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Abstract

In 20 to 40 percent of all cases of laryngeal cancer, totghigectomy has to be performed,
i.e. the removal of the entire larynx. For the patient, thisams the loss of the natural voice
and thus the loss of the main means of communication. A popuéghod of voice restoration
involves a shunt valve (“voice prosthesis”) between trached pharyngoesophageal segment
which establishes the tracheoesophageal (TE) substibide.iFrom time to time, the substitute
voice has to be evaluated by the therapist for the purposgpofting therapy progress. This eval-
uation is subjective; it is therefore dependent on the palr expert’s experience and similar
factors. In the frame of this thesis, it was examined howraatoc methods can be used in order
to provide an objective means of the evaluation of substiotces.

There are some established objective measures which aveyén restricted to the evalua-
tion of sustained vowels. In this thesis, the step from ttieraatic analysis of vowel recordings
to text recordings is done. For judging speech quality dhjely in a real communication sit-
uation, the analysis of entire words and sentences is reagelecause the intelligibility of a
substitute voice in a dialogue is a substantial criterianef@luation. Automatic word recogni-
tion methods were applied to a standard text that was redalydbe test persons. Information on
the intelligibility of the individual speakers was gainey thhe comparison of word recognition
rates with reference evaluation data from human experts.utk of a prosody module allowed
to extract not only acoustic information on the speakerise/obut it also measured individual
speaking characteristics.

The inter-rater variability among humans was comparedda@tliomatic analysis results, and
the main finding was that the correlation between human atatratic ratings was as good as
the agreement among the human rater group.

The automatic recognition could be slightly improved ontats-talking recordings by the
use ofu-law features which are modified Mel-Frequency Cepstrunfi@oents (MFCC). Artifi-
cially reverberated training data for the recognizer istaaopossibility to achieve better recog-
nition rates even when the reverberation in the test datamloiematch the acoustic properties of
the training data. This is a step towards a therapy sessienenithe patients will not be required
to wear a headset any more.
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Chapter 1

Introduction

In 20 to 40 percent of all cases of laryngeal cancer, totghigectomy has to be performed,
i.e. the removal of the entire larynx [TMFO1]. For the pati#ns means the loss of the natural
voice and thus to lose the main means of communication. Faffatted persons, this is an
outstanding stigma [DSK94]. Dependent on the oncologloaiapy, different methods of voice
restoration can be applied. Some of them involve rarely gsegical methods, the esophageal
substitute voice and electronic aids. Besides these, tnefushunt valves (“voice prostheses”)
in order to create a substitute voice has become more andpoprdar in the USA in the last
25 years; for Germany there was a delay of about one decad®2[AB\AT90, Rob84].

Today, voice rehabilitation with shunt valves is regardstéte-of-the-art” [BHIBO3, Blo00].
But although speech rehabilitation has been improved aobatly, many problems and compli-
cations associated with laryngectomy, like the loss of IHasation (smelling, humidification of
the airstream), poor cough, swallowing difficulties andraes in lung function are still present.
After getting a shunt valve, patients have to undergo thenarder to learn speaking again.
From time to time, the substitute voice is evaluated by tleeapist for the purpose of reporting
therapy progress. This thesis will introduce methods fgedive, automatic voice and speech
evaluation. It is based upon the cooperation of the ChaiattEh Recognition at the University
of Erlangen-Nuremberg (Technical Faculty) with two othesaarch institutes at the same univer-
sity. The first one is the Department of Phoniatrics and Paidéagy of the University Hospital
in Erlangen which was the partner for the analysis of sulistivoices. The second one, for
the field of recognition of reverberated speech, is the Gifautultimedia Communications and
Signal Processirtg

1.1 The Need for Objective Evaluation

The evaluation of the substitute voice by the patient andthgrgpersons is subjective at first.
This holds also for the therapists because the currentijad@technical methods for objective
voice analysis, like the Hoarseness Diagram (Chapter)? lteste not been adapted to substitute
voices yet. This means that the medical personnel must relis@xperience. In this thesis, the
correlation between subjective evaluation by humans ajettbe automatic means of evalua-
tion will be examined.

http://www.phoniatrie.uni-erlangen.de
2http://lwww.Int.de/Ims
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The raters’ experience has a very large influence on theiater agreement. Professional
backgrounds and experience or knowledge of the patierstsityi may result in high intra- and
inter-rater variability [FPB05]. Professionals, even more when they are closely wortang
gether, may show a much higher concordance on the same catigrga than semi-professionals,
such as speech therapy students or even naive listener8{{d6) DRF 96]. Sometimes the
inter-rater variation is avoided by a “forced” consensuthefraters before the final score is fur-
ther processed [PJO1]. This, however, requires the inuodve of more than one expert which is
exactly the opposite of the desired quick and inexpensigtuation.

For the development of automatic methods, subjective atialudata have to be collected as
a reference first. This holds for the rating of speech catdike e.g. the use of prosody by the
patient, but also for acoustic parameters like the intgmasithe voice or the maximum phonation
time. However, comparison between different former stsidie this topic is almost impossible
since many researchers had a very restricted amount of dedabe of a low number of patients.
In the literature, many contributions can be found basechugmeaker groups of single-digit
size. A lot of researchers developed their own rating gatéar speech and voice quality (see
Chapter 2) which makes it complicated to find analogies antbeqn. The speech data used
for evaluation is very different, too. For measuring voieggmeters, many studies use sustained
vowels only, others employ words or sentences. The anaytiese data becomes more compli-
cated because researchers measure different quantities.ed maximum phonation time, for
instance, is a quite common measure, some other groups pesfaneters like the duration of an
arbitrarily chosen sentence or even the “intensity in midters” on some analog output which
might be very hard to reproduce. In order to reduce the viitiain speaker groups and to get an
impression what speech quality is possible in substituiseg) Bellandese et al. suggested that a
study on this task should only involve speakers that weemras excellent [BLGO1]. The result
of such a study, however, cannot be generalized to noniertspeakers and would not support
the search for real objective analysis methods.

The setup of evaluation studies is also very important feirtbniversal validity. During
intelligibility tests, for example, the amount of data meted to the listeners should be large
enough to prevent playing back the same data more than onoelén to avoid learning ef-
fects with the listeners. In a study with 50 college studestdisteners, the intelligibility of
normal and tracheoesophageal (TE) substitute voices (€hag2.5) in noisy conditions were
compared [MFP98]. The test persons were one normal speaker and one TEespeakiing a
sentence pair from a standard text [Fai60]. The backgrowmskerwas multi-voice babble from
the Speech Perception in Noise test (SPIN, [KSE77]). Therezprdings were presented to
the listeners once without noise and after that with addeskenat different intensities. During
each session, the listeners had to judge how intelligildesireech sample was. Although the
study yielded interesting results, the evaluation may theen highly affected by the fact that all
listeners heard the same two sentences by the respectalees@l the time. It seems to be very
unlikely that the findings reveal independent or even “dioje measures.

The given examples show that there is a real need for a corsptiof automatically com-
putable, objective evaluation criteria in speech therawgn more since several researchers
just define “objective” evaluation as the average or consems several subjective ratings.
With the large amount of studies on small data, this mighth®oa consistent and valid defini-
tion. The standardization of voice evaluation must alreaelyin at the time of data acquisition.
This procedure, however, is dependent on the goal of thechgberapy as the next section will
point out.
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1.2 Towards Screening in Natural Settings

For the purpose of comprehensive documentation of a vdieeEuropean Laryngological Re-
search Group (ELRG) recommended five essential items i\assessment [DBO1]:

e videostroboscopy

acoustic analysis

aerodynamic measures

perceptual ratings

self-evaluation, i.e. ratings by the patient him- or hdrsel

The physically most unpleasant assessment for the pasigheivideostroboscopy because it
means bringing an endoscope into the mouth and recordirgddties or — in the case of substitute
voices — the pseudoglottis (see Chapter 2.2.2).

The goal for the future of voice assessment must be to redwceftort or even pain for
the patient as far as possible. Another important point ietiuce the psychological pressure
on the patient. The ideal situation for the test person waeldne where the patient can act
freely and does not have the impression of being watched mtrated. For the case of the
perceptual ratings, this thesis tries to give some solstidn the ideal case, the patient would
be able to speak without wearing a headset during recordihthe recording is done by a
distant-talking microphone, then the awareness of thesotlyr running evaluation would be re-
duced enormously. Speech recognition in reverberatedammient is an important topic in this
thesis. Furthermore, the subject should be able to speakapeously, i.e. there is a normal
dialogue between patient and therapist which serves aautfie data for later analysis. How-
ever, completely free speech is not suitable for automatfuation due to several reasons, like
the out-of-vocabulary problem or varying average word tdoradue to different words used
by different speakers, for instance. For this reason, a @ially rich standard text with a de-
fined vocabulary was read out by the test speakers and adadytegward. Nevertheless, this
is a large enhancement of established objective measuiiek @ate restricted to the evaluation
of sustained vowels. Typical features in objective analygse automatically computed from
frequency (e.qg. jitter) or amplitude (e.g. shimmer) of past the voice signal, or they can be
gained from time-determined measures, like the durationartls and sentences, or the maxi-
mum phonation time [BLGO1, PFKB89, Rob84]. The positiont@ formants [CMGO01] and the
voice onset time [RCK86, SKA0O0, SC02] are also taken intmant While the computation of
the acoustic parameters from jitter, shimmer, etc. is domenaatically, determining the duration
of a text or phrase is often still done by listening to the rdowg.

In the case of vowel durations, viewing the voice or speeghadigraphically on a monitor
and then measuring the wanted times by hand was very comntba beginning of the 1990s.
The staff expense is very high in these experiments, evean ihmiore than one rater is consulted
in order to reach a certain degree of objectivity [GW83].

For judging speech quality objectively in a real communarasituation, the analysis of
entire words and sentences is necessary because thagibtityi of a substitute voice in a dia-
logue is a substantial criterion for its self-evaluatiod @valuation by experts [AS92, MEBS,
SKAOQQ]. Especially the communication via telephone is &#d here [MZ96, MMG93, ZP86]



4 CHAPTER 1. INTRODUCTION

because due to the band-limitation of the telephone chaheeloice is deteriorated even more,
and no possibility of supporting the communication by fhorshand gestures is available.

The analysis of telephone calls is an aspect that might éessituation for the patients.
The telephone is a crucial part of social life. Laryngectemare often older than 70 or even
80 years (see Chapter 4.4), and it is necessary for them dmeans of communication that
does not require them to leave their home. And when thesemperseed some kind of help,
they will very likely use the telephone to call the doctor leeit relatives. Another aspect that
has to be considered is that their social companions are ofter persons, too, which may
lead to problems on the listener’s side [Cla85]. Thereftire voice evaluation over a telephone
reflects a communication situation which is important fa platient. If an objective rating of the
intelligibility of telephone speech could be part of thenadal evaluation of voice rehabilitation,
this would be very comfortable for the affected persons,iameuld be a step towards a more
global evaluation of post-laryngectomy speech.

Perceptual voice evaluation is subjective in the first pkioee it is performed by a human
expert. Furthermore, the experiments described in theatitee assume a certain kind of listen-
ing experience with substitute voices [DDRS98] which doemarily not reflect the patient’s
everyday situation. The subjective and objective methodsrfeasuring the voicing function
that are currently used in speech therapy mostly do not spored to the standard of the techni-
cally possible voice and speech analysis. In the frame eftttgsis, it was examined how such
methods can be used in order to provide an objective meahs ef&luation of substitute voices.
The next section gives an overview of approaches that wenaiered.

1.3 Contributions Made in this Thesis

In this thesis, the step from the automatic analysis of voa@brdings to text recordings is done.
The new methods require only a standard computer and miocnaplthey are also designed for
internet-based evaluation. It was examined

e whether automatic measures can be obtained that can eobjgatiescribe and evaluate
tracheoesophageal substitute voices,

e whether the objective parameters correlate well with eatadn criteria of human raters,

e and whether the objective evaluation is also possible Jgpk®ne or using a distant-
talking microphone.

The speech recognizers for the experiments with TE speakers trained with normal-
speaking persons because it was important for the evatutitad the system simulates a naive
listener, i.e. a human being that never heard TE speechébefbis is the situation that the
patients face in their daily life. Nevertheless, the eftédd¢he interpolation of the acoustic models
with TE speech recordings was examined.

Human rating criteria in speech therapy are usually irgiility, vocal tone, quality, use of
prosody during speaking, etc. The correlations of theseamuscores to the word accuracy of
the speech recognizers were determined for a set of TE sfilsechiT hey were also obtained for
automatically computed prosodic features which repregeice onset time or word and pause
durations, for instance.
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For several experiments, the intelligibility rating wasdsed since it is the most important
criterion in voice evaluation by humans. An automatic vamnsof the Post-Laryngectomy Tele-
phone Test (PLTT) is introduced. This test was originallyeleped for human listeners in order
to represent the communication situation via telephonelithahally, the word accuracy and the
prosodic features were processed together by leave-aakapout multi-correlation/regression
analysis in order to determine the measures that reprdseiitelligibility criterion best.

For speech therapists, it might be very helpful to get a gcablvisualization of pathologic
speech. The Sammon mapping performs a topology-presergthgtion of data dimension.
It minimizes a “stress function” between the topology of lilnve-dimensional Sammon map and
the high-dimensional original speech data. In this thésesability of Sammon maps to express
human rating criteria was examined.

For the speech recognition in reverberated environmeegd@pcorpora of normal speech
were employed which contain synchronously recorded dak#éag and distant-talking portions.
Different methods were tested in order to enhance the rétogmesults of reverberated test
data. The main difference to most other studies is that tlgetanvironment was assumed to
be unknown at training time, i.e. the test data were recoml@mother environment than all of
the training data. In order to create a “universal”’ recognipr close-talking and reverberated
test data, the training sets were partially or entirely regeated artificially using many different
room characteristics.

Mel-Frequency Cepstrum Coefficients (MFCC) were the fesmtwised for the baseline rec-
ognizer. However, the logarithmic compression of the tilggk coefficients may be disadvan-
tageous on noisy data. Therefore, alternative featuree tested. The root cepstrum and the
“u-law features” which are based upon a compression methatlindgelecommunications re-
place the logarithm by other functions that are supposeudinldhese problems.

As no distant-talking data from laryngectomees were alpkalathe root cepstrum and the
pu-law features were tested on artificially reverberated T&esp signals in order to simulate
a therapy session where no headset is used. These featureslse tested with simulated
telephone speech.

Synchronous recordings of the test data were combined ly-@eld-sum beamforming as a
preprocessing step in order to create a new signal with l@ise nThis test set was processed by
recognizers using different features and artificially reeeated training data.

1.4 Overview

This thesis is organized as follows:

Chapter 2 introduces different ways for establishing a suwits voice, like e.g. surgical
methods or the esophageal voice. The focus is on trachdoggeal (TE) voices. The prop-
erties of several voice restoration approaches are companel subjective evaluation methods
that are used in speech therapy are introduced. Objectimsumements for voice quality will be
discussed in detail including commercial applications.

Chapter 3 describes measures that are used to determirgr dleereent between human raters
or between a human rater and the automatic evaluation ofeckmegnal. Namely, the corre-
lation coefficients by Pearson and Spearman are compareshen&x and its extensions, and
Krippendorff’'sa is introduced as a powerful alternative.

Information about the speech corpora used for the expetsrierthis thesis can be found
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in Chapter 4. The EMBASSI corpus and the Fatigue corpus aagale in different signal
gualities and were therefore used for improving the redogmiin reverberated environment.
Parts of the \ERBMOBIL corpus served as training data for all speech recognizeos.the
recordings of the laryngectomized test speakers, also h@wveduation results were obtained as
reference for the automatic evaluation. The respectivarimnétion is also summarized in this
chapter.

An important topic of the work on the speech recognitionaystvas the search for speech
features that are more robust against reverberation thasFMguency Cepstrum Coefficients
in order to improve the automatic recognition of distartiitay speech data. Adaptation of Hid-
den Markov Models to TE speech was performed in order to ingtbe recognition results of
substitute speech. The graphical representation of spkalfrom the phone model adaptation
and the prosodic analysis were further essential aspecthdcevaluation. For the theoretical
principles of these methods, see Chapter 5.

In Chapter 6, the results on the speech recognition in revatéd environments are sum-
marized. This includes experiments with artificially rdverated training data in order to cover
as many unknown test environments as possible. The impravisnof the results by modi-
fied MFCC as features are described as well as the combinattisignals from more than one
microphone (beamforming) in order to eliminate noise inrdspective test signals.

The experiments on automatic evaluation of substituteegmre described in Chapter 7.
The agreement between human evaluation and the autorhabbshined measures is pointed
out in detail for the intelligibility criterion which is repsented best by the word accuracy of
the speech recognizer, and for the prosodic analysis of Bectpdata. The intelligibility on
the telephone is measured by the automatic version of thieLRogngectomy Telephone Test.
The effects of reverberation in the test signals and re@egaidaptation on the recognition results
are also explained. Finally, the visualization of substituoices by the Sammon transform is
presented.

Major findings of other research groups and their compatahyith this thesis are summa-
rized and discussed in Chapter 8. Future work and possi#asions of the evaluation methods
are presented in Chapter 9. Chapter 10 summarizes the tasis.



Chapter 2

Tracheoesophageal Substitute Voices

This chapter gives an overview on voice rehabilitationrafieal removal of the larynx. Different
kinds of substitute voice will be introduced. The focus istactheoesophageal voices which
restore the original functionality better than earlier m@ehes. Their acoustic properties and
measures for automatic evaluation will be discussed inldeta

2.1 Laryngectomy

The production of speech uses three main functional comypsnd he first one is respiration,
i.e. breathing. The initiation of an airstream is followeg the second component known as
phonation: the airstream causes cyclic opening and clasitige vocal folds which in this way
produce pulses — the actual voice. The third component iattieulation which means that
the organs of the upper vocal tract, like the tongue or the lipodify the pulse train. After
total laryngectomy, all of the mentioned aspects are ateidth a healthy person, the larynx is
positioned between the trachea and the pharynx (see Figlixel2s located in the neck where
the pharynx branches off into the digestive part (esophamud the airway (trachea). It has got
two main functions [Loh03]:

e Working like a valve, it allows a connection of the pharynther to the esophagus or to
the trachea. In this way, it controls the airflow during bhéag and prevents aspiration
during swallowing, i.e. nutrition will not get into the aiay.

e Itis the voicing generator of a “normallaryngealvoice.

The primary voice generator are the two parallel vocal foldke gap between them is called
the glottis. An airstream exceeding a certain threshold gem into vibration which in turn
modulates the airstream [Tit76, TS97, Ber58]. The specification behavior of the vocal folds
is caused by their histology which is explained in detail exgHir74, Loh03]. Irregularities are
perceived as hoarse, creaky or dry voice sound [Loh03, p. 9].

During laryngectomy the larynx is removed, and the trackemnnected to a new opening
for breathing in the front of the neck, thie|mcheostoma After the procedure, the trachea and
the esophagus stay separated (see Figure 2.1). The consegwae manifold. Problems with
breathing occur because the respiratory resistance is foweh than before which leads to less
blood oxygen saturation. The inspiratory air is no longéeifdd, moistened and warmed causing

7
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Pre-surgical anatomy Post-surgical anatomy Expiration
Pharynx PE segment
/\)/ Vocal folds /7 '\ Tracheostoma

Esophagus Trachea Esophagus Trachea

Figure 2.1: Anatomy of a person with intact laryfleft), anatomy after total laryngectonyid-

dle), and the substitute voicgight) caused by vibration of the pharyngoesophageal segment

(pictures after [Loh03, Chapter 2])

higher rate of infects and irritation. The psychic consewes, like the loss of social contacts
and depressions, have to be considered as well [H30A\ AHAB94, TMP'84].

By restoring the ability to communicate by voice, the quyadit life will be enhanced. Some
approaches to achieve this to a certain extent are desadritibd following sections. Together
with laryngectomy, more surgery can be done in order to img@tbe substitute voice [DDRS98,
BPC91, WBJR94]. This may be necessary when also partiatalmemoval of the pharynx (pha-
ryngectomy) was required due to advanced stages of cancer.

