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Abstract. The introduction of hybrid scanners has greatly increased the
popularity of molecular imaging techniques. Many clinical applications
benefit from combining complementary information based on the precise
alignment of the two modalities. In case the alignment is inaccurate, then
this crucial assumption often made for subsequent processing steps will
be violated. However, this violation may not be apparent to the physi-
cian. In CT-based attenuation correction (AC) for cardiac SPECT/CT
data, critical misalignments between SPECT and CT can lead to spuri-
ous perfusion defects. In this work, we focus on increasing the accuracy
of rigid volume registration of cardiac SPECT/CT data by using prior
knowledge. A new weighting scheme for an intensity co-occurrence prior
is introduced to assure accurate and robust alignment in the local heart
region. Experimental results demonstrate that the proposed method out-
performs mutual information registration and shows robustness across a
selection of learned distributions acquired from 15 different patients.

1 Introduction

The use of multi-modality imaging, especially PET/CT and SPECT/CT, in
clinical practice has become more popular. Common hybrid scanners combine
low resolution molecular images with anatomical context from high-resolution
CT by placing both, e.g. SPECT and CT, scanners next to each other. This
setup allows for a good registration between the two modalities when the im-
aged anatomical structures are undergoing no or little motion such as structures
in the head. However, in the imaging of other body parts, critical misalign-
ments, as shown in Fig.1, still occur significantly often due to breathing, patient
motion, or motion caused by acquisition protocol restrictions [1]. An accurate
registration between the two modalities is imperative to ensure the diagnostic
confidence of physicians. It has been reported, for example, in the application
of quantitative cardiac SPECT/CT analysis that spurious perfusion defect arti-
facts are introduced in the CT-based attenuation correction (AC) images of the
SPECT acquisition due to misalignments. The misalignments falsify the uptake
values that are utilized for diagnosis [2, 3]. Registration as preprocessing step
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Fig. 1. Three anterior views of a misaligned cardiac SPECT/CT data set, the CT (a),
and the SPECT overlayed on CT with two different window level settings 1, (b) and
(c). The figure visualizes the challenging multi-modal registration problem.

to CT-based AC SPECT cannot involve user interaction or correction. These
demands may be somewhat addressed through a stringent acquisition protocol
that, nevertheless, is both prone to errors and complicated to use in clinical prac-
tice. A better way of ensuring alignment is to utilize an automatic registration
technique that is highly accurate and robust. In this paper, we propose a rigid
registration method that is designed to address the above mentioned demands of
cardiac SPECT/CT. The accuracy is achieved by incorporating weighted inten-
sity co-occurrence priors about an accurate alignment of cardiac data. Using the
joint probability distribution function (pdf) of previously registered image data
as an intensity prior has been previously reported supporting for the accuracy
of rigid as well as non-rigid multi-modal image registration by several research
groups [4–9]. Hereby, an interesting energy minimization scheme of incorporating
statistical priors was proposed as follows [7–9]:

E = α EMI + (1 − α)Eprior, (1)

where EMI is the MI energy and Eprior denotes a dissimilarity measure towards
the prior information. The factor α controls the influence of the prior. Two as-
pects are essential for this application: The usage of a data-driven as well as
a prior model-driven term to ensure robust and accurate alignment in general,
and in particular the requirement of an accurate heart alignment. In the follow-
ing, we are deriving a new registration method considering those aspects. The
achieved accuracy of the proposed approach, that exploits prior information from
cardiac SPECT/CT acquisitions, is compared to the accuracy of standard mu-
tual information (MI) [10, 11] and a general learning-based approach [7]. This
work extends previous works with the focus of applicability. Achieving higher
accuracy and robustness than MI, the presented approach is not limited to the
application of cardiac SPECT/CT imaging.

2 Description of Method

In order to achieve the registration accuracy and robustness needed in CT-based
AC for SPECT reconstruction, several open issues need to be resolved. How does
the choice of α influence the registration result and how should it be selected for
this application? Secondly, is the Kullback-Leibler (KL) divergence a sufficient
distance measure for joint pdfs? And the most intriguing open question: how
well does the proposed scheme (1) generalize over a large pool of patients? We



address those questions by deriving a new registration method that employs
weigthed co-occurrence priors.

2.1 Image Registration Using Prior Knowledge

The α-influence is studied by investigating the energy behaviour, Eq.(5), while
manually translating a cardiac SPECT/CT data set away from ground truth
alignment. See Fig. 2(a) for results of using different α values. We note that a
smaller α, i.e. more prior influence, has a smoothing effect on the overall cost
function. Hereby, α = 0.2 is observed to be a good trade-off between data driven
and prior term. Decreasing the influence of MI allows to smooth out its local
optima while still keeping the feature of maximizing the mutual information that
both images share.

