judge the quality of an observation.

The view points are shown in Fig. 1.10. After the initialization steps (middle top) the
optimized view points lie as expected: the cameras are opposite each other and the angle
between each line of sight is approx. 90 degrees.

1.4.3.2. Reconstructing a Mouse Pad

In this experiment we use a mouse pad (cf. Fig. 1.9(b)), requiring us to track feature points
during movement, using the algorithm of Zinsser.28 However, only the tracked points from
the optimal positions are used to update the state estimation. Integration of the points
tracked en route to the optimal positions is possible, but this would prevent a comparison
of two view point sequences due to a diverging number of integrated observations.

Table 1.2 shows the root mean square error between the reconstructed 3-D points and
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Fig. 1.10. View points for reconstruction of the calibration pattern, with two lines of sight for one point from
different view points. We can observe, the angle between the lines of sight is approximately 90 degrees.

Table 1.1. First experiment: µt is the mean of the difference
between reconstructed points and the ground truth data in mm,
σt is the standard deviation of this error, |P t| is the determinant
of the covariance matrix. We display the values for the optimized
and a non-optimized view point sequence, which is taken by the
SCORBOT.

optimized non-optimized
t µt σt |P t| µt σt |P t|
1 0.132 0.080 7.281 0.132 0.080 7.281
2 0.128 0.079 1.762 0.125 0.072 3.338
3 0.115 0.062 0.705 0.128 0.073 1.468
4 0.108 0.062 0.385 0.129 0.074 0.905
5 0.107 0.061 0.244 0.127 0.074 0.531

their regression plane, as well as the trend of the covariance matrix P t, for the first 5
iterations. We compare the values from the optimized view points to an experiment with
view points uniformly distributed on a circle perpendicular to the rotation axis of the turn
table, and to one completely random view point sequence on the half sphere. The error
decreases fastest in the optimized case, signifying a measurable benefit from view point
optimization.

1.5. Summary

We have described an information theoretic framework for selecting the next best view in
a computer vision task, based on mutual information. We have applied this framework to
three typical computer vision tasks: object recognition, tracking and reconstruction.

In object tracking, the state is the position, velocity and acceleration of an object. This
object is observed by several cameras, whose internal or external parameters can change.
Next best view planning selects the optimal parameters for the estimation of the object state.
We have shown the benefit of next best view planning for object tracking in a simulation
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Table 1.2. Second experiment: µt is the mean of the root mean
square error of the points to their regression plane in mm, |P t|
the determinant of the covariance matrix after each iteration. The
optimized, one uniform and one random view point sequence are
shown.

optimized circle random
t µt |P t| µt |P t| µt |P t|
1 0.073 8.62 0.073 8.62 0.073 8.65
2 0.050 1.75 0.041 1.98 0.054 2.76
3 0.033 0.636 0.038 0.845 0.043 1.20
4 0.030 0.315 0.038 0.428 0.041 0.479
5 0.026 0.175 0.041 0.235 0.041 0.329

with cameras with a changeable focal length. Using next best view planning, the tracking
error is noticably lower than the same task with fixed focal lengths. In our case, we were
able to reduce the estimation error to 45.9% of the error in the fixed focal length setup.

In 3-D reconstruction, the state consists of the 3-D coordinates of the reconstructed
points and the observation consists of tracked feature points. Additional constraints, field
of view, occlusions, and reachability have to be considered to get a feasible next best view.
In two real world experiments, we have shown that optimal selected view points reduce the
reconstruction error significantly. In one experiment the error was reduced to 63.4% of the
error of unplanned views.
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