2.2 History of Substitute Voices

After laryngectomy the first means of communication is psewthisper. It corresponds to “real”
whisper, but because of the missing airstream from the longsthe small air volume in the
mouth can be used for speaking. The different phonemes bawe formed accurately in order
to get an intelligible result at all. Furthermore, the sundings have to be very quiet [Zen93].

2.2.1 Different Kinds of Voice Rehabilitation

The first laryngectomy was performed by Billroth in Viennali®73, and already at that time
voice rehabilitation was regarded very important. For tkeyvirst patient, a kind of voice
replacement was introduced by Billroth’s assistant Gusaeer [Gus74]. However, the mortality
rate after surgery was high, and the later on establishedatpn of the ways for air and nutrition
brought a quick end of such substitute voice approachesn Bre beginning of the 20century
onwards, mainly three different kinds of voice restoratiare developed [Hag97]:

e The esophageal substitute voic&he patient learns to swallow air and release it back
through the pharynx where the tissue vibrations can be usewicing (see Chapter 2.2.2).

e Surgical methods creating a stable and open connectiorebattiachea and pharynx with
the body’s own tissue: These artificial fistulae have the gaungose as a shunt valve (see
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below), but they avoid the dependence of material that has trought into the body (see
Chapter 2.2.4).

e Methods using extrinsic material: This covers mechanicainsl generators which are
brought in the nose or mouth, and electrical sound generg@vapter 2.2.3) which are
hand-held and placed at the outside of the neck in order tdifgmibrations and thus pro-
duce a hearable voice [Sch97a]. Also shunt valves betwestnabheostoma and the phar-
ynx belong to this group. The resultingacheoesophageal (TEubstitute voice, caused
by tissue vibrations in the pharyngoesophageal segmeatHgeaire 2.1), is the object of
interest in the experiments described in this thesis. Ftaildeon this kind of voice reha-
bilitation, see Chapter 2.2.5.

2.2.2 The Esophageal Substitute Voice

At the beginning of the 2D century, the esophagéalubstitute voice became the only kind of
voice restoration because it does not need any technicpbsujisut09]. Still today, it is very
common in many countries, also in the USA and in Germany [I8agSD01, Zen93].

In the esophageal voice, the cervical esophagus senseasoglottisand the pharynx and
stomach can be used as air reservoir [See22]. Vibration -tlamslthe voicing source — has
its origin in the pharynx at the level between the fourth amthscervical vertebra ([BHIBO3],
cf. Chapter 2.3.1). The patients either press air back h#gharynx and esophagus with their
tongue (injection method) or produce a pressure in the egpghthat is lower than the atmo-
spheric pressure and causes air to flow to this area (inbalatiethod). Another possibility is
to swallow air into the stomach which, however, often cassesiach problems. The controlled
relief of the air back past the pharyngoesophageal segmémtmn used for voicing and causes a
low-pitched, guttural sound (ructus). No aspiration isgdlole due to the complete separation of
trachea and esophagus, and the patient does not need a fircjeséd the tracheostoma as it is
the case with the tracheoesophageal voice (Chapter 2R2dwever, it takes several months or
even years until laryngectomees can control this kind afe/cand as the air volume in the mouth
is only about 80 ml on average while the vital capacity of tinegl reaches about 3 liters, only
short syllables can be uttered [BMD58, Die68, CFM92]. Sornhgspral parameters and other
evaluation measures for the esophageal voice and othex tygies are summarized in Table 2.1
and presented in detail in Table 2.5, 2.6 and 2.7.

2.2.3 Electrical Sound Generators

The voicing function of the larynx can be replaced by a souewegator. In most cases it is
electrically operated and is therefore calédectrolarynx The device is either held to the outside
of the neck, to the floor of the mouth or placed intraorally.e®ound can then be modulated
by the tongue, lips, or the teeth [SD01, WM95]. An importagdtiire of this kind of voice
rehabilitation is that the voice production is completeigependent from breathing. This has
consequences mainly for uttering consonants, becauséhadynall air volume in the mouth can
be used to form them. The quality of these voices is often dvew not satisfactory as it sounds
very “robot-like” and monotone. Furthermore, the patienaiways dependent on some (elec-
trical) device for speaking. The intelligibility of the wa®@s is about at the same level as for

LIn British English, the spelling “oesophageal” is used.
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Neoglottis

Fistula
/7 /" Tracheostoma @ /"~ Tracheostoma

Esophagus 4 Y Trachea Esophagus 4 Y Trachea

Figure 2.2: Surgical voice rehabilitation methods by Cgii@AP58] with a mucosa tunnel be-
tween trachea and esophadlest) and Staffieri [Sta81] featuring a slit-shaped neogldtight)

esophageal voices (see Table 2.1). By 1990, both in the U8Are@ermany 28% of all laryn-
gectomees used this kind of external electronic vibratikes g.g. the Servak devicet [Hag97].

A German study of 1999 [Hum99] reports that only 18% prefithee electrolarynx in commu-
nication compared to 11% using esophageal (Chapter 2.8y 8% using tracheoesophageal
speech (Chapter 2.2.5). For an overview of the availabledsysee e.g. [BHIBO3].

2.2.4 Surgical Methods

Several different surgical methods tried to allow the rection of expiratory air from the trachea
into the pharynx by means of fistulae or similar ways, somesi@so establishing a neoglottis
which is a surgically provided replacement for the gloffikis has the advantage that the voicing
pressure is lower in comparison to shunt valves ([Hag97Tatble 2.1) and that the voice fistulae
are made from the body’s own material. However, all theseagmhes faced the problem of
aspiration. When the patient eats or drinks, it is often msisgble to close the way to the larynx
completely which can have serious consequences. Sponigtxsure or inflammation of the
natural links are further problems. Application of thesahmes reached its summit in the third
quarter of the 20 century ([CAP58, Asa65, Ars72, Sta81]; see examples inrEigR2). Further
methods were developed in Germany after 1980 [Hag90b, BBF¥PMW94], but the purely
surgical methods were not a breakthrough in voice rehabdit, and so by 1989 less than one
percent of the patients in Germany (Federal Republic) afd itihe USA underwent this kind
of treatment [Hag90a]. More than two thirds of the patient&ermany (69%) learned to use the
esophageal voice, in the USA this portion already had gomendo 49% due to the introduction
of shunt valves (30%, Chapter 2.2.5) which were still ratedgd in Germany by then (6%).

2.2.5 The Tracheoesophageal (TE) Substitute Voice

The idea of connecting the trachea and the esophagus fatidgair into the esophagus and
thus cause voicing was described first by Guttman in 193238%uGut35]. However, prob-

lems by infections and fistula stenosis prevented the spré#us technique. The first com-
mercialized voice prosthesis was developed by Taub et 872 Tau75]. It was an external

2http://lwww.servox.com
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| voicing time | duration (s)| average (s)
laryngeal voices 15-25 20
esophageal voices 1-5 3
surgical shunt methods 2-20 10
voice prostheses 7-18 11
voice intensity volume (dB)| intra-individual

dynamics (dB)
laryngeal voices 50-100 <50
esophageal voices 50-70 <20
surgical shunt methods 55-90 <30
voice prostheses 64-95 <28
tracheal pressure pressure (kPa) flow resistance
(Pas/ml)
laryngeal voices 0.8-2 ~4
esophageal voices n/a n/a
surgical shunt methods 0.5-6 <20
voice prostheses 2-8 <50
intelligibility PLTT (%, | one-syllable test
Chapter 7.4) [SH87] (%)
laryngeal voices >90 87
good esophageal speakers ~65 43
ServoX device ~65 40
voice prostheses 79 44

Table 2.1: Physical parameters and other evaluation messfidifferent voice types [Hag97]
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prosthesis connected to both the trachea and an esophtageecus fistula and could only be
used for patients who had not undergone radiotherapy. ltnwaandy and expensive, and it was
therefore forgotten again soon. The development of thealleec shunt valves by Singer and
Blom [SB80, BSH82] were an important step towards a bettermanication skills after laryn-
gectomy. During exhaling, the patient can divert the agestn from the lungs through the valve
from the trachea into the pharyngoesophageal segment (frese, see Figure 2.1). In order to
do so, the tracheostoma must be closed with a finger.

The time for learning to speak with a tracheoesophageal ¥oEp is much shorter than for
an esophageal voice. Almost immediately after surgeryp#tient may produce the first sounds.
The main difficulty here is the proper closing of the tracheos. For over 90% of laryngec-
tomized persons, the shunt valve means an immediate restocd their voicing function, and
65% of the patients keep on using the TE voice permanentl(CE2$BSH86, HB93, LGM96,
Jan03]. Blom et al. examined the rehabilitation progre9afE patients (19 males, 10 females).
81% of the speakers were more fluent 12 months after sur@permean pause time during read-
ing decreased significantly between 3 weeks (25%) and 6 m¢2186). In the same time period,
the speaking rate, mean fundamental frequentgy, (harmonics-to-noise ratio (Chapter 2.5.2),
and percentage of periodic phonation during reading isg@aignificantly [BPH95].

The TE voice has its origin in the same mechanism as the egeph&oice (see Chap-
ter 2.2.2), but due to the valve between trachea and esophtagupossible to use the entire
lung volume for voicing. This allows a much longer maximunopétion time (see entry “MPT”
in Table 2.7). The tracheoesophageal puncture can be doradglduring the laryngectomy,
so basically no more surgery has to be performed for voicalriétation. Shunt valves are often
also called voice prostheses, but this expression is &tuatl correct. A prosthesis is a replace-
ment for a lost organ which is not the case here. The valves@s®und generators, they only
serve for deviating air into the esophagus.

Shunt valves are classified into two categories (cf. e.ga93b]). The first one are the so-
callednon-indwelling prostheseshich are supposed to be changed or cleaned by the doctor or
rather the patient him- or herself from time to time. One paptype is the Blom-Singer pros-
thesis, the original version was also known as “duckbillheTmodern variant basically comes
in two diameters, namely a 16 frericnd a wider 20 french valve. For good accessibility of
the shunt, the diameter of the tracheostoma should be 1.%®no [Blo95]. The original slit
valve of the “duckbill” was also enhanced and is nowadayswmnas ESKA-Herrmann prosthe-
sis [Her86]. Most of the other valves available feature a Viape.

The second category are tiredwelling prosthesewhich are purely clinician-maintained.
Many patients do not want to change and clean their prosttiesmselves. For this reason,
shunt valves are used today which do not have to be changethrgg Popular types of these
valves are:

e The Provox® valve: This low-resistance, indwelling device was developed atNkther-
lands Cancer Institute in 1988 [HS90, HCB93]. The improvedsion ProvoR Il is
available with 6 different diameters between 4.5 and 15 mmoesil997 (see Figure 2.3).
Its main advantage is that it can be inserted and removed ianérograde manner,
i.e. through the tracheostoma, while the original versiad to be replaced using a retro-
grade method, i.e. through the mouth [HA®7, AHM*99]. The length of the indwelling
prosthesis is 8 to 10 mm in most cases. Lifetime of a Prévprosthesis was reported

31 french = 1 Charriére = 1/3mm
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Figure 2.3: Original ProvoX (left) and ProvoR Il shunt valve with guide wire for its retrograde

insertion(right); the flange is cut off afterward. The images are courtesy oEMedical AB,
Sweden.

to range from 4 to 10 months (see overview in [BHIB03]), caladileposits on the valve
being the main reason for replacement. All patients whosedp data are used in this
thesis (see Chapter 4.4) are equipped with one of the twagkores of this shunt valve.

e The Groningen prosthesis: This type is also called Groningen button [NASL82, NS87,
SNO02] and is similar to the Prov@xvalve, but it has an easier construction scheme.

e The Blom-Singer indwelling prosthesis: In use since 1994, the newest version from

2005 features e.g. silver oxide as a material preservativéohger use without being
replaced [LE97, InHOQ].

e The VoiceMaster prosthesis:It was introduced in 1998 and has the advantage that it has
a very low airflow resistance [VGS01, ESVBO01].

An important requirement to a shunt valve is that it has tonogeickly when an attempt for
voicing is made and be completely closed when the patierdrdogpeak. The airflow the valve
has to allow for not obstructing the voicing function wasoepd with 350 ml/s, measured with
the Groningen button [NS87].

The Department of Phoniatrics and Pedaudiology of the UsityeHospital in Erlangen was
one of the first institutions in Germany that systematicailyoduced the voice restoration of
laryngectomees by low-pressure shunt valve voice prostiasl990. The foundations were laid
by a long-term cooperation with the working group of Proflgdis in the Netherlands Cancer
Institute at the Antoni van Leeuwenhoek Hospital in Amsaend About 20 patients a year have
to undergo total laryngectomy in Erlangen. 283 patientsreadived voice prostheses, mainly
of the Provo® type, by the end of 2002.

Although transplantation of an entire larynx can be perfnsuccessfully already (see
e.g. [SSE01)), this is not possible for persons who suffered from eardue to the effects

of radiotherapy . For this reason, shunt valves will propaidy the method of choice for voice
restoration for some more years.
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2.2.6 Stoma Filters and Stoma Valves

Usually tracheoesophageal speakers have to close thedstoma with a finger directly to divert
the expiratory air into the hypopharynx. This, however,gloet only draw the attention of other
persons which is often inconvenient for the patients, balsi® has to be done accurately which
is a problem for many of the elderly patients. Furthermois unhygienic and not possible in
situations like when driving a car.

The tracheostoma can be equipped with a heat and moisturareyer (HME) preserving the
airways from getting cold and dry [AH293, GBB"97]. Then the speaker touches the filter and
not the stoma directly. For the Provsystem, such a filter was introduced in 1996 [HABG96].
If the tracheostoma is covered with a Pro®o8tomafilter, then the digital occlusion of the
stoma allows longer phonation time and a larger dynamiceahgn with “direct digital oc-
clusion”. No statistically significant differences betwede acoustic parameters of fundamen-
tal frequency ), amplitude, tremor, and harmonicity for both stoma oddusnethods were
found [AHKA98].

In order to achieve real hands-free speaking, the patiant®e supported by a tracheostoma
valve which can either be glued onto the stoma [BSH82] or betdk by remaining chondral
tissue [Her86]. It is sensitive to variations in airflow. [hg normal respiration it remains
open, but if the air pressure rises for speaking it will besetband force the air to flow through
the shunt valve. Except for the absence of the stoma noiseydite properties and quality
are not affected [PFKB89]. For the Provdsystem, the “FreeHands HME” was developed that
combines a stoma filter and a stoma valve [HAS]. Some of the speakers in the data collection
for this thesis spoke with such a valve, some used a stomedilting recording (Chapter 4.4).

The quality of the TE voice can be further improved by shuhtescontaining a small pneu-
matic sound source, such as a lip reed [TMFO01]. Furthermoregse of a flaccid or hypotonic
vibratory segment, the use of a neck strap to increase tleedbthe PE segment can improve
the voice [KD99]. These approaches were not used with thergatexamined for this thesis.

2.3 Properties of Substitute Voices

2.3.1 Dynamics of the PE Segment

Videofluoroscopy and high speed video recording indicatedl tibrations of the pharyngoeso-
phageal segment (PE segment; Figure 2.1) are the primargesofisubstitute voice [OKNF94,
SGO091, WRM 85]. A research group at the Department of Phoniatrics amthiREology at
the University of Erlangen-Nuremberg could objectivelpwsifor the first time that the PE seg-
ment is the origin of the substitute voice. Four differeriiration patterns could be identified
which can also be evaluated automatically in high speedovideordings [LDS03, DHH"02].
The dynamics of the PE segment during phonation show a higitesity to the behavior of vo-
cal folds [Loh03, LDR 02]. An introduced model for the latter which reduces the plaxity of
several aspects of voice production was developed by lIshiaad Flanagan and is known as the
Two-Mass Model (2MM, [IF72]). It describes a vocal fold asarf coupled oscillators vibrat-
ing due to aerodynamic forces. A simplified version of thisdeld[SH95a], Figure 2.4) was the
basis for the model of the PE segment vibration. Whereas M are sufficient for a vocal fold
model, the PE segment model places several 2MM orbitally aritorizontal circle. The reason
is that the PE segment is an elastic tube where each part tésiue moves towards the center
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supraglottal

’1%7 rer
vibration
direction
right subglottal left

Figure 2.4: Cross section of the two-mass model of vocalfddcation by Steinecke and Herzel
([SH95a], picture after [Loh03, p.67])

| | plcmH,O] [ p[Paat20°C]| study |
| subglottic pressure (normal voice) | 4-8 | 390-780 | [DDWU94] |

pressure below PE segment 10-40 980-3920 | [DDWU94]
trans-TE shunt pressure (without shunt valye)  1-50 100-4900 [KA86]

Table 2.2: Air pressurg in normal and substitute voices

and back more or less during voicing. This model is describetetail in [Loh03]. Due to the
different anatomical conditions, the pseudoglottis iewfhot split-shaped. Schuster et al. identi-
fied 6 split-shaped, one triangle-shaped, and 3 circulardusgottides in 10 laryngectomees by
high-speed video recordings [SRE5].

2.3.2 Aerodynamic Properties

The aerodynamic properties of substitute voices were exaain several studies. An important
measure is the airflow rate through the voicing source. Fgntgeal voices it is up to approx.
500 ml/s [Hag97]. Trans-TE airflow rates (without a shuntealvere measured between 20 and
400 ml/s [KA86]. More than 350 ml/s is sufficient for properisiog [NS87]. The tracheal pres-
sure is about 800-2000 Pa for normal and 2000—-8000 Pa foretwasophageal voices ([Hag97],
cf. Table 2.1); for further details see Table 2.2. The raficacheal pressure and airflow rate is
known as the airway resistance (Table 2.3). Especiallyhifepiseudoglottis, the actual TE voice
source, large inter-individual differences were reparidus holds also for the TE shunt when no
valve is inserted. It may be both smaller or higher than withlge. Interestingly, the Provéxll
valve (Chapter 2.2.5) has a larger flow resistance thanmtgpetitors. In general, tracheoesopha-
geal voice production shows increased trans-source airéit®s, similar source driving pressures
and decreased airway resistances in comparison with egeghaices. In relation to normal la-
ryngeal voice production, it has comparable trans-sourflewa rates, increased source driving
pressures and increased airway resistances [MW87]. Thamsnthat speaking with TE voice
takes less effort than with an esophageal voice; it is cltlsamormal voice in this aspect.



16 CHAPTER 2. TRACHEOESOPHAGEAL SUBSTITUTE VOICES

| | R[dyn-s/cn?] | R[Pas/ml] | study |

glottis (normal speaker) 30-42 3-4.2 [SH81]
glottis (normal speaker) 35-45 3.5-4.5 || [ZMLS91]
esophageal source 100-1220 10-122 [KA86]
TE shunt (without shunt valve 1-250 0.1-25 [SH81]
Blom-Singer prosthesis 45-120 4.5-12 | [WHBS82]
Groningen button ~100 ~10 | [ZMLS91]
Provox® 1l valve 237 23.7 || [STW'06]

Table 2.3: Airway resistanc® in normal and substitute voices

2.3.3 Acoustic and Prosodic Properties

Tracheoesophageal speech in communication is perceivedpasior to esophageal speech or
an electrolarynx [WW87]. The intelligibility of the TE voas is higher than for esophageal
voices [DDWU94, AS92, Rob84] and electrical devices ([H&g®@f. Table 2.1). Furthermore,
the melodic, rhythmic, and dynamic accent of the individoiadjinal voice and thus the indi-
vidual way of speaking are kept. Higher formant values tmanarmal speakers were found in
esophageal and also tracheoesophageal speakers inrdifearguages [CMGO01, SW72, Kyt64].
The reason for this is the effective vocal tract length whscshorter after laryngectomy [CW76,
SW72, DY66]. But still, with poor esophageal and neoglatfsakers the voice quality is so low
that listeners are not able to guess even the speaker's S92[MMG93].