In previous work [4, 6–8] the KL divergence is used to measure the dissimi-
larity of two distributions. In a discrete formulation, this can be written as:

Eprior = EKL(pTS , pprior) =
∑

i,j

pTS (i, j) log

(

pTS (i, j)

pprior(i, j)

)

, (2)

where pTS is a joint pdf of two volumes related to each other by transforma-
tion TS, and pprior is a joint pdf learned from two previously aligned volumes.
Fig. 2(b) illustrates the drawbacks of KL’s asymmetry using two artificial dis-
tributions. We can observe that equal dissimilarities between the distributions
create differently signed contributions to KL dependent on the variables’ or-
der of comparison. A more appropriate statistical measure is provided by the
Jensen-Shannon (JS) divergence. The definition for the prior energy becomes:

Eprior = EJS(pTS , pprior) =
1

2

(

EKL

(

pTS , p
)

+ EKL (pprior, p)
)

, (3)

where p =
pTS +pprior

2
. Fig. 2(c) shows the properties of JS divergence. These

properties are of importance when we want to emphasize organ specific contri-
butions in the joint pdf.

Misalignments of the SPECT heart image into the lung region of CT atten-
uation map introduce artifacts that can lead to false diagnosis. Prior knowledge
about the correct mapping within this area is important to ensure such a map-
ping in future registrations. A problem of the general approach in [7] is that
information stored in the learned joint pdf is global and influenced by the size
of the background in both volumes. Local alignments are driven by the global
matching especially if the transformation model is also global. Thus, we propose
a new formulation that utilizes local information stored in the learned joint pdf.
The new prior energy is written as:

Eprior = Eω,JS(pTS , pprior) = ω ? EJS(pTS , pprior),

= 1
2

∑

Ω ω(i, j)

[

pTS(i, j) log

(

pTS (i, j)

p (i, j)

)

(4)

+ pprior(i, j) log

(

pprior(i, j)

p (i, j)

)]
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Fig. 2. (a) Cost function influence of α values ranging from α = 0.6 (top curve) to
α = 0.1 (bottom curve). (b) Plot of contributions (white curve) to KL divergence
between two artificial distributions (green and magenta curve). The filled area denotes
the KL value. (c) Plot of contributions to JS divergence. Distribution dissimilarities
have positive, limited, and comparable contributions to JS.

where ω ∈ [0, 1]N×N , and ? denotes the element-wise multiplication in the dis-
crete case. The term ω will be chosen such that it penalizes organ specific in-
tensity matchings that are inconsistent with a learned distribution. Hence, this
penalty term introduces, to some extent, spatial information to intensity-based
registration. Organ specific appearances in the joint intensity distribution can be
estimated by either a segmentation or a manual outline of the organ of interest,
see Section 2.2 for details on the choice of ω. A crucial assumption of ω is that
penalties need to be assigned comparably for differences between prior and joint
pdf, see discussion KL vs. JS. This requires a symmetric and strictly positive
similarity measure on distributions. The transformation between the two data
sets is obtained by solving the following equation:

T̂ = arg min
T={TS ,TI}

[

α · E∗
MI(p

T ) + (1 − α) · Eω,JS(p
T , pT

prior)
]

(5)

where E∗
MI = − β EMI, and T = {TS, TI} is composed of a spatial rigid transfor-

mation TS that aligns SPECT and CT volume and an intensity transformation
TI that warps pprior to pTS to compensate for patient specific intensity variations.
TI is a 1-dimensional affine transformation between the prior SPECT intensities
and the intensity range of the SPECT volume to be registered. We use the sum-
squared-differences criterion for the matching. In our implementation, the two
transformations are estimated sequentially but the framework above also allows
for concurrent estimation.

2.2 Weighted Jensen-Shannon Divergence for Statistical Priors

The weighted Jensen-Shannon (WJS) divergence, defined in Eq. (4), is intro-
duced to ensure an organ specific intensity co-occurrence. In order to derive a
suitable ω for cardiac SPECT/CT registration, we segmented the heart in the
SPECT volume using the method in [12]. The penalty area of ω, i.e. white area
in Fig. 3(d), is then generated by studying the joint pdfs for different alignments
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Fig. 3. Observed joint pdfs of cardiac SPECT/CT data. The distributions are displayed
for (a) the full volume overlap, (b) the heart overlap, and (c) the heart overlap at
misalignment. Image (d) presents the penalty term ω of Eq. (4) that is generated from
the observations made in (b) and (c).

of the segmented heart with the CT, see Figs. 3(b) and 3(c). In Fig. 3, the coor-
dinate system is defined as follows: The origin is located in the lower left corner
of each image, the horizontal and vertical axis refer to CT and SPECT volume
intensities, respectively. Several interesting aspects are observed:

1. The joint intensity mappings corresponding to a segmented object in both
modalities occur in a limited region within the joint pdf space. This is true
for all possible spatial alignments of the two volumes (Fig. 3(c)).

2. In order to ensure consistency with a learned distribution, the penalty term
needs to cover all intensity pairs that the object may generate in the joint
pdf. The reason is that a learned pdf not only states which intensities do
match but also provides knowledge about which intensities do not match.

3. Evaluating a similarity measure on a subset of the joint pdfs eliminates un-
wanted influences from the unweighted learned distribution, e.g. background
size dependency, global structure dependencies.

Using the defined ω, Fig. 3(d), we applied the proposed approach to a pool of
cardiac SPECT/CT patients.