Laryngectomees often show unclear pronunciation withawthmmotion of the articulatory
organs. This can be due to complications after surgery, aaghartial resection of the tongue,
dry mucosa or the loss of teeth as a consequence of radipthemad more. Therefore, the
patients can produce phones like /v/, [/, Id/, It/, Ig/ drdkd their combinations with other
phones only to a reduced extent [SG97]. Good TE speakergteavoiced and voiceless sounds
which are perceptually distinguishable. Even in TE speskeasice onset time (VOT) is one of
the most important factors for the distinction between gdiand voiceless phones [SKAOQO,
TKMAO95]. Closure period and VOT are usually measured in rdicms of syllables of the
VCV type, i.e. with a voiced-closure-voiced phone sequesceh as /apa/. The voice onset
time consists of both the duration of the burst wave and the tieeded to restart vibration for
the following vowel. Saito et al. showed that for highly itiggble TE speakers both VOT and
closure duration are longer than for laryngeal speakerd\[BK Searl et al. examined voiced
and voiceless stops and fricatives in different places otlpction in recordings of nonsense
words [SC02]. They found that consonant intensity, consbdaration, mean vowel duration,
and standard deviation are larger for TE speakers; the woiset time is also mostly longer with
TE speakers than with normal speakers. In general, thetsesiulhe few available studies are
often in contrast to each other (cf. also [RCK86]) which maychused by the different setups
of the experiments and the audio material.

Gandour and Weinberg state that TE speakers are able togaratlaple intonational con-
trast (e.g. rise vs. fall) as good as normal speakers [GW83)wgh laryngeal speakers differ
significantly from alaryngeal speakers iy (see Table 2.1 and 2.5) and intonation production
due to the reduced motor control of the tissue in the PE segjig@02, MTMO0O].

The properties of substitute voices that were describetighsiection have an influence on
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the perceptual impression that human beings have wheniligt¢o speech. However, humans
do not describe their impressions in terms of physical measents. For the evaluation of voice
and speech pathology in the frame of speech therapy, othgs wfadescribing a voice were
defined. These will be introduced in the following.

2.4 Subjective Evaluation Methods

The voice evaluation by speech therapists and the selésatiah by the patients often differ sub-
stantially [SKERO3]. Therefore, not only the expert’s apmis considered for the individual
rehabilitation concept. Nowadays, the self-evaluati@ygla much stronger role in speech ther-
apy than in earlier times. There are several tests on qudllife and coping strategies that were
also applied with the test patients for this study. Some eifrtlare presented below.

2.4.1 Subjective Evaluation Criteria

Voice evaluation by humans is usually done in the followireywThe patient reads out a stan-
dard text, and the rater fills out a printed evaluation shiéebntains several rating criteria, and
each one of them gets some kind of score. These scores mayrieioal or category-based,
i.e. describing the criterion in words, like in the widelyedisLikert scales[Lik32]. The range of

a numerical score might be continuous with a lower and anippend, like in the case of the
visual analog scales (VAS, [Fre23]). This means that ther tzs to mark his or her decision on
a line or bar of a certain length (cf. the “overall qualityiterion in Table 4.12). The distance
of the mark to the beginning serves as the numerical scores. riiéthod was used with substi-
tute voices e.g. by van Gogh et al. [GFY5]; their scores were converted to values between 0
and 100. Many more studies evaluate on the basis of integeescVan As defined bipolar 7-
point scales which means that the end points of the scaledesm@ted by “very good” and “very
bad”, or similar descriptions concerning the respectiveon. 19 rating criteria were defined
for naive raters and 20 scales for the trained raters [AKR}H8owever, a lot of them correlated
with each other, and the evaluation was complicated for @bers due to the high number of
similar criteria. For this reason, most other studies psepoetween 5 and 10 rating criteria.
From the criteria used by van As, Moerman et al. defined a seigbt new ones in [MPMO04]
which are (1) “hypotone/hypertone”, (2) “fluency”, (3) “wa& onset”, (4) “additional noise”,
(5) “intonation”, (6) “speech rate”, (7) “intelligibilityand (8) “general impression”. The scores,
marked on analog scales, were converted to integer valis&e 0 and 9. Ainsworth and Singh
used 5-point scales for the criteria “normal”, “intelli¢ggh, “rate” (speaking rate), “rhythm” and
“intonation” [AS92]. The importance of intelligibility,fiormality”, and the fluency and prosody
of speech for the evaluation of substitute voices are alewshn Bellandese’s study where the
rating criteria were named “stoma noise”, “understandgbjl‘voice quality”, “rate of speech”,
and “speaking fluency” [BLGO1]. Each of them is judged on aofpscale to rate speaking pro-
ficiency. That article gives also a detailed overview on thieiga used in former studies. Since
the speech data used for this thesis were evaluated by erped raters, 11 different criteria
were used, most of them on 5-point Likert scales (see dete@apter 4.4.3). For experiments
with a group of naive listeners, the number of criteria wedced to 5. This study will not be
described in detail here, it can be found in [BS}M].

4after Rensis Likert (1903-1981), pronouncetK 6t /
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However, 5-point scales do not seem to be the optimum, aithhdluey are widely used in
some of the common voice evaluation tests that will be intoed below [JJG97, HS99, WS92].
Especially for experienced listeners, it is not conventerimit their discriminative capacity to
5 grades. The reliability of the test is not necessarily ceduf there are reasonably more than 5
or 7 grades per rating category [CGO00].

2.4.2 The GRBAS and RBH Scale

The GRBAS scale [Hir81] describes voice quality by five digiens. Each one of them is rated
on a 4-point scale between ‘0’ (no abnormality) and ‘3’ (sevabnormality) on the basis of
further 4-point integer subscales. The dimensions cdgelith physiologic and psychoacous-
tic quantities; the latter are important for the purpose wbmatic evaluation as they reflect
computable measures [YSANO3]:

e “Grade (G)": the overall impression of abnormality in voice

¢ “Roughness (R)”: the perceived degree of pitthamplitude and noise in the lower fre-
guency regions

e “Breathiness (B)": the perceived degree of noise in the mid-frequency region

e “Asthenia (A)". reflects lower content of harmonic frequencies in the uppsguency
region, irregularity inF, and amplitude, and a fading amplitude contour

e “Strain (S)”: probably corresponds to highég, noise in the upper frequency region,
increased amplitude of the higher harmonics, and increBgadd amplitude perturbation

However, the GRBAS scale has some drawbacks on severelglpgital voices, therefore an
alternative was developed by Moerman et al. [MMIB]. It is based on the parameters “impres-
sion”, “intelligibility”, “noise”, “fluency” and “voicing”, abbreviated as “IINFVo”. Each one of
them was rated on a visual analog scale between 0 (very bad)soud 10 (very good score)
and then converted to an integer number between 0 and 3ikeshlthe GRBAS scale. A high
correlation { =0.92) was reported between the first two criteria whichss abnsistent with the
findings in Chapter 4.4.4. The impression criterion was ebett; the final rating scale is called
“INFVO”.

An important rating system for dysphonic speech in Gerngeaking countries is the RBH
scale [NAW94]. It allows integer scores between 0 and 3 ferttiree dimensions “Rough-
ness”, “Breathiness”, and “Hoarseness” (in German: “Rieii}, “Behauchtheit”, “Heiserkeit”).
The basic rule for voice evaluation defined by the authordhefRBH scale is that the total
hoarseness score must not be better than any of the scoré® foomponents of the other two
dimensions.

2.4.3 Self-Evaluation Scales (VHI, V-RQOL, SF-36)

For the self-evaluation of the restriction in voicing, theid¢ Handicap Index (VHI) is an es-
tablished method. Its original version was in English [J9@; the Department of Phoniatrics

SNote that “pitch” denotes a perceptual impression; it ieofised as synonym fdt, in the literature.
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and Pedaudiology at the University of Erlangen-Nurembdapged it for the German-speaking
countries [SKERO3]. The VHI consists of three 10-item saless (functional, emotional, and
physical). Typical items are e.g. the following:

e “My voice makes it difficult for people to hear me.” (functial)
¢ “I tend to avoid groups of people because of my voice.” (eorwl)
e “l run out of air when | talk.” (physical)

The test persons rate each of the 30 items on a 5-point scadedj0vhere the single points are
named as “never”, “almost never”, “sometimes”, “almostays’, and “always” to indicate how
frequently the subject has the respective experience. Uiheibnal, emotional, and physical
subscales are calculated as the sum of the responses toiteens0n each scale.

The total Voice Handicap Index is the sum of the scores onhheetsubscales, i.e. it is
expressed by a numerical score between 0 (no handicap) &¢rEXkimum handicap). In a
study with 21 male and 2 female German TE speakers equippgldavidrovo® valve, the total
VHI score in the group was on average 39.3 with a standarctiewiof 11.4 [SKERO3]. Physi-
cal restrictions were rated higher (14.9) than functiof2l9) and emotional restrictions (11.5).
Additionally, the patients rated their own voice on averaggh 1.6 units on a possible integer
scale from 0 (normal voice) to 3 (very low quality). When thelMatings by the patients were
compared to the ratings by 7 experts, neither between qmnelng criteria like “hoarseness” or
“speaking effort” nor between the global self-evaluatiowl @valuation by experts a significant
correlation could be measured. However, single items oéxipert’s rating correlated with state-
ments made by the patients about problems during telephaltee being not understood, the
avoidance of communication situations, or psychic prolslelione to the voice disability. For de-
tails see [SLH 04].

The Voice-Related Quality Of Lifeneasure (V-RQOL, [HS99]) consists of 10 items which
are rated by the patient on an integer scale between 1 (“mm@, problem”) and 5 (“as bad as
it can be”). The items are similar to those of the VHI. Anotlkery important means of self-
evaluation is theSF-36 health survey [WS92]. 36 items covering 8 dimensions aredraly
integer numbers on 2-point to 6-point scales. The Germasiorewas introduced by Bullinger
and Kirchberger [Bul95].

The self-evaluation of the patient’s coping strategy carirfstance be obtained by the TSK
survey (“Trierer Skalen zur Krankheitsbewaltigung”) w&7 items are rated on 6-point scales
and afterwards combined to express 5 dimensions desctigubject’s main activities to cope
with the impairment [KF93].

2.4.4 Conclusion

In general, the usability of subjective evaluation methddpends on their domain. For self-
evaluation (Chapter 2.4.3), the emotional and psychicas@ee as important as the quality of
the substitute voices. For evaluation by other persondatter is usually the only aspect that is
taken into account because human raters very often evdlyditening to recordings and have
no direct contact to the patients. The criteria from the GBE#d RBH scale (Chapter 2.4.2) are
focused on voice properties rather than on speech evatu&ioce it was the topic of this thesis
to extend the introduced automatic analysis methods taéertrdings, criteria like intelligibility
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and speech fluency had to be taken into account. They canraiitbmed from vowel record-
ings. Based upon the studies described in Chapter 2.4.1 o0& 1sding criteria was defined (see
Chapter 4.4.3). These served as a reference for the autom@etevaluation.

When evaluating speech pathology, medical sciencesitadily distinguish between im-
pairment, disability, and handicap. “Impairment” refezsatproblem with a structure or organ of
the body, “disability” is a functional limitation, and “hdicap” refers to a disadvantage in filling
a particular role in daily life [WHO80]. Methods for speectatiation are often oriented to-
wards these categories or towards the newer revisions Biyoniel Health Organization, respec-
tively [WHOO1, Jon01]. Automatic evaluation as describedhis thesis, however, processes a
speech signal only and is therefore not able to differembi@tween these aspects. It corresponds
to the perceptual evaluation of disability by human raters.

2.5 Objective Evaluation Methods

Perceptual voice analysis by humans is time-consuming gpehsive [GFV 05]. Furthermore,
the evaluation is dependent on the particular rater’s pead@al experience; other persons might
not be able to understand or reproduce it. Therefore, traaation of the task by the extraction
of objective measures from voice or speech recordings isadedviany objective measures have
already been proposed several years ago [GHSS05, QBC8&9Dirithe “properties of sub-
stitute voices” which were introduced in Chapter 2.3 aready objective evaluation measures,
because they are gained by deterministic measuring methodthis section, more complex
criteria will be introduced which are based on simpler apphes or combine them.

2.5.1 A Model for Alaryngeal Voices

For the mathematical description of normal voices, oftenriodel of glottal flow by Liljen-
crants and Fant is used (“LF-model”, [FLL85]). In the casa @athologic or a substitute voice,
however, this model cannot be applied any more becauseutgprameters are not enough to
describe harsh, creaky or breathy voices, for example.

An extended model based upon five easily measurable panamedts introduced by Qi and
Weinberg [QW95]. Figure 2.5 shows the parameters obtaired the airflow function ()
and its derivativd/'(t), measured during sustained vowel phonation. Three timgstan the
trajectory of the derivative are important for further camgdion. These are the tinig where
U'(t) exceeds a user-defined threshold for the first time, thetimderelU’(t) crosses the zero
line, i.e. whenU(t) is at its maximum, and. where the absolute value 6 (¢) falls below the
threshold again at the end of the period. One of the parametéhe model is the fundamental
frequencyF;, which is computed from the measured fundamental péfriotihe other parameters
are the relative position of maximum flow reducti@p)(the open quotient

tc_tO
T )

0Q= (2.1)

the speed quotient
so— t, —to

2.2
e 2.2)
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Figure 2.5: Parameters measured from the glottal airflowtfan U(¢) during sustained vowel
phonation [QW95, p. 539]; the derivativé(t) is shown normalized and in absolute values.

and the relative area under the flow function

JU@)dt
Ultp) - (tc — to)

The source wave#/ (t) of laryngeal speakers look homogeneous and show a quasdmer
triangular shape. The waves of esophageal speakers are@emaigeneous. It was, however,
possible to identify four characteristic categories withtidct patterns [QW95]. The source
waves produced by the TE speakers in that study were alsconubdieneous. Several speakers
featured an open quotient OQ outside the range of normakepeaFor normal speakers, the
distribution of the relative ared under the flow function is compact which also holds for the
distribution of the TE speakers. The difference in overaiting properties, however, showed no
significant differences between normal and TE speakersvaoith groups significantly differed
from the esophageal speakers. For the single parameténgheiexception of open quotient OQ,
however, significant group effects could be measured. fitgnice was reached between normal
and TE speakers for the mean speed quotient SQ. The prapevtigouted on recordings of the
vowel /a/ are subsumed in Table 2.4. Qi and Weinberg did not examiregheh the approach is
able to distinguish “good” from “bad” speakers within onesjfic speaker group. The results
of their experiments indicate that it is not possible. Fenthore, the flow analysis has a crucial
disadvantage. The volume velocity has to be measured witghaface mask and expensive
instruments while the evaluation of an audio recording ca¢sequire special hardware. For this
reason, the following sections will introduce methods ttaobappropriate measurements from
sound files.

A= (2.3)
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| measure | laryngeal| esophaged] TE |
Fy mean (&/) 132 Hz 82Hz | 86Hz
F, st.dev. (4/) 27 Hz 48Hz | 27Hz
open quotient OQ mean 0.62 0.50 0.63
open quotient OQ st. dev. 0.11 0.25 0.18
speed quotient SQ mean 1.40 1.02 1.01
speed quotient SQ st. dev. 0.25 0.49 0.28
rel. pos. of max. flow reductiof mean 63.4% 38.0% | 63.8%
rel. pos. of max. flow reductiof) st.dev.|| 11.5% 12.2% | 16.8%
rel. area of flow functiomd mean 56.0% 49.9% | 59.1%
rel. area of flow functiom st. dev. 3.5% 56% | 5.0%

Table 2.4: Source signal properties of different voice sypmeasured with normal speakers
(10 male), esophageal speakers (8 male and 2 female), andeBkess (9 male and 3 female,
[QWO5, p. 545])

2.5.2 Objective Measures and Analysis

Robbins et al. used principal component analysis (PCA) cgt afsduration measures in order
to identify the least redundant subset that allows to diasscordings of a sustained vowel and
recordings of a standard text into one of the groups “largiigéesophageal” and “tracheo-
esophageal” automatically. Mean intensity during readmgan maximum phonation time and
number of words per phrase were the three measures thaedifgted all three groups ([Rob84],
cf. Table 2.5, 2.6 and 2.7). However, duration measuresatayive information about the acous-
tic quality of the voice. For this purpose, frequency-basedhods have to be applied. Usually,
objective evaluation relies on sustained vowels only [PJOdis vowel is &/ in most of the cases,
spoken at normal communication intensity and recorded bgam$et. For analysis, it is often
selected due to its sensitivity for jitter [Hor80, PC89].n$® other examples are known where
additionally the vowelsi/ and &/ are examined [MPMO04, WP03, BP83]. Mendelsohn et al.
measured latency and duration of the consonant /s/ in asall/gelephone speech [MMG93].

Fundamental frequency: The fundamental frequendy, (i.e. periodicity) is the most impor-
tant feature in all acoustic voice category systems [GES, LJRO1]. Its variation is also very
important for the task. Due to the high degree of aperiogiahly few TE speakers can be
analyzed by usual frequency-based methods [AHKA98]. Iddéee binary voiced-unvoiced
decision is sometimes more helpful than numerigalalues (see Chapter 7.3). Debruyne et al.
state that it is easier to detek in TE than in esophageal voices, although the mechanism for
voicing is, except for the different air supply, the same [BD94].

Jitter:  Jitter, i.e. fluctuations ofy, is a typical measure for irregularity. It is applied to aste
or electroglottogram signals (EGG, [BK®6, Kli91, Sat05]), or to signals describing the spatial
vibrations of vocal folds [D6l02]. Many studies involveethipercent jitter”. The timeAt, be-
tween the maxima of two successive oscillations definesuhation of cyclek in milliseconds.
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The jitter (in percent) for the numberof pharyngoesophageal cycles is then given as

7 = 2k [Alis — Aty
ZL Aty

It represents the percentage of jitter which considers gpeddence of absolute jitter on the
Fy level (jitter relative to averagéy). Like for Fy, it is often difficult to compute jitter in
highly pathologic voices. Moerman et al. considgrvalues within 25% of the mean over all
voiced frames as “reliable” and thus suitable for the corapom of jitter [MPM™04]. They
performed speech/non-speech classification for 10 ms gdmecomputing the average en-
ergy of five surrounding frames and marking the frame as $pe#en for its energy held

E > 1.25FE,,, + 0.05F,,,,. For combined high-speed video and audio recordings of thedg-
ment of 9 TE speakers, Lohscheller reports percent jiiebetween 5.3% and 23.2%, obtained
from the video sequence. The jitter from the correspondirtticasignal/,. ranged from 1.7% to
22.9%. The reasons for the differences in both measuresi@amifterent sample rate for audio
and video channel and the fact that the PE vibrations are ar@@ment while the audio signal
is one-dimensional [Loh03, p. 53].

.100 . (2.4)

Shimmer: Analogous to jitter, shimmer describes the perturbationsatensity. Like percent
jitter, shimmersS is often given as a percentage relative to the mean inteinsitgamples which
is computed from the intensity valuésin all samplesk:

" D — 1
g - 2= |n’““ el 100 (2.5)
Zk:l I,

The time over which jitter and shimmer are computed variessacdifferent studies. Moran
et al., for instance, involve 3, 5 and 55 fundamental peridpdRCL06]. Robbins et al. ex-
amined jitter, shimmer and several measures derived fr@mtm normal, esophageal and
TE voices [RFBS84a, RFBS84b], confirming that the acousti@lity of TE voices is much
closer to normal voices than esophageal voices. Resultsuanenarized in Table 2.5, 2.6 and
2.7 (see also the parameters measured from airflow in Tadje 2.

Harmonics-to-Noise Ratio (HNR):

HNR = 10 - logy, L (2.6)
E.,

is the harmonics-to-noise ratio computed from the enetjaa the harmonic or periodic signal
and £,, in the aperiodic noise components. They are obtained frangtiefrency domain of
the cepstrum whose lower region corresponds to the voaal $yestem; the region around the
highest cepstral peak at the fundamental period exprasséstmonic part of the excitation, and
the remaining region corresponds to the noise part of thitegian [LIW'" 04, YAD98, Kro93].
For details on the computation of the HNR, see e.g. [MRCL(4ELB4, Kro93] or the overview
in [Bud00]. HNR is often computed in several frequency bandsthe frequency area of the
first formant, it was reported between 22 and 31 dB for normlngeal voices. TE speakers
only reach about 1 to 9dB [FBMP96]. HNR (or the signal-tossoratio SNR [Bud00]), jit-
ter and shimmer in voiced speech are sufficient to discritaibatween normal and pathologic
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laryngeal sp. esophageal spi| TE speakers
measure #subj.| value| #subj.| value| #subj.| value| study
Fy, mean (&/) 10m| 120Hz| 10m| 64Hz 10m| 89Hz | [Blo84]
Fy mean (4/) 15m| 103Hz|| 15m| 65Hz 15m| 83Hz || [RFBS84a]
Fy mean (4/) 10m | 132Hz|| 8m/2f| 82Hz| 9m/3f| 86Hz || [QW9I5]
Fy, mean (&/) 10f | 179Hz 9f | 107Hz 7f | 119Hz| [BLGO1]
Fy st.dev. (4/) 10m 4 Hz 10m| 11Hz 10m| 19Hz | [Blo84]
F, st.dev. (&/) 15m| 24Hz| 15m| 31Hz| 15m| 43Hz| [RFBS84a]
Fy st.dev. (4/) 10m| 27Hz| 8m/2f| 48Hz| 9m/3f| 27Hz| [QW9I5]
F, st.dev. (&/) 10f | 17Hz of 54 Hz 7f 37Hz || [BLGO1]
F, range (4/) 10m| 20Hz| 10m| 40Hz 10m| 61Hz| [Blo84]
F, range (4/) 15m 6 Hz 15m| 74Hz 15m| 40Hz | [RFBS84a]

F, mean (reading) 10m| 121Hz| 10m| 65Hz 10m| 88Hz | [Blo84]

Fy, mean (reading) || 12m/3f| 128Hz | 4m/1f| 84Hz| 4m/1f| 108 Hz | [PC89]

F, mean (reading) 15m| 103Hz| 15m| 77Hz 15m| 102Hz | [RFBS84a]
F, mean (reading) 10f | 178Hz 9f | 112Hz 7f | 148Hz| [BLGO1]

Fy mean (reading) — — — — 10f | 109Hz | [TQ90]

F, st.dev. (reading 10m 6 Hz 10m| 15Hz 10m| 20Hz | [Blo84]

Fy st.dev. (reading) 12m/3f| 39Hz| 4m/1f| 10Hz | 4m/1f| 34Hz| [PC89]

Fy st.dev. (reading 15m| 15Hz 15m| 23Hz 15m| 23Hz || [RFBS84a]
Fy st.dev. (reading 10f 21Hz of 34 Hz 7f 49Hz | [BLGO1]

F, st.dev. (reading — — — — 10f 18Hz | [TQ90]

Fy range (reading) 10m| 16Hz 10m| 44Hz 10m| 61Hz| [Blo84]
Fyrange (reading) || 12m/3f| 129 Hz | 4m/1f| 177Hz| 4m/1f| 170Hz | [PC89]

F, range (reading) 15m| 86Hz| 15m|118Hz|| 15m| 142Hz| [RFBS84a]

F, range (reading) — — — — 10f 70Hz || [TQ90]
jitter mean (&/) 15m| 0.1Hz| 15m| 4.1Hz|| 15m| 0.7Hz| [RFBS84a]
jitter mean (&/) — — — — 10f | 1.8Hz | [TQ90]
jitter st. dev. (&/) 15m| 0.1Hz| 15m| 4.4Hz| 15m| 0.9Hz| [RFBS84a]
jitter st. dev. (&/) — — — — 10f | 0.6Hz | [TQ90]

Table 2.5: Acoustic properties of different voice typesriigkxl from F, and jitter); subjects are
abbreviated as ‘m’ (male) or ‘f’ (female).
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laryngeal sp. || esophageal sp. TE speakers

measure #subj.| value | #subj.| value|| #subj. | value| study
intensity mean (/) 10m 84| 10m 73] 10m 80 || [Blo84]
intensity mean (/) 15m 77| 15m 74| 15m 88 | [RFBS844a]
intensity st. dev. /) 10m| 5.1| 10m 6.4 10m 8.6 | [Blo84]
intensity st. dev. (/) 15m| 0.8| 15m 35| 15m 1.2 | [RFBS84a]
intensity mean (reading)] 10m 84| 10m 70 10m 82 || [Blo84]
intensity mean (reading)] 15m 70| 15m 59 15m 79 | [RFBS84a]
intensity mean (reading — — — — 10f 71 [TQ90]
intensity st.dev. (reading) 10m| 7.9 10m 7.4 10m 8.2 | [Blo84]
intensity st.dev. (reading) — — — — 10f 5.2 [TQ90]

| intensity range (reading) 15m| 14] 15m| 11| 15m | 14| [RFBS84a]|
shimmer mean /) 15m| 0.3| 15m 19| 15m 0.8 | [RFBS84a]
shimmer mean /) — — — — 10f 1.9 [TQ90]
shimmer st. dev. {/) 15m| 0.2 15m 16| 15m 0.6 | [RFBS84a]
shimmer st. dev. (/) — — — — 10f 1.6 || [TQ9O]

\ SNR mean H 10f \ 14.9 H of \ —1.9H 7f \ -2.2 H [BLGO1] \

\ SNR st. dev. H 10f \ 2.4 H of \ 2.5 H 7f \ 2.2 H [BLGO1] \
HNR mean 88 m+f| 25.2 — — — — | [MFS98]
HNR mean — — — — ||12m/12f] -1.8| [PFKB89]
HNR mean — — — — || 19m/10f] 0.8 | [BPH95]
HNR st. dev. 88m+f| 3.6 — — — — | [MFS98]
HNR st. dev. — — — — ||12m/12f 5.2 | [PFKB89]
HNR st. dev. — — — — |19 m/10f] 1.5 | [BPH95]

Table 2.6: Acoustic properties of different voice typesriged from intensity and shimmer);

subjects are abbreviated as ‘m’ (male) or ‘f’ (female). Theasures from [RFBS84a] are given
in dB (A), i.e. perception characteristics of the human sugisystem are considered; all other
values are in dB (SPL) regarding the physical measure ofcsenargy only.
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laryngeal sp. || esophageal sp. TE speakers
measure #subj.| value | #subj.| value| #subj.| value| study

| syllables/min | 10f | 249] 9f | 186] 7f | 201| [BLGO1] |
| syllable dur. mean (ms)|| 15m| 220] 15m| 310] 15m| 280 [RFBS84a]|
syllable dur. st.dev. (ms) 15m| 30| 15m| 56| 15m| 43| [RFBS844q]|

words/min 15m| 173 15m 99 15m| 128 [RFBS84a]
words/min 12m/3f| 159 || 4m/1f 94 || 4m/1f| 152 | [PC89]
words/min — — — — 10f 138 || [TQ90]
words/min st. dev. 15m 23 15m 25 15m 21 || [RFBS84a]
words/min st. dev. 12m/3f 24 || 4Am/1f 23 || 4m/1f 16 || [PC89]
words/min st. dev. — — — — 10f 40 || [TQ90]
words/phrase 15m| 9.8 15m| 3.0 15m| 7.2 | [RFBS84a]
words/phrase 12m/3f| 12.2| 4m/1f| 3.6| 4m/1f| 8.1 [PC89]
words/phrase st. dev. 15m| 2.6 15m| 0.9 15m| 1.4| [RFBS84a]

words/phrase st. dev. 12m/3f| 1.4 4m/1f| 0.7| 4m/1f 1.0 || [PC89]
pause time mean (ms) 15m| 625| 15m| 650 15m| 890| [RFBS84a]

pause time mean (ms) — — — — 10f | 1300| [TQ90]
pause time st. dev. (ms 15m| 195| 15m| 135| 15m| 215| [RFBS84a]
pause time st. dev. (ms — — — — 10f | 1100| [TQ90]
% pause time 15m 18 15m 36 15m 24 || [RFBS84a]
% pause time — — — — 10f 31| [TQ90]
% pause time st. dev. 15m| 6.0 15m| 6.7 15m| 5.6| [RFBS84a]
% pause time st. dev. — — — — 10f | 12.2 [TQ90]
| % periodicity | 15m| 80| 15m| 42| 15m| 78] [RFBS844q]|
| % periodicity st.dev. || 15m| 8.0/ 15m| 11.0] 15m]| 15.5| [RFBS844]|
MPT mean (s) 15m 22 15m 2 15m 12 || [RFBS84a]
MPT mean (s) 12m/3f 25 || 4m/1f 2| 4m/1f 16 || [PC89]
MPT st. dev. (s) 15m| 9.1| 15m| 0.7|| 15m| 5.2| [RFBS84a]
MPT st. dev. (s) 12m/3f| 5.4 | 4m/1f| 0.6| 4m/1f| 5.7 | [PC89]

Table 2.7: Duration measures of different voice types;ettjare abbreviated as ‘m’ (male) or
‘f’ (female). “MPT” means “maximum phonation time”.
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Figure 2.6: Spectrum of the first phrase (“Einst stritterh $dordwind und Sonne”) of the text
“The North Wind and the Sun” (see Appendix A.1) from a normred a TE speaker

speakers [MRCLO6, MFS98, Kro95]. It was, however, not exsdiwhether it is also possi-
ble to divide these two classes into further subgroups,dike “good” and “bad” TE speakers.
According to van Gogh et al., there are three categories ofdiées [GFV"05]:

1. good voices with low-frequency harmonics, and noisengkiver at higher frequencies,

2. moderate voices consisting of repetitive bursts of sanalgy with low repetition rate and
a weak periodicity due to high levels of voice in all frequiersc

3. poor voices with no detectable or very welgkor envelope periodicity.

Figure 2.6 contains the spectra of recordings of a normalaai@ speaker. The high noise
level in the substitute voice is clearly visible. Only theiogs from the first two categories
could be reliably analyzed automatically and correlatedl weeperceptually evaluated voice
guality parameters in van Gogh'’s study. HNR was found to be@ated with “gurgling” sound,
Fy represented the voice criterion “deviancyy, intensity, Fy stability (jitter), HNR in low and
mid-frequencies, and high frequency noise were the mesithaiewere suitable for the automatic
analysis, and alsé; salience (in dB) which denotes the peak level in a spectrgnomeelative
to the average level in a region around this peak. Van GoghdahbatF; salience below 7 dB
defined voices of category 3, between 7 and 11 dB of categong 2love 11 dB of category 1.
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Linear Prediction Coefficients (LPC): Like HNR, the spectral slope is significantly smaller
in severely pathologic noisy voices. It is obtained as f@ioWhen a voice signal is analyzed by
Linear Prediction (LP, [AS67]), and the logarithmic spaatrof the all-pole LP filter is available,
the polynomial coefficients of @4order linear function are computed. The function fits the di
crete spectral data, its slope is the spectral slope whiictdependent of, [LIJW'04]. Further
objective measures based on Linear Prediction Coefficigate used by Gu et al. [GHSSO05].
One of them is the Itakura-Saito Distortion Measure (IS[ldP98]):

Stasas) = (22) - (220000) 1oy (%) -1 @)

Here,o2 ando? represent the all-pole gains for the average normal speaickthe average test
patient, respectively. The LPC vectors for both speakengs@rens anda,. The normal speech
is available as sequence of sampigsék), its autocorrelation matrix i®4. The Log-Likelihood
Ratio (LLR; see also [WH96, TY99]) is similar to the IS measur without considering the
variance terms, however:

adR¢a§>

LLR (a4, ag) = log (a@R@aT
@

(2.8)

In the study of Gu et al., these measures were compared t@abrating scale of human listen-
ers evaluating the dysarthric speech of 14 patients witlndilner’s disease. Their correlation
to the speech quality score was best for4S 0.76) and remarkably worse for LLR € 0.64).
The application of these measures on substitute voices tméghteresting because there are sim-
ilarities of the examined type of voices to substitute vejdike the possibly hoarse sound and
the reduced ability of articulation. However, this holdsvoices with a low degree of pathology
only. In severe cases there will be problems due to the highi@gicity. The autocorrelation
function will not be very successful on these signals. Meeeathe described measures are only
suitable for recordings of vowels again, so the approachneafurther examined in this thesis.

Formant Analysis: Vowels are expected to have a harmonic structure with peakitames
close to the harmonics, i.e. the multiples of g The first two formants, together with vowel
duration, are the most relevant parameters in human voweépgon [CMGO01]. Formant fre-
guencies, their bandwidths, and the FFT spectrum of angda@itmeasurements were used for
objective voice evaluation by Wokurek et al. [WP03]. Thenfiants were estimated as the pole
frequencies of the LPC. The voice quality parameters opetient (OQ), glottal opening (GO),
skewness of glottal pulse (SK), rate of closure (RC), amgétof voicing (AV), and complete-
ness of closure (CC), identified in [SH95b, SIu95, €Bg], could then be obtained. While all
parameters except RC could distinguish between male nspealkers and male pathological
speakers, only OQ and AV could do the same for female speakkesreason for this might be
the higher energy loss due to less complete glottal closuleasstronger spectral tilt in female
speakers [HC99].

Approximate Entropy: An example for the use of the electroglottogram (EGG) foeobye
voice evaluation of male larynx cancer patients was givelMagickam et al. [MMW 03]. Their
test persons were no laryngectomees but patients aftem-prgserving radiotherapy. Perturba-
tions in the spectrum of the electroglottogram were deteechby computation of the Approxi-
mate Entropy (ApEn, [Pin91]). This measure states the fiiheof a sequence of two patterns
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in the spectrum where the second one is not similar to thedirst i.e. the value of ApEn rises
with the degree of irregularity. If a sequenggconsists ofn» measured values and denotes
the length of a subsequence, i.e. a pattern, then) is the pattern of lengthn beginning at
measurement Two patternsy,,(i) andw,,(j) are called similar when the difference between
all corresponding pairs of measurements in them is smadibar & given similarity criteriom.

P,, denotes the set of all patterns of lengthwithin s,,, andv;,,(r) is the number of patterns
in P, that are similar tav,,(z). With

Yon(r) = (2.9)
and .
V(1) = % > Yim(r) (2.10)
i
the ApEn is defined as
APEN(s,,, m,) = In 7::(12) . (2.11)

In the experiments described in Manickam’s study, the tjualhhancement one year after ra-
diotherapy could be measured, and the correlation to thigesiynraised subjective ratings was
promising. However, the method has the big disadvantagdttdaes not use speech signals
which can be recorded much easier than an electroglottogram

Since acoustic parameters are very hard to obtain from elgveathologic voices, Li et al.
proposed a two-step classification scheme. The severestasalsl be eliminated from the eval-
uation first, then the second step should classify normalesginoisy voices [LJW04]. This
means, however, in view of an automatic evaluation systbkat,there must be some objective
features defining what a “severely pathologic” voice is. S¢hagain must be automatically com-
putable which is, according to the assumption, not possitherefore, it might be a better way
to process all test data equally and do some validity check@®nesults afterward.

As pointed out before, for the frame of this thesis measurnesn@ere required that do not
only allow to classify a speaker into the classes “normafpathologic”/“TE speaker”, but the
goal was to find features which are able to do an objectiventifative description of voice or
speech quality within the group of persons with substitdiee. Unfortunately, there is very
few information on this particular topic in the literaturErom the measures introduced in this
section, the fundamental frequengy, jitter, shimmer and some other measures derived from
these are used in the prosody module that will be describ&thapter 5.5. The final part of the
current chapter will give a short summary of two products bjective voice evaluation that are
in use for several years already.

2.5.3 The Dysphonia Severity Index (DSI)

The Dysphonia Severity Index (DSI, [WdMQ]) is an objective and quantitative measure of
voice quality. It was developed from a database with more th200 normal and pathologic
voices. More than 45 voice characteristics and measuramese collected for each patient
together with a voice quality evaluation according to thedgr of hoarseness as described in the
GRBAS scale (Chapter 2.4.2). A multivariate statisticallgsis revealed 4 parameters that could
differentiate between healthy and pathological voices: ttaximum phonation time (MPT) in
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seconds, the highest frequengy,, in Hertz, the lowest intensity, in decibels, and jitter/ in
percent. The DSI was then defined as:

DSI = 0.13- MPT 4 0.0053 - Fy, —0.26 - [; —1.18 - J 4+ 124 (2.12)

The extremal values of the DSI are +5 for a normal voice ana+& §everely bad voice. A voice
with a DSI of more than 1.6 is considered to be normal. The D8&Ws high correlation to the
“Grade (G)” measure of the GRBAS scale (Chapter 2.4.2).

2.5.4 The Hoarseness Diagram

A commercial product for analyzing voices is the Hoarseriagram Gottinger Heiserkeits-
diagramm [FMSKO0O0, Mic00, MSK97]). It displays its result in a twordensional diagram with
the axes “irregularity” and “noise” (see Figure 2.7). Thaeibaf the computation is a sustained
vowel recorded with a specific microphone provided with thegpam. The irregularity compo-
nent representing hoarseness is computed from jitter,rabirand short-time cross-correlation
of adjacent cyclic periods; on the ordinate the glottahtiise excitation (GNE, [MGS97]) de-
scribes the breathiness. The GNE is based upon correldigtagen the Hilbert envelopes of
different frequency bands. It is independent from jitted amimmer and expresses how the
voicing is excited by glottal activity or turbulent noisehds it is a measure for breathiness. Fur-
ther measures involved arg mean and standard deviation, pitch perturbation quotieRt))
as a measure for jitter [Bud00, p.140], amplitude pertuobaguotient (APQ) as a measure
for shimmer [Bud00, p. 158], HNR, furthermore voice turtmde index describing the ratio of
high frequency noise energy to the harmonic energy of theasignd also the short-time cross-
correlation of two adjacent cyclic periods. The standandat®n of F, was described as valid
acoustic parameter for the determination of phonatoryilgiafzB92]. While normal voices
show hoarseness values of 2.5 to 3 and breathiness of alfota 0.5, the coordinate values
of pathologic voices in the diagram are, dependent on theedegf the disorder, much higher.
In extreme cases they reach 9 and 5, respectively [KMZB97].

The success of the program is undisputed, but it was neithéerfor substitute voices nor
adapted to them. Therefore, especially the computatiomeffindamental frequency, is
sometimes not successful in the respective test data {UB]S In Chapter 7.3.3, the measures
from this program will be compared to the corresponding messobtained by the prosody
module of the Chair of Pattern Recognition.

2.5.5 Summary

In this chapter, the concept of voice rehabilitation witlbstitute voice was introduced. Since
about 1980, many patients whose larynx had to be removed eegripped with a shunt valve
between the trachea and the esophagus which allows thera theuentire lung volume for voic-
ing again. Many research studies examined the propertigslastitute voices, but often with
subjective methods only. For voice therapy, it would be adulgantage if this evaluation could
be done automatically because it would be less expensiveregpect to time and personnel.
The main advantage of automatic methods is their objegtiltfferent therapists might evalu-
ate a given voice differently according to their experiefinter-rater discrepancy), and also one
single rater might have a different opinion if he or she hst¢o a voice recording some time



2.5. OBJECTIVE EVALUATION METHODS 31

Rauschkomponente

s

0 1 2 3 4 5 6 7 8 9 10
Irregularitdtskomponente

Figure 2.7: Visualization of the vowet/ in the Hoarseness Diagram by a normal, an average
and a severely pathologic TE speaker (from left to rightg thmegularity (abscissa) and the
noise component (ordinate) during phonation are depidtedthe samples longer than 500 ms,
a second position was computed.

later again (intra-rater discrepancy). Automatic methaasdeterministic, their result will not
change on the same data, and they can serve as a referengenddest from a particular human
expert’s career. Established methods for objective etialmahowever, analyze only recordings
of sustained vowels in order to find irregularities in theceoi This does not reflect a real com-
munication situation. In these approaches, only the vaiexamined. For the patient, speech is
more important in daily life. Since the automatic procegsah completely free speech is very
difficult, for this thesis the test persons read a given steshtext. This text was then analyzed
by methods of automatic speech recognition. The fundarmigatpuencyry, jitter and shimmer
that were explained in detail in this chapter serve as thes li@sprosodic features that combine
the evaluation of voice and speech. They will be discussé&hapter 5.5.