3 Experiments

We applied the proposed approach (WJS), MI, and a general learning-based
method (JS), i.e. using eq. (3) in eq. (5), to 15 different cardiac SPECT/CT
acquisitions. The data sets were acquired by a Siemens Symbia T6 scanner. The
field-of-view (FOV) for SPECT data (128 × 128 × 128, 4.79 × 4.79 × 4.79mm)
includes the lungs, heart, and abdomen, whereas the FOV for CT data (512 ×
512×25, 0.97×0.97×5mm) includes only heart and lungs. All volumes have been
manually aligned for a precise match of the heart region. From this ground truth,
priors are generated and several validation studies are executed. A validation
study is defined as follows: For all data sets, multiple registrations are done per
data set with different initial transformations away from ground truth alignment.
For each registration, the error is computed as the distance from the obtained
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(b) Prior Sensitivity Test
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Fig. 4. Comparison of error distributions for normalized MI, JS, and WJS over vali-
dation runs for translation (a) and (b), and rotation parameters(c). Using a mixture
of prior and data driven model in combination with the newly weighted scheme, WJS,
not only yields the best results but also generalizes well over multiple patients.

alignment to the ground truth alignment. Error mean and standard deviation of
all registrations are then compared between the three methods.

Co-occurrence priors validation In order to validate how sensitiv the
proposed approach is towards the chosen prior, 15 different priors were generated.
We then performed two validation studies, i.e. multiple data/single prior and
single data/multiple prior validation. In the first one, all patient data sets are
registered using one randomly chosen prior, i.e. robustness test. In the second
study, one data set is randomly chosen among all patients and registered multiple
times using the available priors respectively, i.e. prior sensitivity test. Note that
the learning-based approaches utilize only one prior. The results of the two
studies are presented in Figs. 4(a) and 4(b).

The proposed approach is by definition not bound to any specific transfor-
mation model. Here, we apply a rigid transformation model. The initializations
range from −60mm to +60mm in steps of 30mm in x-/z- or in y-/z- direction for
translation and from −30◦ to +30◦ in steps of 5◦ around the z-axis for rotation.
We evaluated translation and rotation initializations separately. The chosen α

value for all experiments is fixed to 0.2 for WJS and to 0.75 for JS.

Correcting for intensity variations between patients and studies In
Eq. (5), transformation TI is also estimated during optimization. All 15 data
sets showed minimal differences in the scaling parameter, i.e. it varied between
0.95 and 1.014, and no translational component was observed.

Validation results Figures 4(a) and 4(b) show the mean registration er-
ror for the robustness and prior sensitivity validation results w.r.t. translation
parameters. Figure 4(c) displays the mean angular registration errors for the
robustness test. It can be observed that both JS and WJS are more accurate
on average than MI, and WJS additionally shows a small standard deviation.
The proposed approach, WJS, outperforms MI and the general learning-based
method, JS, with a mean translation error of 4.19±0.5mm. Note that the error is
smaller than a SPECT voxel. Normalized MI and JS show a mean error of more
than 2 [9.74±4.49mm] and more than 1 [5.9±3.36mm] voxel(s), respectively. We
further noticed that optimization of MI is attracted to local optima and that the



Fig. 5. Registration results for 3 out of 15 patients. The top row shows the MI result
and the bottom row denotes the WJS results. The images illustrate the deviations from
the optimum for MI registration and high accuracy achieved by WJS approach.

global optimum for MI deviates from the correct alignment if bright artifacts oc-
cur in CT data.1 The learning-based methods do not get disturbed in those data
sets. The rotation results also confirm the superiority of WJS over MI, see Fig.
4(c). The generally high observed mean angular error for WJS (6.2◦), JS (7.5◦)
and for MI (7.4◦) is probably due to the little structural information apparent
in SPECT. The angular error is an accumulation of errors in all three axis. In
addition, Fig. 6 shows a clinical scenario for registration where the scanned data
is strongly mis-aligned. We were only able to register this data set using weighted
intensity co-occurence priors.

The preliminary studies show that the proposed approach fullfills the clinical
demands for registration accuracy of maximum 1 voxel mis-alignment in CT-
based AC for cardiac SPECT, as mentioned in [2, 3], and suggest the feasibility
to use the approach for automated registration in hybrid scanners.

4 Discussion and Conclusion

We have presented a robust registration approach for the application of CT-based
AC of cardiac SPECT data. The achieved registration error of the proposed
method (4.2± 0.5mm) is significantly lower than for MI (9.7± 4.49mm) and for
a general learning-based method (5.9±3.36mm). Clinical accuracy requirements
are met for this application. The proposed approach can be easily extended to
other applications where high accuracy in an organ specific region-of-interest is
sought. Future work include validating this approach on a larger number of data
sets and applying it to other modalities and applications.
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1 The observation was made while investigating those data sets where the registration
validation studies resulted in high errors.



Fig. 6. Registration of a misaligned cardiac SPECT/CT scan. Two views are shown for
misalignment after acquisition (left column), MI registration result (middle column),
and weighted JS result using prior knowledge from a different scan(right column). The
images show that the crucial alignment is only achieved by our proposed method.
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