When an automatic method has to be tested on data that wereomdessed by humans
before, then the human evaluation is the only referencagtefailable. In order to get a repre-
sentative reference, several raters have to be taken inbmat The degree of their agreement
and the agreement to the automatically computed resultstodve determined by some mathe-
matical method. The following chapter will introduce sugpeoaches.
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Chapter 3

Agreement Measures

In the previous chapter, basic measures for automatic @iaekiation have been introduced.
When automatic processing of data is supposed to be dongutstion arises how to find a
reliable reference for the evaluation when all former mdtheere subjective. For this thesis,
the speech data were rated by a group of human experts (se€lapter 4.4.3) whose average
scores were defined to be the reference. For the comparisba biman results among different
raters and for the comparison of human and automatic resgfgopriate agreement measures
have to be applied. This chapter introduces those which wsed during the experiments sum-
marized in Chapter 7.

3.1 Correlation Coefficients

3.1.1 Pearson’s Product-Moment Correlation Coefficient

A common way of describing the correlation between two sasfgeal-valued measurements is
Pearson’s product-moment correlation coefficidéa01l], also denoted as “sample correlation
coefficient” and abbreviated as Very often it is used as a synonym for the term “correlation”
It can be determined for two random variabl€s= {zy,...,z,} andY = {yi,...,y,}. They
should be normally distributed, otherwisanay not be reliable. The correlation coefficient is
then given as

Tay = nZz 1 iyi_Zz 1 Ti Zz 1 Yi _ (31)
\/n z 1 Z - z 137Z \/n z 1yz Zi:l yl)2

or shortly, with use of the mean valugsnd the standard deviations

X @)y~ ()]
" ) olw)oly) 52

For a positive linear relationship between both randomatdeis,- will be positive with a max-
imum of 1 in the case of perfect correlation. If there is a niegdinear relationship, then the
coefficient is also negative with a possible minimum of —1e €loser- is to 0, the smaller is the
correlation.

It is dependent on the context and the purpose of the patiexperiment whether the cor-

33
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Figure 3.1: Effects of outliers on the correlation coefintgeby Pearson-f and Spearmarpj:
Left: Data without outliersi(=0.76,p = 0.76);Right: Data with outliers{=0.69,p=0.75).

relation is “good”. Nevertheless, Cohen suggested topnéée|r| > 0.50 as “large” correlation
and 0.30< |r| < 0.50 as “medium” [Coh88]. For this thesis, Pearsorégrves as a measure for
the correlation between the human evaluation of substinitses and automatically computed
measures.

3.1.2 Spearman’s Rank-Order Correlation Coefficientp

By Spearman’s correlation coefficiem{see e.g. [Spe04] or [Alt91, pp. 285-288]), not the exact
values of the input data are represented but their resgerivks within the ordered values.
The rank of the largest element is set to 1, and the rank of nilast element is set to.
Then (3.1) is applied using these ranks instead of the ag&ial In this way it describes to which
degree the numerical order in one random variable is kepEcorresponding values of another
variable. In medical and social studies, Spearmansoften used with ordinal data because it
is much less sensitive against outliers in the data tharsBear (see Figure 3.1). This is also
valid when, as for the purpose of this thesis, the corratatietween ratings by two experts is
computed. A problem arises, however, when a rater has torn@a®@d to a measure which is
not ordinally scaled as it is the case for the word accuracgnohutomatic speech recognizer,
for instance (see Chapter 7). The same situation occurs Wigeardinal-scaled data of more
than one human rater are averaged. Clinical studies oftempare the “average rater” to other
measures which should therefore not be evaluated by Spearmathod. Furthermore, if some
of the input values of one data series are equal, then thethgetame rank, too. In this case,
the rank correlation does not make sense. Because of thesense Pearsoniswill be used
throughout this thesis instead. For selected experiménisever, alsg will be given where
applicable. For approximately normally distributed déath correlation coefficients show very
similar values.

For the comparison of a human rater to another one, i.e. magshe agreement in scores of
the same range, the coefficienshould actually not be applied since it standardizes theesco
This means that two experts who perfectly agreerget, and two coders who always differ by
the same value will also reaegh=1. This is one of the reasons why there is a wide variety of
further measures for inter-rater agreement. Some of therdescribed below.
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3.2 Cohen’sk and its Extensions

3.2.1 Chance vs. Competence

When human beings have to evaluate any kind of data usinglgiireed categories, then the
rater’s decision is dependent on many factors that mightenite the scoring. In the case of
pathologic speech data, the evaluation is done by listetiragrater caught a cold, for instance,
then his or her hearing ability will be reduced which can l¢adlifferent results than under
normal circumstances. The rater might have also listenexveral similar recordings or pa-
tients immediately before which can cause a kind of traireffgct or affect the decision by
unknowingly comparing the current patient to the ones lgefBecause of these facts it is highly
recommended to do multiple evaluations of the same datalirflical research, this is mostly
done by different therapists who do their examinations ppeshelently of each other.

After the evaluations have been done, it is necessary to fibdnowhat way or to which
degree the raters agreed. Two sources of agreement havdlifidventiated. The first one is
the agreement that occurs by competence, i.e. the agre¢ma¢mtrises from the experience of
the raters with the patients and their (speech) data. Thireikind of agreement that is actually
interesting for the respective study. It can, however, mpk/ be extracted from the given data;
this is only possible for thebserved agreemefi{ru99] where it is inherent. The other portion is
a certain amount of equal ratings possible already by chahah is calledexpected agreement
Therefore, a measure is needed which allows to see the pi@pof agreement by competence
alone, and a kind of “chance correction” has to be done. Gdlgesuch a measure will look like

0O—¢€

K = (0<o0<1;0<e<) (3.3)

1—e
whereo is the observed agreement ands the portion of matches expected by coincidence.
The maximum ofx is 1 when there is perfect agreement between the rateis0 when the
observed agreement is only as high as the poritmt was expected by chance. Note that
can also be smaller than 0 when the raters show less congbasusxpected by chance. One of
the first and most widespread measures of the mentioned«i@dhen’ss [Coh60] which was
originally designed for the comparison of two independegénerated binary findings. For the
experiments described in this thesis, an agreement meiaswgeded which can handle

e an arbitrary number of raters,
e an arbitrary number of rating categories,
¢ and a weighting for the cases where raters disagree.

Since the introduction of the measure, a lot of extensions have been proposed that folfiles
or even all of these requirements (see overview e.g. in [LK&85, Dun92] or Chapter 13 of
[Fle81]). One of those measures was used for this thesis dhgevintroduced in Chapter 3.2.4.
The mathematical background is described in the followsdiens.

3.2.2 A Model for Agreement Measuring

The following model for an agreement measure was descripédiimmenauer (see [Kru99)).
The number € IN will always denote the size of a set of data elements whicklassified into
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exactly one ofc € IN categories byt € IN raters (see also the example in Table 3.1). Such a
chance experiment can be described by the indicators

1 “ h ”
X, - { rater a chose category x l<a<kl<z<c) (3.4)

0 else

and the entire data set by the random variab;réié - XC[L"J with

il (I<a<k;1<r<¢1<j<n) . (3.5)

g )1 Crater a chose cat. x for element j”
0 else

Their common distribution is given by thevariate probabilities

o = P(Xi4, =1,..., Xj s, = 1; all other indicators = 0) (3.6)

-----

with 1 < x4, ..., 2, < c. For pairwise rater comparison, the bivariate margindtistions

o) = P(X,, =1,Xp,=1) (1<zy<cl<a<b<k) (3.7)

Ty

are usefulyré‘;’b) denotes the probability that an element of the data setssiflead to category
by ratera and to category by raterb. Let finally be

7 =P(X,,=1) (1<z<ca=1,.,k) . (3.8)

The measure for observed agreement would then be the disggonaoncordance

ol = " xlnt) (3.9)
r=1

which sums up the occurrences of all cases where the reswaiswo ratersa and b match
exactly. The agreement between the raters expected byidenme is given by

el@h) = i ZC: W;“)Wl(j’) . (3.10)

z=1 y=1

The original work by Cohen [Coh60] proposed a chance-ctetemeasure as introduced in (3.3)
only for the case of two raters and two categories 2, c=2). However, many ordinal classi-
fication scales used in sociology or medicine offer more tiwanpossibilities to choose from,
i.e.c> 2 (see Chapter 2.4). In the following section, an appropratension of Cohen’s will

be described.

3.2.3 Weightedx Measures

If two raters do not agree, then not only the fact that thegglise should be taken into consider-
ation but also the degree of disagreement. If one exped vaiee quality with ‘2’ and a second
rater with ‘3’, for instance, then there is obviously somerenagreement than if the second rater
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voted for a ‘5’. Therefore, Fleiss et al. [FCE69] introduceehormalized weighting function
w:{1,...,c}*>— [0, 1] with weightsw,, € [0, 1]. Then instead 06(**), a weighted concordance
probabilityo(>? (w) can be applied:

a ) (a b)
Ty .
b E g Ty - w (3.11)

z=1 y=1

The weights can be chosen as proposed by Cicchetti [Cict8] wi

Way =1 — ‘2:31/ (3.12)
or )
Way =1 — (i:f) . (3.13)

The original non-weighted version afcan be expressed by the special casgs=1 forz =y,
andw,, := 0 otherwise. The agreement between the raters expecteitgidence is given by

(@) (w Z Z r@r® . : (3.14)
z=1 y=1
and the “weighted:” is defined as

O(a,b) (,w) - e(a,b) (U))
1 — elab)

k@0 (w) = (3.15)

Since the true probability values for a given applicatiom asually not available; is estimated
from the data collection with

ilat) — Ny (1<z,y<c)

Ty — — Y

(3.16)

i.e. the proportion of all cases where rateslecided for category and rateib decided for cate-
goryy. With #(%”, # and#” obtained in this way and used in (3.11) and (3.14), the weigjht
x measure for raterg andb is then given by

6(a’b) (w) _ é(a,b)(w)
1 — éled) ()

70 () = (3.17)

It has asymptotically Gaussian distribution for a suffithgtarge number of ratingas [FCEG9].

3.2.4 Multi-Rater Agreement with k Measures

As mentioned before, Cohen’s originalonly gives the agreement between two raters. If a
measure for a multi-rater agreement is needed, like it issgary for the inter-rater correlation
of an entire rater group, an extension of this measure isineju Fleiss introduced the first
x measure for the simultaneous comparison of more than twgnpedts for each patient or,
in general, data element [Fle71]. It is valid for the case tha sources of thesec IN findings

for each person are not distinguishable, i.e. it does natiredhat there is a fixed number of
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raters but only a fixed numbérof ratings for each test person. The derivation and defimibio
this variant will not be given here. In the experiments fas timesis, the: measure by Davies
and Fleiss was applied which is valid for the situation thetheone of» € IN data elements is
rated byk € IN identifiable raters and put into one o IN categories. All elements have to be
rated by the same raters [DF82, Kru99].

The estimation for thépe(w) value by Davies and Fleiss is based on a linear combination of
the observations of the pairwise rater comparison intredue Chapter 3.2.3. Therefore,

5SS — 0D ()] - 40D (w)

(3.18)

can be divided into the pairwise expectation vala€$) (w) with the nominal weighting func-
tion w and the weighte@(**) (w) for the comparison of the two ratezsandb (1 < a < b < k).
The terms containing®? (w) occur due to the prerequisite that the raters are idengfisbthat
the degree of expected agreement can be computed for rater pa

3.2.5 Restrictions of thex Measure

Cohen’sk and its extensions are still widely used measures for iatir agreement especially in
medical and sociological applications. However, for sagkitiput data they show unexpectable
behavior [Gwe02]. The: value may be low even if the level of agreement is high because
depends on assumptions about the decision-making of fatets87, FC90, CF90]. Therefore,
the often mentioned intervals of a “moderate” agreemend#K « <0.75 and a “good” agree-
ment forx > 0.75 are actually obsolete [Fle81, Kru99]. For the reliaddenputation ofx, it is
required that every rater chooses each one of the possitdgacees at least once. One solu-
tion if this is not the case was proposed by Crewson whereagshoategories were filled with
“dummy” observations, and in a second table a control végiabntained the positions of these
dummy values [Cre01]. This method, however, was espedalgloped for a commercial statis-
tics software. A more severe problem is when one rater doegivea judgment at all for some
of the test data. This violates the definition and computatides which means thatcannot be
computed for the respective data. A measure which is ablege with both of these commonly
occurring problems is Krippendorffs. It will be introduced in the next section.

3.3 Krippendorff's «

3.3.1 Introduction

Krippendorff'sa [Kri03, Kri02] is a generalization of Scott’s [Sco55] which is a statistic very
similar to Cohen’s: except for the way chance is calculated. Many researcheiGrosbach’sx

for the computation of inter-rater reliability instead f&i]. It measures, however, only covari-
ation after standardizing the means and variances of datadifferent raters and might thus be
inappropriate for the task [HG90]. Krippendorfilsdoes not change the mean values. For this
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reason, it was preferred for the experiments in this thesisording to [Kri02], thea measure
applies to

e any number of raters, not just two (like the multi-ratein Chapter 3.2.3);

any number of categories, scale values, or measures;

any metric or level of measurement (see below);

incomplete or missing data (as opposed}p

large and small sample sizes alike, not requiring a minimum.

The last two items may be an advantage for clinical evalnatiwhen it is difficult to obtain
enough data. A further appropriate measure of (interyatensistency in the case of multi-
valued scales is Kendall’s[Stu83] which will not be presented in detail here.

3.3.2 Computation

While for computation of in (3.3) the agreementbetween two raters was the basic component,
a uses the disagreemebt The general formula of the measure is
D,

a=1-— D. (3.19)
with the observed disagreemdn$ and the expected disagreeméntthat would be a product of
chance. The observed disagreembBgtis obtained by the number of cases, where one rater
decided for category (numbet)and the other one for categogy For the casé, = De, o Will
be 0 which means that the agreement observed was just a pafdtltance, not of the raters’
competence. If the raters agree perfectly ahd 0, o reaches its maximum at 1.

For the case that a rating is made by multiple observers wsimgminal scaleq would be
computed like this: For all raters and all rated data elesjyeng. speech files,raliability data
matrix M is computed where the elememt,, of the column vectom, contains the score
that was assigned to data elemegnby ratera. The total number of available ratings for data
elementy is denoted by, .

The reliability matrix containg different values for all then,,,. These define the size of the
coincidence matrixV, i.e. the dimension of this matrix tsx v. For each column vectofr:,, of
the matrixM it is counted how often the category paif, {/) occurs in it, i.e. how often one rater
decided forr and another other one fgrwhen evaluating a certain data element:

. i pr— 2 f p—
ey =3~ #(x,y)iNmy e {T ore=y (3.20)

. [y — 1 T=1 forx+#y

The matrixIN is symmetric because every occurrencexfy is also an occurrence of (z).
This is why for the case =y the number is doubled by. The column or the row sums ¥

Ng = any = any (3.21)
x Y
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which are also equal are summed up to the total number ofysatin
n= Z Z NNy (3.22)
T Y

The rating categories do not necessarily have to be nunhevlten an appropriate metric
weighting the “distance” between two categorieandy is defined. In the case of numerical
scales, like the integer scores for voice evaluation, teeadce metric is chosen of the interval
metric type, i.e. the values differ algebraically:

intervaléiy = (fE - ?/)2 (323)
With this metric, the observed disagreement is given by
1
D, = E Z Z Ny intervaléiy . (3-24)
x y>x

Similarly, the expected disagreement is computed as

1

and the final result of is
D Ny i 5%
tervall = 1 ~o _ 1— (n B 1) Zx Ey>x y interval¥ gy, (3.26)

De Zg; Zy>x UZy intervalé;%y

This computation is possible even when there is data missiggwhen a rater accidentally
forgot to make a decision on a criterion during a listeningekment. The inter-rater reliability
is usually regarded as being sufficientifis greater than approximately 0.70 ([Kri03], see the
example in Table 3.1).

In this chapter, statistic methods for rater agreement baes introduced. They are nec-
essary when the agreement between human raters has to leel jadd also when human and
automatic evaluation results have to be compared (see €hagtand 7). The next chapter will
describe the speech data that are the basis for the evaldask, i.e. recordings of TE speak-
ers. There will also be a look at the way the human expertyaedlthese data. But also other
speech corpora have to be considered. They serve as thaedramd test sets for the automatic
recognition system and thus define the kind of “experienieat the system has with voice anal-
ysis, similar to the listening experience of a human beirtge dgreement between the results of
the automatic processing of the speech signals and the hrahags is done by means of the
agreement measures that were described in the previousrsect
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rater B rater B
1 2 3 4 5 1 2 3 4 5
1740 10 5 3 2 1440 10 25 10 5
2 5 3 15 10 5 210 25 3 15 5
raterA 3| 5 10 40 10 5 raterA 3|0 10 25 30 5
4| 2 3 10 10 10 410 2 8 10 15
5( 2 3 10 20 30 510 0 5 20 40
Pearson’s 0.63 Pearson’s 0.54
Spearman’y 0.63 Spearman’y 0.53
Cohen’sk 0.39 Cohen’sk 0.16
weightedspr(w) | 0.53 weightedkpr(w) | 0.33
Krippendorff’'sa | 0.63 Krippendorff’'sa | 0.42

Table 3.1: Example for agreement measures; each of the uglpless represents ratings for
n =300 items byk =2 raters using integer scores from 1 toc56). The numbers in the upper
tables show on how many items the raters agree and disagnaée kable on the right side,
rater B never gives a score of 1. For this reasonxtbased values may be unreliable.
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Chapter 4

Speech Corpora

In this chapter, the speech data for the experiments inlibs4g are introduced. The EMBASSI
corpus (Chapter 4.1) was used for preliminary tests on tbegration of reverberated signals.
Verification of selected results on this corpus was donegusia Fatigue corpus (Chapter 4.2)
and the \ERBMOBIL corpus (Chapter 4.3) which was also the recognizer traibagg for the
analysis of substitute voices (Chapter 7). The test datthéwe experiments were recordings of
TE speakers (Chapter 4.4) and normal speakers as contupg(Chapter 4.5). Speech recog-
nition in reverberated environment is important for a freemmunication situation, i.e. it should
be possible to record patients in a way that doesn't give theieeling of being watched or
controlled. One step towards this goal is recording by distalking microphones. However,
with rising distance the degree of reverberation in theaggrows which makes it necessary to
adapt the speech recognition in an appropriate way. In #madrof this thesis, no distant-talking
recordings of laryngectomees were available. Collectirgipslata would have been too exhaust-
ing for the patients because they already had to read a sthts@once while wearing a headset
and once again on the telephone where they also read thelr $idet (see Chapter 7.4). For this
reason, the speech recognition in noisy environment wasmpeed with normal speech (EM-
BASSI and Fatigue corpus). The findings on these data weifteedeon artificially reverberated
TE speech (see Chapter 7.5).

4.1 The EMBASSI Corpus

One of the goals of the EMBASSIproject was the creation of a speech interface for home
entertainment devices. The microphones recording thésustéerances in such a scenario will
most probably be integrated in the devices themselves titdited within the room. However,
on the long way from the speaker to the microphone(s), mdfsrent kinds of distortions may
influence the signal. One of them is reverberation.

4.1.1 Influence of Reverberation on Human Perception

Reverberation is caused by sound that is reflected by anydtisarface. In contrast to tharect
sound it does not take the shortest way from the sound source téstiemer or microphone.
Different “copies” of the original signal reach the recipiet different times and influence the

thttp://www.embassi.de
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perceptive impression of the sound or the quality of the néiog, respectively. Dependent on
the signal itself, the positions of source and receptor, thednaterial and arrangement of the
surfaces in the room, a characteristic reflection pattembesameasured which is usually done
by sending a very short signal, ideally a Dirac pulse, andsmeag the “answer” of the room
with a microphone. This pattern is calledom impulse responsdt consists of a first pulse,
a set of early reflections (up to about 50 ms), and a revetbartil [OSM98]. The spectrum
appears smeared (see Figure 4.4). Reverberation is ofsenilolsd by means of the early-to-late
energy ratia” and the reverberation tim&,. These values can be computed as follows [Sab64]:
Tso is the time interval in which reverberation decreases byB@fier the sound source was
switched off. Given the values for the sizg of the wall surface in the room, the room voluivie
the speed of sound and the mean wall absorption coefficieny, it is determined as

In10°-4V _ 0.161V

Teo = -
C- Qy * Sy Qy * Sw

(4.1)

where the approximation is valid for metric values ard343.24 m/s. With the help of a direc-
tivity factor d and the source-microphone distancéhe early-to-late energy ratio is defined:

Sw - d-In(1 — &)
C = 10log,, (—167?_(1_%)‘7”2) (4.2)

It represents the steady-state ratio between the directemmalberated sound energies. These
formulae are valid for the diffuse sound field assumptioryarg. an acoustic environment with
multiple reflections where a listener could not determinacély where a sound comes from.
The early-to-late energy ratio (in dB) can also be definechagelation of the energy of early
reflections to the energy of reflections after a selectedicafidelay time”t.:

Ch. = 101ogy ( /0 tepz(t) dt / /t TR dt) (4.3)

In this equationp(t) denotes the room impulse response. Surprisingly, earlgatédhs can
improve human speech and music perception where the tdtay timet, is about 50 ms for
speech and 80 ms for music [DINOO]. This is because of the eeahntegration inherent in
the human auditory system. Early reflections are thus coacbivith the original signal and not
perceived separately. This causes a change in the magmiydession of formants [Pet27].
Noise in general mainly affects the perception of placep stad frication information followed
by nasality and voicing [GS79]. The confusion under reveatien is highest among /p/, /t/, Ik/
and /m/, In/, IN/ in final position. However, these show thghleist error rates in quiet condition
as well. Utterance-initial consonants are less affecteduinge there are no reflections from earlier
events. Higher levels of reverberation in smaller roomseauore uniform masking noise than
in a large room and are thus more difficult to handle [NR78vdReeration strongly affects the
phase of a speech signal which is, however, irrelevant fonpldiscrimination [Ste05, p. 51].

4.1.2 EMBASSI Corpus Overview

In order to obtain realistic data with respect to environtaknoise, a German speech corpus
was recorded by the Chair of Pattern Recognition and ther@hfavultimedia Communica-
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| | number| 4 | o | min.| max. |
male 10 24-4| 3-2| 19-4| 29-10
female 10 24-3| 3-4 | 20-4| 28-8
total | 20 |24-3|3-3]19-4]29-10]

Table 4.1: Age statistics for the EMBASSI test speakersiames standard deviation, minimum
and maximum values are given in years and months.

tions and Signal Processing in Erlangen. The data werectetldn a room which was in its
acoustic properties equal to a living-room. The size of tbism was approx. 35 square me-
ters (see Figure 4.1). All walls of the room were equippedwitcurtain which resulted in a
reduced reverberation time @§, = 150 milliseconds. In this room, recordings of 20 speakers
were made (10 male, 10 female) who were between 19 and 29gldgsee Table 4.1). A close-
talking microphone (headset) and an array of 11 micropheees used for synchronous record-
ing (see Figure 4.2). Experiments in an early phase of the BBI8I project had shown how
people would talk to a TV set or a video cassette recordeegsp input were supported. Taking
these into account, sentence templates were modeled, amd@natic text generator produced
the sentences to be read by the speakers. Examples of suntecmimare “I'd like to see ‘Tatort’
please.” or "What is running at one o’clock on RTL?” The ratiogs contain different scenar-
ios involving noise and a disturbing speaker. In two sess{ommber 5 and 10), however, the
readers were not disturbed by any noise. These data werefarséiek experiments described
later on. The distance to the microphone array was 1 metazssian 5 and 2.5 meters in ses-
sion 10. One session lasted between approx. 150 and 180dsedauring this time, the speaker
was alone in the room, sitting on a chair and reading 60 seasawithout a break.

The 20 persons read a total of 15360 commands. Many senteccesed more often than
once; the number of different commands was 6816. The teffesell among speakers as well as
among sessions. Only speakers 19 and 20 read the same tegesas&ers 1 and 2, respectively.
The total duration of the corpus is about 11 1/2 hours. Tha da&tre recorded in digital audio
tape (DAT) quality, i.e. with 48 kHz sampling frequency angagtized with 16 bit. The data
were also downsampled to 16 kHz. These signals were usetidaxperiments in Chapter 6.
The EMBASSI corpus is described more in detail in [HNO3] aH&NO3].

4.1.3 Training Data for the EMBASSI Baseline RecognizeEMB-base

In order to cope with reverberation during speech recagmitdifferent speech features with
many different parameters were examined (Chapter 5.2) e&chn parameter value changed in
the feature extraction process, a complete recognizetinghad to be performed in order to
evaluate the effects of the change. For the pilot experi;y@nsmall training set was chosen in
order to accelerate the procedure. The training data fobalseline recognizdeMB-basewere
the close-talking recordings of the EMBASSI corpus wheeegpeakers were not disturbed by
any noise (session 5 and 10). In order to enhance the traihiese files were semi-automatically
cut into sections containing one sentence each. The comdsy reverberated signals from the
central array microphone (#6) were then cut at the same tamgss. The training data consisted
of the recordings of speaker 1 to 12 (6 men, 6 women); spedkémale) and 14 (female)
were the validation set (see Table 4.2). The test group sttsbf the remaining 3 men and
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Figure 4.1: The EMBASSI recording room; the two crosses nialspeaker positions. ‘A and
‘B’ are the “disturber” positions; ‘L1’ and ‘L2’ denote thelidspeakers in the room. The curtain
at the walls is symbolized by the dashed line. The height@fdom was 3.10 meters.

16 cm 8cm
— —f |
Mic. #11|© ©0000O0O0O0O0 O| Mic. #1
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e
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Figure 4.2: The microphone array for the EMBASSI recordjmggrophone #12 was reserved
for speaker localization methods (not used in this thesis).
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| | session mic. dist. |  speakers | duration | words| vocab.]
EMB-base
training 5,10 close-talk 1-12 (6 m, 61) 60 min 8325 | 455
validation|| 5,10 close-talk 13-14(1m, 1f)] 10min 1439 | 261
EMB-rev
training 5 1m 1-12 (6 m, 61) 30 min 4126 455
10 2.5m 1-12 (6m, 6f)] 30min 4199
validation 5 1m 13-14 (1 m, 1) 5min 727 261
10 2.5m 13-14 (1 m, 1) 5min 712
EMB-12
training 5,10 close-talk 1-12 (6m, 6f)| 12*60 min =| 99780| 455
(artif. reverberated 720 min
validation|| 5,10 close-talk 13-14 (1m, 1f)] 12*10min=| 17268 261
(artif. reverberated 120 min
EMB-2
training 5,10 close-talk 1-12 (6m, 61) 60 min 8325 455
5,10 | close-talk (art. rev.) 1-12 (6m, 6f) 60 min 8325
validation| 5, 10 close-talk 13-14 (1 m, 1f) 10 min 1439 261
5,10 | close-talk (art. rev.) 13—-14 (1 m, 1) 10 min 1439

Table 4.2: Training and validation sets for the EMBASSI gguaers (acoustic modeling)

| session| mic.dist.| speakers | duration| words| vocabulary]
5,10 || close-talk| 15-20 (3m, 3f)] 30min | 4184 377
5 im | 15-20 (3m, 37| 15min | 2094 | 300
10 25m | 15-20(3m, 37 15min | 2090 | 307

Table 4.3: Test sets for the EMBASSI recognizers

3 women (see Table 4.3). Their close-talking recordingsest®mns 5 and 10 were the first
subset of the test data. The synchronously recorded digttkimg signals from microphone #6
were the second (session 5, 1 m distance) and third (sed3i@SIm distance) subset.

The language model for all EMBASSI-based recognizers veasad with 700,000 and val-
idated with 100,000 sentences created in the same way asritenses for the test speakers.

4.1.4 Training with Distant-Talking EMBASSI Data

In order to get a reference for later experiments in speeabgration on signals with reverber-
ation, a speech recognizer was created where the traintagndae reverberated. The signals
from microphone #6 from the middle of the microphone arraye as training data because
these recordings were synchronously recorded with thedhm&ing training data. As two ses-
sions were involved (number 5 and 10), half of the data wasrdea at a distance of 1 m and
the other half at 2.5 m distance (see Table 4.2). The situ&tiothe validation data was analo-
gous. Only the test data were exactly the same as beforéhriee sets from three microphone
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distances (see Table 4.3). The language model trainingstiyad the same as well. The new
system will be referred to &sMB-rev.

4.1.5 Artificial Reverberation of Speech Data

Reverberation may not only have positive effects on humaogpgion (cf. Chapter 4.1.1), but
also automatic speech recognition can get benefits from dhlg portions of reverberation.
Golzer et al. convolved close-talking speech with diffgérgections of room impulse responses
in order to examine their influence on the recognition taske ihitial parts of room impulse
responses between the first 25 ms and 50 ms served best fputpsse [GKO3] which held for
both RASTA-PLP [HM94] features with their long-term filteg and MFCC [DM80]. In gen-
eral, for acoustic environments that are present in theitrgidata, the recognition results can be
enhanced. If the goal is a recognizer which works sufficgentmany environments, the training
data should provide recordings that were made in a lot oguwfit places. This, however, would
mean bringing a lot of technical equipment to many rooms wlifferent impulse responses
and placing the microphone(s) in different angles and desta from the speaker. By rever-
berating close-talking speech artificially with the helppoé-defined room impulse responses,
this problem can be avoided. Couvreur et al. proposed thefusstificially reverberated train-
ing data to improve performance of speech recognition ien@srant rooms [CC00, CCRO0O].
In order to represent the acoustic properties in the tamget@ment as good as possible, they
used room impulse responses matching the correspondihgtedate energy ratiad”’ and the
reverberation tim&, (see Chapter 4.1.1). Their method outperformed systenmetr@n clean
speech with integrated normalization methods like Cepistean Subtraction (CMS, [Fur81]) or
RASTA algorithms [HM94, KM97], i.e. with robust feature eattion from the distorted signals.
The reason is that the duration of the room impulse respaneager than the window size of
these frame-based preprocessing methods. Couvreur sedlathybrid HMM/MLP recognizer
in which the multi-layer perceptron (MLP) estimated thewst modeling.

Stahl et al. added noise to clean speech and filtered it withnrionpulse responses in order
to match the speech quality of the training material and ¢ésedata from a distant-talking mi-
crophone. They found out that the room impulse responseedftiget environment is obviously
less important for the recognition task than additive noidbe signals [SFBO1]. The difference
of most other studies to the work described in this thestsasdther approaches assume a known
target environment. If it is unknown, however, a very “getesystem has to be designed that
should be able to handle any kind of reverberation in thedast. In the next sections, the setup
of such a system will be described.

4.1.6 Selecting Room Impulse Responses

For multiplying the amount of available training data, 1®moimpulse responses were used.
The close-talking training data of the EMBASSI andRBMOBIL baseline recognizers (see also
Chapter 5) were convolved with each one of them separatadythaus 12 differently reverberated
versions of the original data sets were created. The cotiwalwas done by a Matlgbscript
which was also used for the experiments described in [HelItd room impulse responses were
measured in the room where also the EMBASSI corpus was reddfelgure 4.1). However,
the reverberation time was changed frdigg = 150 ms tdls, =250 ms and tdg, =400 ms, re-
spectively, by removing sound-absorbing carpets and sabsdrbing curtains from the room.
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O T, =250 ms
B T, =400 ms

© EMBASSI Speaker Position ©

Figure 4.3: Recording setup for room impulse responsesn#®esuring positions (squares) start
at angle 0° at the right-hand side of the microphone arrayesmtat 165°. The used micro-
phone #8 is marked black. The circles mark the real EMBAS &hker positions.

The impulse responses were measured for loudspeakergoesdn three semi-circles in front
of the microphone array at distances 60cm, 120 cm, and 240 bm speaker positions started
at an angle of 0 degrees on the innermost circle and contimug8-degree steps while alter-
nating through the semi-circles. The microphone arrayaioetl 16 microphones, but only the
signals from microphone #8 (closest to the middle) were ugedoverview about the impulse
responses is given in Table 4.4. Figure 4.3 shows the retwpitup graphically. Figure 4.4
gives an overview about the spectra taken from a short seofi@ speech signal in different
acoustic environments. In comparison to the close-talk&egrding, the spectra of the distant-
talking recording and the artificially reverberated recagdappear to be strongly smeared which
seems, however, to be by far stronger in the artificial sigsats intensity level was not reduced
by microphone distance but stayed the same as in the clidegtaecording.

4.1.7 Atrtificially Reverberated Training Data in EMBASSI Recognizers

The close-talking training data of the baseline recogrieddB-basewere convolved with each
one of the impulse responses separately, i.e. 12 hoursefrerated data resulted from one hour
of close-talking speech. The recognizer trained with titega is name&EMB-12(see Table 4.2).
Since the test sets contain also close-talking signals égeleeral” speech recognizer should
also be able to handle undistorted speech, a third trairehg/as combined from clear and re-
verberated data. One part of the training set was the eméingrng set of theEMB-baserec-
ognizer (see Table 4.2). The other part consisted of ondttwed the artificially reverberated
training files used for thEMB-12approach, i.e. the new training set was twice as big as for the
baseline systerBMB-base For this reason, it is denoted B#1B-2 (see Table 4.2). The rever-
berated data were selected like this: In every reading@®s6D sentences were read by each
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Figure 4.4: Spectra of a short section (1.8 s) of a speeclalsite uppermost image shows the
original close-talking recording, below it is the synchoasly recorded signal with 2.5 m micro-
phone distance. The next picture shows the signal beamébfrom 11 array microphones (see
also Chapter 6.3); the last one is the artifically reverleetatose-talking recordingf, =400 ms,
angle: 165°). The text spoken was “Nimmst du mir den Film tRdian’ auf?” (“Will you record
the film ‘Rain Man’ for me?”; EMBASSI speaker 15, male, sessl@, sentence 3)
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| impulse responsg Ty, (ms) | dist. (cm)| angle ()| sentences

| none (close-talk)) — | ~3-5 | 90 | 1-60 |

h411000 250 60 0 1-5

h422015 400 120 15 6-10
h413030 250 240 30 11-15
h421045 400 60 45 16-20
h412060 250 120 60 21-25
h423075 400 240 75 26-30
h411090 250 60 90 31-35
h422105 400 120 105 36-40
h413120 250 240 120 41-45
h421135 400 60 135 46-50
h412150 250 120 150 51-55
h423165 400 240 165 56-60

Table 4.4: Impulse responses for artificially reverbegatthe close-talking training data;
the rightmost column gives the numbers of the respectiveeseas within one session for the
training data of the EMBASSI recognizEMB-2

speaker. The baseline training data consisted of all seasefnom session 5 and 10 from the
readers 1 to 12 (i.e. 22120 sentences). For each of the 12 corresponding artificeerber-
ated versions, 10 of the 120 sentences from each speakes&ected, namely 5 sentences from
session 5 and 5 sentences from session 10 (cf. Table 4.4).vdlidation set was composed
analogous; the test sets stayed the same as before (TapleFbiBthe experiments with the
EMBASSI-based recognizers, see Chapter 6. The next ssatidnintroduce further corpora
that were used for the verification of the results obtainat thie EMBASSI data.

4.2 The Fatigue Corpus

Like the EMBASSI corpus, the Fatigue corpus was recordetdeaChair of Multimedia Com-
munications and Signal Processing in Erlangen. The Ch&atkrn Recognition was responsi-
ble for the acquisition of the test persons and the readirignah The speech data were obtained
from a fatigue experiment, i.e. six persons were kept awakkale night and had to read texts,
play computer games etc. The test persons were medicakyngspd; blood pressure, pulse rate
and reaction times were measured. For the experimentsioedtrere, however, only the speech
signals from the reading sessions were used. All persorsdcterized in Table 4.5) were na-
tive German speakers, all texts were also in German. Thefiratyand very last text read by
the test persons was the German version of the text “The Nbftd and the Sun” (see also
Chapter 4.4.1). Between those two sessions, 12 other ggadssions, referred to as “reading
session” 1 to 12, took place. The texts were transliteratafrdialogues from the ART Kom?
project (sessions 1to 5, 11, 12) anéRBMOBIL recordings (sessions 6 to 10, cf. Chapter 4.3)
which were reread by the test persons. Since the relevastiexgnts were made with aBRB-

2http://www.smartkom.org
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| speaker| sex| age (yy-mm)]| size (cm)| weight (kg) |

1 m 24-9 192 93
2 m 32-4 174 65
3 f 48-9 153 63
4 f 29-3 164 66
5 f 36-9 168 57
6 m 42-6 184 87

Table 4.5: Speakers in the Fatigue experiment

MOBIL recognizer, only the texts from that database were usedsasée For the texts and
further details, see [Had02]. By a mistake of the organijzeos the text reference was read
but the word-based ERBMOBIL transliterations which contained broken words, correxiand
filled pauses the original speakers had produced, and se the® sometimes repeated by the
test speakers. However, the rate of such errors is negigéld the corpus could still be used
for the planned experiments. Since the texts of session 6 twete transliterations of ERB-
MOBIL dialogues, the Fatigue vocabulary is a subset of tE@BMOBIL vocabulary. For this
reason, it was possible to use this part of the Fatigue captest data for a ®RBMOBIL-based
recognizer. For more information about the particular $est see Chapter 4.3.2.

The corpus was recorded in an office with a reverberation fligeof 300 ms. A close-
talking microphone on a headset and an array of 15 furthenopimnes (Figure 4.5) recorded the
speakers synchronously. The array stood in a distance obapf0 cm in front of the speaker’s
mouth (Figure 4.6). The distance from the array to the badk@thair the speaker was sitting
on was exactly 1 meter. The data were recorded in DAT quali®ktz sampling frequency,
quantized at 16 bit). For the speech recognition experisydrawever, they were resampled
using a frequency of 16 kHz and 16 bit resolution.

4.3 The VERBMOBIL Corpus

The German part of the BRBMOBIL corpus served as training data for the recognizers both for
the experiments with the distant-talking test data (Chapteand the substitute voices (Chap-
ter 7). The subject of the first phase (1993-1996) of tE®&vOBIL project [Wah00] was the
automatic translation between the language pairs Germgh#h and German/Japanese. In the
second phase (1997-2000), the dialogue system was extendeabr domains, like hotel reser-
vation, and the system could work as a server that was abéegsitelephone. The speech data
recorded during the project is distributed by the Bavarianhive for Speech Signals [BAS].
The VERBMOBIL-Germancorpus contains native German speakers. For all dialoglwespo-
ken word sequence was transliterated following the rulgklif® +94]. More information on the
VERBMOBIL corpus in general is summarized in [Ste05, pp.38—42]. Adauliithe corpus was
used for this thesis. It consists of about 29 hours of speigetals (cf. [Had02, Gal02, Ste05]).
In [Had02] and [Ste05], it was denoted aseNBMOBIL small”, but throughout this thesis the
term “VERBMOBIL” will be used. This subset of theaRBMOBIL CDs 1to 5, 7 and C contains
12030 files. The total duration of these files, neglecting the pausesgihhing and end of each

3[Gal02]: 12033 files (recordings 3G201A:BLA045, 3G203AA112, and 5M050N:SAW019 were removed)
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Figure 4.5: The microphone array used during the Fatigueraxgnt
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Figure 4.6: Location of speaker and microphone array in ffieeoduring the Fatigue experi-
ment; the reverberation timg;, was 300 ms. Rows of windows were in the walls which are at
the top and right side in the graphics. The height of the ro@s 820 m.
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file, is 27.7 hours. For further details, see [Had02].

4.3.1 Training Data for the VERBMOBIL -based Recognizers

The training and validation data for the baselinER&EMOBIL recognizer {YM-basg was the
same set as used in [Ste05]. For the recognizers derivedtfisrone, the original close-talking
signals were entirely or partially replaced by their ariffily reverberated versions as it was done
for the EMBASSI recognizers in Chapter 4.1.7. The importéfierence, however, is that the
size of training and validation set was kept the same forealbgnizers, so the changes in the
results are only dependent on the degree of reverberatitre idata because the acoustic model
of a specific phone gets the same amount of training data thelraining processes, and only
the signal quality differs. Even when differently reverdtexd signals and, if needed, also close-
talking files are combined to form a new training list, eacle of the original utterances was
used exactly once in one specific quality. Concerning theitrg set, three different recognizers
were set up comparable to those from the EMBASSI signals ap@n 4.1 (see also Table 4.6):

e VM-base: This is the baseline FRBMOBIL recognizer as described in [Had02, Ste05].
It was trained with close-talking recordings only.

e VM-12: All close-talking recordings were replaced by reverbetatersions. The used
impulse responses (Chapter 4.1.6) were iterated with edielance in order to prevent
the case that all signals from one speaker are convolvedhetiame acoustic properties.
In the end, each impulse response was used on 1002 or 10Q3d8eectively. The total
amount of data for this recognizer is the same as for the in@setrsion.

e VM-2: Like in theEMB-2training set (Chapter 4.1.7), half of the training set csiesl of
close-talking signals and the other half of reverberated fillhe training list was created
as follows: 12 utterances were taken from the close-talkistg the next 12 from the
reverberated versions, then again 12 from the original &éiteb so on. In this way it was
ensured that each utterance from the original data set wassented in the new list, too,
and the 12 room impulse responses were equally distributexhg the reverberated half
of the training set. The validation list was built in a simiveay.

The fact that only 48 utterances were in the originaRéMOBIL validation set was inconvenient

for the test series as each one of the 12 room impulse resparaserepresented in it by only

4 files. Nevertheless, the file list was not changed in ordgetaomparable results with earlier
experiments [Had02, Gal02, Ste05]. The language modeh#ordgcognizers was created using
the same file lists for training, validation and test as feralsoustic training.

4.3.2 Test Sets for the ¥RBMOBIL -based Recognizers

The recognizers introduced in the previous section werkiated on 4 data sets (see Table 4.7
and 4.8):

e The original VERBMOBIL test set (268 close-talking recordings) as defined in [Gal02

e The artificially reverberated ¥RBMOBIL test set: The original data were convolved with
the 12 room impulse responses that were also used for thespamding training data.
The 268 files were homogeneously distributed to these regson
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| | mic. dist. | speakers | duration| words | vocabulary|
VM-base
training close-talk 578 (304 m, 274fy 27h | 257,810 6390
validation close-talk 30 (14 m, 16f) 7min 1042 367
VM-12
training close-talk
(artif. reverberated 578 (304 m, 274fy 27h 257,810 6390
validation close-talk .
(artif. reverberated 30 (14m, 161) 7 min 1042 367
VM-2
training close-talk 13.5h
close-talk (art. rev. 578 (304 m, 274f 13.5h 257,810 6390
validation close-talk 3.5min
close-talk (art. rev. 30 (14m, 161) 3.5min 1042 367

Table 4.6: Training and validation sets for theR8MOBIL recognizers (acoustic modeling)

e The Fatigue close-talking set: As summarized in Chaptertdi2 data collection consists
of close-talking recordings where six speakers read sextid the VERBMOBIL translit-
eration again. The signals were segmented automaticalységment boundaries were
mostly set so that one file contained one entire utterance®fspeaker each. In several
cases the utterances were also split to smaller units. Térage file duration on the 1445
files is 6.4 seconds whereas theRBMOBIL sentences show an average length of 8.7 sec-
onds which is also much longer than for the EMBASSI data (Bc®ads, see Table 4.8).

e The Fatigue distant recordings: They are synchronous ilclibse-talking data and were
recorded by one of the array microphones (#7, Figure 4.5pvaway from the speaker.

The acoustic properties of the recording rooms are arraimgéable 4.9. An important addition
has to be made to the description of the Fatigue test setheiexts read by the speakers were
transliterations from ¥RBMOBIL CD 1 and 2, all utterances were in the training data of the lan-
guage model. Hence, better results than for tE®@BMOBIL sets were expected when the usual
4-gram language model was enabled during recognition. @hts for the pure acoustic recog-
nition, however, were expected to be lower than theiREMOBIL counterparts (cf. Chapter 6).
The “language model” was in this case just represented bgrasg uniform probabilities to all
words in the vocabulary (“0O-gram language model”).

TheVM-baserecognizer was not only used for the experiments on revatbeispeech data,
it served also as the basis for the recognizer variants ®retlaluation of substitute speech.
The test data for the latter will be introduced in the follogisections.

4.4 Recordings of Laryngectomized Speakers

A wide variety of large speech databases for normal, larghgpeech existed already in the
1990s (see e.g. an overview in [HTW7]). Data collections of specific speech disabilities,
however, are mostly not commercially available. For thegopse of this thesis, the speech data
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| | mic. dist. | speakers | duration| words | vocabulary|
VM close-talk close-talk| 16 (2m, 4f; 10n/a) 30min | 4781 752
VM artif. reverb. | artif. rev. | 16 (2m, 4f; 10n/a) 30min | 4781 752
Fatigue close-talk close-talk 6 (3m, 3f) 150 min | 24738 865
Fatigue distant 1m 6 (3m, 3f) 150 min | 24738 865

Table 4.7: Test sets for all BRBMOBIL recognizers; gender information was not available for

all VERBMOBIL test speakers

corpus EMBASSI | VERBMOBIL Fatigue
subset of corpus || session 5,10 (“small”) session 6—1(
files 2400 12030 1445
total duration 60 min 27.7h 150 min
avg. duration 2.3s 8.7s 6.4s
st. dev. duration 0.8s 7.4s 45s
min. duration 0.3s 0.1s 0.7s
max. duration 8.4s 85.1s 45.3s
empty files 0 16 (0.13%) | 2 (0.14%)
files<0.5s 2 (0.08%) | 62 (0.52%) 0
files> 20s 0 927 (7.71%)| 16 (1.11%)
words (total) 13948 263,633 24738
size of vocabulary 473 6445 865

Table 4.8: File statistics for the used speech corpora;ithe information refers to the close-
talking recordings or to the recordings of one single mibiape, respectively. Files with silence
only (“empty”) were not removed in order to keep the same data as in earlier experiments.

of the laryngectomees and the elderly reference speakeesneeorded at the Department of
Phoniatrics and Pedaudiology in Erlangen.

4.4.1 The Text “The North Wind and the Sun”

Each test person read out the standard text “Nordwind unchépma fable by Aesop which
is known as “The North Wind and the Sun” in the Anglo-Ameridanguage area. It is also
used for speech evaluation in other languages [IPA99, NNU6&E German version is a pho-
netically rich text and includes all possible phonemes ef @erman language. It consists of
108 words (71 disjunctive) and 172 syllables and is used éecip therapy in German-speaking
countries. For “normal” speakers it takes approx. 43 ses@mdaverage to read the text loudly,
i.e. at 4 syllables per second [SFING]. The full text can be found in Appendix A.1.

The basis for objective voice or speech evaluation (Ch&pfeR) in English-speaking coun-
tries is often the Rainbow Passage ([Fai44] or [Fai60, p])Mfich is also used with TE speak-
ers, e.g. in [Blo84, RFBS84a, BPH95]. It consists of 330 wotterefore often only the first
paragraph (6 sentences with 98 words) or even less is readqSH Q90]. The term “Rainbow
Passage” is obviously not used consistently in the liteeattBometimes, it refers to the first
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| | EMBASSI | Fatigue | IR measuring|
reverb. timel, 150 ms 300ms 250/400ms
room size 58mx59m|45mx4.3mj| 5.8mx59m
room height 3.1m 3.2m 3.1m
mic. distance 1m/2.5m Im 0.6/1.2/2.4m

Table 4.9: Acoustic properties of the recording rooms fer BMBASSI and Fatigue corpus,
and for measuring the room impulse responses (IR) for aalifieverberation

paragraph only. Often, only the second sentence of the BaiRlassage is used fé}, detection
in fluent speech, because the mdgnof this sentence correlates highly with that of the entire
paragraph [Hor79].

4.4.2 Speaker Groupdaryng4landlaryngl8

The group denoted daryng4lconsists of 41 TE speakers with an average age of 62 years.
The youngest person was 44 years and 7 months at the timeoofineg, the oldest was 84 years
and 11 months old. Two of the speakers are women. Detailednmaftion on the age of each
single speaker can be obtained from Table 4.10. All speakere provided with a Provéx
shunt valve (see Chapter 2.2.5). Unfortunately, no infaionavas available about how many
patients used the first and second generation of the valvevaether they used an additional
stoma filter or stoma valve (Chapter 2.2.6). All patientseveative German speakers using
local Franconian dialect. Informed consent had been obdaby all participants prior to the
examination. The test data were recorded with a “dnt Call 4ithfort” headsetat a sampling
frequency of 16 kHz and quantized with 16 bit linear. All retiags were made in a small room
in the Department of Phoniatrics and Pedaudiology in Egangror the first 33 files, a self-
developed recording software was applied under Linux wivas replaced by a new program for
Microsoft® Windows® XP® (file names beginning with00” in Table 4.10). Table 4.11 contains
a comparison of the recorded speaker groups concernirglation rate, spoken vocabulary and
similar measures. It has to be noted that the transliteratiall groups was made at different
times within a two-year interval. This might have causedetass in the handling of words
outside the regular vocabulary of “The North Wind and the"Sudrherefore, all values based
upon the number of words and syllables uttered may not bg églinparable. In the very first
experiments with thiaryng18group (see below) that were published e.g. in [H8M, HNS"05,
HSNSO05], a preliminary, more detailed version of the traesdtion was applied which lead to
a number of out-of-vocabulary (OOV) words of 32. For #twnl18group (Chapter 4.5), the
number of words in the text reference plus the number of OOWdw/ds larger than the total
number of uttered words. This can be explained by the fadtstime speakers left out a few
words they should have read.

Some of the preliminary tests were made with the datdasghgl8 an initially recorded
subset of théaryng4lgroup. It was obtained from 18 male TE speakers who were oragee
64.2 years old. For age information of the single speakess,Table 4.10. 14 of the patients
had undergone total laryngectomy because of laryngeaktcamd 4 because of hypopharyngeal

4DNT GmbH, 63128 Dietzenbach, Germany
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| file | sex| age | [file | sex| age |
n000011s01* | m | 54-2 nm000304s01* m | 66-2
n000012s01* | m | 58-2 nmD00305s01* m | 70-2
n000013s01 m | 61-10 nD00306s01* m | 49-6
n000014s01* | m | 60-1 n000307s01* m | 59-0
n000017s01 m | 58-1 n000329s01* m | 62-1
n000018s01* | m | 84-11 nD00437s01* m | 68-0
n000019s01 m | 54-9 nm000467s01* m | 56-5
n000052s01 m | 48-6 n000500s01 m | 64-4
n000054s01 m | 69-2 nm000504s01* m | 62-9
nm000055s01 m | 44-7 nD00506s01* m | 68-4
n000057s01* | m | 67-5 nD00507s01* m | 58-6
nm000058s01* | m | 63-0 001257. nwnah.01 | m | 68-1
n000059s01* | m | 76-4 001264. nw-nah. 02 | m | 70-1
n000060s01 m | 60-0 001265. nwnah. 01 | m | 55-4
n000061s01 m | 58-5 001266. nw-nah. 02 | m | 64-6
n000062s01* | m | 61-2 001274. nwnah.01 | f | 54-5
nm000063s01 m | 53-9 001275. nwnah.01 | m | 67-10
nm000064s01 m | 66-0 001279. nwnah. 01| f | 70-10
nm000067s01 m | 61-2 001280. nwnah. 02 | m | 52-10
n000069s01 m | 60-5
n000073s01 m | 66-9
n000074s01 m | 64-3

Table 4.10: Thdaryng4ltracheoesophageal speaker group; files marked with anskstem
the subgrouparyngl8 The age of the persons is given in years and months.

| speaker group | laryng41| laryng18| kom18 | basl6 |
speakers (male/female) 41 (39/2)| 18(18/0)| 18 (18/0)| 16 (9/7)
average age (years) 62.0+7.7 | 64.2+8.3 || 65.4+7.6 | n/a (=25)
total duration (min) 46.0 21.2 15.6 12.5
avg. duration (s) 67+ 20 71+23 52+8 47+ 6
words (total, reference text 4428 1944 1944 1728
words (total, uttered) 4445 1980 1964 1728
words/speaker 108.4 110.0 109.1 108.0
size of vocabulary 84 82 93 71
OOV words (distinct) 13 11 22 0
articulation rate (syllables/s) 2.9+0.7| 2.8+£0.8|| 3.5+0.6| 4.2+0.5

Table 4.11: Time statistics on “The North Wind and the Surcordings of the TE speaker
groups and the normal-speaking control groups
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cancer at least one year prior to the investigation. At time tf recording, the patients had used
the Provo® device for between 5 and 136 months (68.25.7 months).

4.4.3 Evaluation by Human Experts

For the automation of the clinical voice evaluation meth@dsuman evaluation reference had to
be defined. For this reason, a set of five raters (four men amevoman) working in the Depart-
ment of Phoniatrics and Pedaudiology at the University ddififgen-Nuremberg listened to the
recordings of théaryngl8group in an evaluation session in December 2003. 26 morths la
in January 2006, another session with the same raters waisnhidle same room where the ex-
perts evaluated the entil@yng4lgroup. Note that for all experiments with ttegyngl18group
the first rating was used,; for all experiments with kllwgng41data — including théaryng18sub-
set — the second evaluation was applied. The raters (in tlssving named K, L, R, S, and U)
were familiar with substitute voices as each one of them lezdrsl years of practical experi-
ence in speech therapy. The raters received written irigingcbefore the listening experiment.
Firstly, three example recordings were played in order ltmathe raters to prepare for the test.
The listeners were then asked to rate the voices heard dilmingession and judge according
to their previous experience with substitute voices. It waglicitly stated that the TE voices
should not be compared to laryngeal voices but only to otlievdices.

The evaluation sheet (Table 4.12) had also been designée &dpartment of Phoniatrics
and Pedaudiology The abbreviations for the criteria names that will be usethis thesis are
also given in that table. The criteria were rated on a 5-pbikert scale ([Lik32], cf. Chap-
ter 2.4.1), i.e. one out of 5 (quality criterion: 4) nameceaiatives had to be chosen. For the
purpose of automatic analysis, the scores had to be codverteteger numbers. These were
not printed on the evaluation sheet. The overall qualityeseeas not Likert-based: A gray bar
with a width of 10 cm was printed on the sheet. The label atefiechd said “very good”, the
label at the right end was “very bad”. The raters were askeaktdk their impression of the over-
all voice quality by a vertical line on this visual analog lec@/AS, cf. Chapter 2.4.1) without
regarding their results for the single criteria before. @stance in centimeters of the drawn line
from the left boundary was measured by hand with a precisidnlocm and used as the value
of the overall quality score, i.e. possible values for thigecion were between 0.0 and 10.0.

4.4.4 Intra-Rater and Inter-Rater Correlation

The evaluation criteria were chosen with respect to the# insspeech therapy (see Chap-
ter 2.4.1). Some of them, however, are highly correlated watch other. The correlation between
the ratings for the different criteria on tha&yng41group is shown in Table 4.13. One of the
highest correlations is between the intelligibility ane thverall quality (+0.96). This indicates
the importance of the intelligibility for the overall peqtése impression of TE speech. Vocal
tone (+0.96) and ability for prosody (+0.88) seem to be frtimportant aspects for human
listeners.

Before comparing automatic and human evaluation restulss to be determined how ho-
mogeneous the expert group rated the test data. For the éxafhe intelligibility criterion,

5The “voice penetration” criterion was defined by Pahn et slthe voice capacity to penetrate background
noise [PDP01]. Since no background noise was present aintleettie raters listened to tharyng4lrecordings,
the respective scores are obsolete.
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(@ [(2) () [(4) [ (5 |

quality of the substitute voice(quality)

verygood | rathergood |ratherbad | bad | —
hoarsenesghoarse)

very high | high | moderate | low | none
speech effort(effort)

very high | high | moderate | low | none
voice penetration(penetr)

very high | high | moderate | bad | extremely bad
prosody (proso)

verygood | good | moderate | low | none
match of breath and sense unitgbrsense)

verygood | good | moderate | low | none
distortions by insufficient occlusion of tracheostomgnoise)

very high | high | moderate | low | none
vocal tone(tone)

very high | high | moderate | low | none
change of voice quality during reading(change)

very high | high | moderate | low | none
overall intelligibility (intell)

very high | high | moderate | low | none
overall quality score (overall)

very good | | very bad

Table 4.12: Schematic diagram of the TE speech evaluatieatslthe Likert scales for the
rating criteria were transformed to integer numbers (firgt,Inot printed on the original sheet).
The overall quality score was marked graphically in a box aftiv10 cm and then measured
by hand. The abbreviations of the criteria (in italics) walso not visible for the raters.

\ | hoarse| effort | penetr| proso |brsensé noise | tone |changd intell |overalll

quality || -0.85| -0.83 | +0.73 | +0.88 | +0.81 | -0.50 | +0.94 | -0.43 | +0.93 | +0.97
hoarse +0.65| -0.46 | -0.79 | -0.70 | +0.38 | —0.89 | +0.35 | —0.79 | —0.82
effort -0.60| -0.79 | -0.86 | +0.54 | —0.82 | +0.57 | -0.77 | -0.82
penetr +0.66 | +0.56 | —0.47 | +0.61 | -0.20 | +0.74 | +0.73
proso +0.91 | -0.46 | +0.86 | —0.40 | +0.83 | +0.88
brsense —-0.45| +0.82 | -0.48 | +0.80 | +0.83
noise -0.50| +0.36 | -0.63 | —0.55
tone -0.52| +0.92 | +0.96
change -0.49 | -0.53
intell +0.96

Table 4.13: Correlation between rating criteria (average of the 5 experts) onahgng4ldata
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lraters|| r | p | Kk |sw ]| o |
Kvs.L || +0.79| +0.80| +0.44| +0.62| +0.79
Kvs.R| +0.72| +0.72| +0.25| +0.49| +0.70
Kvs.S || +0.72| +0.73| +0.16 | +0.41 | +0.63
Kvs.U| +0.69| +0.69| +0.16| +0.36| +0.52
Lvs.R | +0.73| +0.68| +0.20| +0.47 | +0.70

S

U

L vs. +0.82| +0.81| +0.33| +0.57| +0.75
L vs. +0.65| +0.62| +0.27| +0.41| +0.54
Rvs. S| +0.74| +0.68| +0.07| +0.40| +0.63
Rvs.U| +0.72| +0.72| —0.04 | +0.28| +0.50
Svs.U| +0.79| +0.76| +0.29| +0.54 | +0.74

Table 4.14: Inter-rater agreement for the criterjortelligibility* between rater pairs evaluating
the laryng41data; given are Pearson's Spearman’sy, Cohen’sk, the weighteds(w) after
Cicchetti and Krippendorff'sy (using interval metric).

rater] K | L | R | S | U |
[ » [ +0.81] +0.84] +0.80] +0.87] +0.80|

Table 4.15: Inter-rater agreement for the criterjamtelligibility” between one rater and the
average of the others evaluating theyng41data

the inter-rater agreement between all rater pairs is gimefable 4.14 according to the agree-
ment measures that were introduced in Chapter 3. In congpatess Cohen’s<, the weighted
version ofx shows by far higher values. This reveals the fact that it asel to an intuitive
agreement measure where small differences between rating® experts would be assigned
a smaller “error” value than large differences. The cotretaof each single rater’s intelli-
gibility score to the average scores across the other forgope can be found in Table 4.15.
Remember that and« cannot be computed for this case because of the occurringnieger
values. For the entire group of the 5 raters as a whole, thessumes are defined again. The un-
weighted multi-ratekpr is 0.21 only while the weightedpr reaches a value of 0.45; Krippen-
dorff’s o is 0.66. Both values represent “moderate” agreement (chp@n 3) which demon-
strates that also human experts often disagree. For thespamding values on tHaryngl8
group, see [SNHO05, SHN06].

4.5 Normal-Speaking Control Groups

Two corpora of non-pathologic, laryngeal speech servedoasral groups for some experi-
ments with the TE speakers. The first speaker group (“cogtmip men”kom1§ consisted of

18 normal-speaking men forming an age-matched group wépee to the 18 tracheoesopha-
geal speakers of tharyngl8set (Chapter 4.4.2). Their average age was 65.4 years. Tae da
were recorded in the same environment using the same tetlegjgipment as for thiaryng18
speakers. The second group, denoteldass 6 consisted of 9 men and 7 women and was taken
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| kom18 | bas16 |
| file | sex| age] [ file | sex|

nm000474s01 | m | 66 erl d4580 | f
nm000537s01 | m | 52 esnd4580 | f
nmD00563s01 | m | 62 hdbd4580 | m
nm000570s01 | m | 69 hei d4580 | m
nD00571s01 | m | 70 hor d4580 | m
nm000572s01 | m | 69 hsbd4580 | m
m000576s01 | m | 65 j and4580 | m
nb00582s01 | m | 73 j ehd4580 | m
nm000583s01 | m | 67 i nd4580 | m
nmD00590s01 | m | 64 mxbd4580 | f
nm000702s01 | m | 69 obl d4580 | m
nm000711s01 | m | 68 pt zd4580 | f
nm000722s01 | m | 58 spi d4580 | m
nm000723s01 | m | 58 wagd4580 | f
n000741s01 | m | 82 wel d4580 | f
nm000743s01 | m | 59 w nd4580 | f
nm000751s01 | m | 53

nm000771s01 | m | 74

Table 4.16: The normal-speakirkpm18and basl6speaker groups; the age information for
kom18was provided in years only, for tHes16group it was not available at all.

from the “BAS Strange Corpus 1Accents’)” from the Bavarian Archive for Speech Signals
at the University of Munich [BAS]. These data were chosenrileo to get an approximately
age-matched set with respect to the training speakers a$gbech recognizer (Chapter 4.3).
However, no exact age information was provided with the gsrisince all persons were univer-
sity students, their average age was assumed to be aboua®5 pd subjects were native Ger-
man speakers, they were recorded with a Sennheiser mianegfMiKH 20 P48) on digital audio
tape (DAT) at 48 kHz sampling frequency and 16 bit resolutibime data were then downsampled
to 16 kHz. More information on the BAS Strange Corpus 1 is saniwed in [Ste05, pp. 38-41].
Each speaker of the control groups read the text “The Nortidveind the Sun” (Chapter 4.4.1)
where the BAS version showed some minor differences (seergip A.1). For details on both
data sets, see Table 4.11. The speaker overview is giverbla Z&l6.

For the experiments, it was necessary to provide a wordebiaaesliteration of the record-
ings. These were prepared for the first 33 signals ofahag4lgroup, thebasl6and thekom18
group by a computer scientist experienced in speech rettognil he transliteration of the re-
maininglaryng4lrecordings were done by a student of computational lingsisThe guidelines
for the transliteration follow those defined in [KI:B4] which had been designed for the NB-
MOBIL project.

In this chapter, the speech databases were defined that @@ssaey to do the automatic
evaluation of TE speech and the evaluation of reverbergieelch signals. The next chapter will
describe the corresponding speech analysis methods.



Chapter 5

Automatic Speech Analysis

Automatic speech recognition is the key technology for meieistic evaluation of speech qual-
ity. This chapter introduces the recognition system thauged for the experiments in Chapter 6
and 7. It will also describe how speech disorders can bealisgl graphically so that medical
personnel can easily compare a patient’s individual digplwith other affected persons.

5.1 The Recognition System

5.1.1 Introduction

The speech recognition system was developed at the Chaattd@r® Recognition since 1978,
shortly after the introduction of Hidden Markov Models (HM)in speech recognition [JBM75,
Bak75]. It was continuously extended and revised in ordgrtwide an automatic speech un-
derstanding system which requires very few acousticaicéxand grammatical restrictions on
the speech input. One of the working fields at the institupsech recognitiomwhich tries to
capture the spoken word or phone sequence correctly, eagldptation to the respective speaker
group [SHSNO3, Gal02, GNNWO02, AH®8]. An important part of this igrammar modeling
which provides linguistic models of language and thus avthé recognition of word sequences
that do not make sense [Haa01, BorO1, BiH¥8]. The latest version of the system is described
in [Ste05]; for more details on the aspects mentioned indHewing sections, cf. [SN93].

The system was also the basis for dialogue systems wherarchseas done osemantic
analysis It obtains the meaning of the spoken word sequence [GFB NHW99] and passes
it to the dialogue managewhich asks the user for further information if this is neegsand
provides the desired or alternative information [Eck96heTsystem EVAR for train timetable
information was the first commercial, conversational dial® system in the world that was con-
nected to the public telephone line [GABS].

5.1.2 Acoustic Models

Training of the acoustic models was performed using the ksggeadependent system called
ISADORA (“Integrated System for Automatic Decoding of Oh&gion Sequences of Real-
valued Arrays”, [Sch95, SNE92, SNE 93]). It represents structural knowledge by a constituent
network whose nodes correspond to speech concepts, likeepbainits, morphemes, words,
syntactical constituents, sentences, vocabulariesgfatiéite grammars and so on. Each node is

63
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__— root state

>~ —  complex RMM states

Figure 5.1: Recursive Markov Model (RMM, [Sch95, p. 274])

acoustically represented byRecursive Markov Model (RMMA state of an RMM can contain
a whole RMM or an elementary state like a standard HMM (Figudd. The Markov models
for the atomic acoustic nodes are given explicitly as leftight HMMs with a varying num-
ber of states, each state being connected to itself and tgediate successor. The models for
the other node types can be recursively constructed froracbastic models of their successor
nodes. Phonetic modeling in ISADORA is done by so-cafietyphone§SNE"93]. Those are
phone-like units which generalize the well-known concdfitiphone units. Whereas triphones
are restricted to a context of one phone symbol to the leftaride right, the context of a poly-
phone may be arbitrarily large. The context items may alslude suprasegmental markers, like
syllable, morpheme, or word boundaries generalized polyphonemtroduced in [Gal02], this
is extended by phone categories, like “vowel”, “fricativetc. The concept allows to organize
the models of the subword units in a tree hierarchy which hastost general units (mono-
phones) at its top and the most specific units (polyphonds)aw arbitrary context length at the
leaves (Figure 5.2).

For the training of the acoustic models, the propagatisetaPIS algorithm is used. It is
a modification of the Baum-Welch training [BPSW70] to utlithe generalization/specification
relation between the subword units that is defined by thestreieture. Each subword unit which
occurs often enough (e.g. more than 50 times) in the traiétg is represented by a linear HMM
with one to four states. Semi-continuous HMMs with full-esance Gaussian densities in the
codebook are used. Four steps are performed during eatchmagsn:

1. Accumulatiorof HMM statistics using the Baum-Welch algorithm; suffidistatistics for
the most specific HMMs in the tree are computed from the tngiiata.

2. Propagationof statistics through the generalization tree from thedootto the top; each
state passes forward its current statistics to the unigqeggoessor.

3. Interpolationto increase the robustness of the parameter estimatioprabability density
function of a Markov state is averaged with the respectivetion of its predecessor.
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aln/fo:/|f6

ha|n/o:/|f6

/hla]lno:|f6 ha| no: | f/ 6/

ha| no: | f6

Hannover

Figure 5.2: Polyphone structure for the word “HannovertdafSN93])

4. Smoothingof the state parameters with their values of the previousitrg iteration;
the convergence is slowed down which avoids overadaptaiitire training data.

5.1.3 Feature Extraction

The feature extraction module was developed by Rieck [Rjefs newer implementations
see [Ste05, Hac01]. Short-time analysis uses a Hammingowimdth a length of 16 ms which is,
at a sample rate of 16 kHz, equivalent to 256 samples (seed-3). The frame shift rate
is 10ms. The Fast Hartley Transform (FHT, [Bra84]) compukesshort-time spectrum from
which the Mel spectrum is obtained by employing an auditoaged filterbank. The filters are
uniformly spaced on the Mel scale and overlap each othethede MBAS SI-based recognizers,
the filterbank consists of 18 trapezoid filters as introduod&Rie95]. For the later experiments
with VERBMOBIL-based recognizers, a filterbank of 25 triangle filters waslusased on the
findings by Stemmer [Ste05]. The lower bound of the first fiige62.5 Hz, the upper bound is
6250 Hz in the former and 6000 Hz in the latter case, respaygtiVhe Mel spectrum coefficients
are normalized to values between®dhd 1. After this step, usually the logarithm of the values is
further processed. However, this operation has disadgastahich will be discussed in Chap-
ter 5.2. The Discrete Cosine Transform (DCT) leads to thestcegn domain [OS68, OS75].
The first of the 12 Mel-Frequency Cepstrum Coefficients (MBC[DMS80]) is replaced by
the smoothed short-time energy. After Dynamic Adaptive Shegp Subtraction (DACS) and
smoothing with the respective values of the preceeding acdegding frame, the static part
of the feature vector is complete. The vectors also contgimachic features as introduced
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256 samples (16 ms)
Hamming window

amplitude [1000]
o @ © u o

1d 20 30 40 50 60 70 80

time [10 ms]

|DHTF

amplitude

spectrum 128 coefficients

oo MMM | Zhareree
o LAV WANVAY filters

0 1000 2000 3000 4000 5000 6000 7000
frequency

50

o % ®
coefficient

Mel filtering

weight

Mel spectrum 25 coefficients

amplitude [1000]

T s i s e 78 s wm BB MRS
coefficient

compression/companding functidosually "log")

DCT takes 11 coefficients and energy

Mel cepstrum
12-dimensional feature vector

Figure 5.3: Feature extraction (static features) in tlrER®MOBIL-based speech recognizers;
in the EMBASSI-based recognizers, a filterbank with 18 tzajekfilters was used.

in [Fur86]. The first-order derivative of all 12 static feeds is approximated by the slope
of a linear regression line over 5 consecutive frames (56aag)roposed in [Ste05]. For the
EMBASSI-based recognizers, 9 frames (96 ms) were used loasie@ previous feature extrac-

tion method ([Rie95]; cf. the discussion in [Ste05, pp. 108]). Hence, for each 16 ms frame,
a 24-dimensional feature vector is computed.

5.1.4 Language Model and Decoding

For decoding, a separate decoder is used [Kuh95, GSN96]adsebioptimal performance of
the ISADORA system on this task. The recognition proces®igedn two steps. First, a beam
search is applied which generates a word graph. The beachsgsas a category-based bigram
language model. In the second phase, the best-matchingseqreence is determined from the
word graph by an Asearch which rescores the graph with a second language mealethe
experiments with reverberated speech data, this was am-gradel. For the evaluation of
substitute voices, however, only a unigram model was useduse the number of recognition
errors was supposed to be a measure for intelligibility (Skeapter 7). A higher-level language
model would have removed many errors and hence made thisineaaapplicable. The models
of non-verbal sounds and non-speech phenomena, like pausesise, have fixed language
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model probabilities determined during earlier stages®fétognition system [Zei01, SZNNO1].
The A" search was completely reimplemented in [War03] allowing tmgenerate word graphs
which have been used to compute confidence measures [S®N103].

5.1.5 Recognizer Training Procedure

The training procedure for the semi-continuous acoustidetwis derived from théootstrap-
training methodKuh95, pp. 174-178] with some modifications [Ste05, p. 88]set of train-
ing utterances which are transliterated on the word leuslesefor the estimation of the HMM
parameters. For their initialization, a frame-wise traipgon of the data on a sub-phonetic
level is needed. The training procedure repeatedly gesgemaich a transcription and simul-
taneously improves the acoustic models. Firstly, an indeaebook is built by the k-means
algorithm [Mac67]. Secondly, all other HMM parameters, irgtial state probabilities, transi-
tion and emission probabilities, are initialized unifoymiNext, the training procedure iteratively
repeats three steps: In thabeling step a sub-phonetic label for each feature vector is created
by forced alignment of the training data. During tingialization step the HMM parameters
are initialized using these labels while the codebook isama@inged. In theeestimation step
the APIS training algorithm is iterated 10 times; the coddbs also reestimated. The three
steps are repeated as long as the negative log-likelihotieeofalidation data decreases. For the
theoretical background of the described methods, seeNigD3, Sch95, Nie90].

5.1.6 Speech Recognizers for the Evaluation of TE Speech

The baseline recognizer for the experiments with trachegaesyeal speakers was in principle the
same as th¥M-baserecognizer (Chapter 4.3). Only the recognition vocabweag changed to
the 71 words of the text “The North Wind and the Sun” (Chaptédr}. Like the \ERBMOBIL-
based recognizers, this recognizer is polyphone-basedGkapter 5.1.2) and will therefore
be denoted ablW-base-poly Another important difference t¥M-baseis that NW-base-poly
applies a unigram language model for thies@arch only so that the recognition results are mainly
dependent on the acoustic models. Both recognizers usesh@okl with 500 classes.

Many TE voices show a very low quality. The highly speciaipmlyphone models may be
a drawback in these cases. For this reabbif;base-polyvas also converted to a corresponding
monophone-based recognizer caldd@-base-monoHere, no differentiation is made between
different phone contexts for one core phone. There is orglesmodel for all occurrences of
the same phone which makes this phone model more robustsagastortions. An aspect that
had also to be considered is the difference in the age ofiigaand test speakers. Theyng41l
test speakers (Chapter 4.4.2) were elderly persons withvarage age of 62 years while the
VERBMOBIL training speakers show a completely different age didtiobu Personal data like
date of birth and place of residence, however, were onlyaai from 336 of the 578 speakers.
79.2% of these speakers were between 20 and 29 years oldwerEbetween 40 and 63 which
was the highest age occurring in the data. The age distiofiall 578 speakers can be assumed
to be close to that depicted in Figure 5.4.

Tissue tension, lung pressure and peak airflow are reducetténly speakers [HCKO1].
Shape, size and periodicity of the glottal pulses changh witreasing age; the harmonics-
to-noise ratio (HNR) becomes lower [Fer02, Jun00]. The gaden error rate for speakers is
significantly higher [ALB"99]. Wilpon et al., however, stated that the age relevarifprificant
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Figure 5.4: Age distribution of the RBMOBIL speakers; age information was available for 336
of the 578 speakers only.

changes in automatic speech recognition does not staraiotit 70 [WJ96]. For these reasons,
thekoml18andbasl6control groups were recorded. They are age-matching wipere to the
age of the test and training speaker groups, respectivéggter 4.5). Their evaluation results
give information about the influence of age on speech retiogniFor more information about
the voice and speech of elderly people, cf. [Ste05, pp. 1J/-20

The reason why all recognizers were trained with young, abpispeaking persons was that
there were not enough training data from elderly or larytgaezed speakers. On the other hand,
it was important for the TE speech evaluation that the sysiemlates a naive listener, i.e. a hu-
man being that has never heard TE speech before because tissituation that the patients
face in their dally life. However, there are situations wehahigh recognition rate is required also
for distorted speech. For this reason, the next sectiongivé some examples how to improve
the processing of speech signals where distortions areddnysthe environment (reverberation)
and by the anatomy of the speaker (substitute voice).

The special output symbols representing pauses and nbahmrenomena in the recogniz-
ers are shownin Table 5.1. There is no “pure” version of tmelsl[ - " ah- ] without enclosing
silence because in earlier projects with the same recogrsystem there were too many misin-
terpretations of regular German ‘e’ or ‘a’ (/E/, /e:/) plesrby this kind of filled pause.

5.2 Modified Features for Reverberated Environment

If there is an acoustic mismatch between training and teatafaa speech recognizer, then there
are many ways to reduce the influence of this discrepancybktyond the scope of this thesis to
describe them all in detail; only some examples will be givetie following.



5.2. MODIFIED FEATURES FOR REVERBERATED ENVIRONMENT 69

| symbol | meaning |
[-1.0--1.[---] | pauses of different duration |
[ At mung] /[ - At mung-] | breath (alone or enclosed in silence peripd)
[ NV] /]-NV-] non-verbal sound (dto.)
["ahn] /[-"ahm] “erm” (dto.)
[-"ah-] “...er...”, enclosed in silence period

Table 5.1: Types of silences and non-verbals in the recegnirsed for voice and speech analysis

5.2.1 Handling Acoustic Mismatch between Training and TesData

One possibility for noise-robust speech recognition isatiaptation of an HMM-based speech
recognizer to the test data which can be achieved by modetatitzn techniques, like e.g. the
maximum a posteriori (MAP or Bayesian) learning [GL94] oe tmaximum likelihood linear
regression (MLLR; [LW94]). For more adaptation techniques[Jun00, pp. 51-66] or [GM98];
studies on adaptation to reverberated speech are sumaharig@gSM98, p. 88].

Much effort is spent in the literature on the identificatidnnoise-robust features. Many
approaches concern the duration of the sections in a sigmal Which features are obtained.
In MFCC-based recognition, dynamic features are used warehinvariant to slowly vary-
ing linear (convolutive) distortions [BHM96]. In the casé the recognizers for this thesis,
the window for the computation of these features is 56 or 986ang, respectively (Chap-
ter 5.1.3). Much longer windows for the computation of dyimafeatures were proposed for
noisy speech [Fur81, AH91]. In the presence of additiveedise cepstral dynamic features
alone were reported to be more robust than the static featlome [HA90]. In addition, Yang
et al. proposed the introduction of different exponentialgits for the log-likelihood of static
and dynamic features during decoding to make this advantege efficient [YSLO5, Her97].
Long-term log spectral subtraction (LTLSS) was also showminiprove recognition perfor-
mance [ATH97]. Combined with short-term noise filteringg thiord error rate on a digit recog-
nition task could be reduced from 26.3% to 7.2% [GMO02]. Far bg-spectral subtraction,
the signal spectrum is split into phase and magnitude coemgen From the latter, the mean
value of a certain number of frames is subtracted and thesmreimed with the original phase
spectrum. The incorporation of long-term temporal infotiorainto the acoustic model is also
one of the principles of the TRAPs features that are commuoséd for speech recognition in
noise [AHEO4, CZM04, HS98].

Often, artificial neural networks (ANN) and especially nHdlyer perceptrons (MLP) are
used for noise-robust speech recognition. Kirchhoff efkik98] combined HMM-based and
ANN-based recognizers using modulation spectrum featuhaésh are very robust in noisy and
reverberant conditions [GK97]. This has also been confirfoea hybrid HMM/MLP recognizer
with syllable-based recognition [WKMG98]. Modulation speim features are derived from
normalized amplitude envelopes computed for each charfreefitierbank; they are based on
the spectral energy of modulations in low frequencies (2446

In the case of reverberation, the time-variant room imprgsponse (Chapter 4.1.1) can be
modeled as a stochastic process which is integrated intdebeding phase [SZK06, Zel06].
Thus, not only the signal but also the filter, i.e. the impubssponse, is processed frame-wise.
This, however, requires also a revision of the Viterbi aildpon [Vit67, For73], and the computa-
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tional costs of this method are very high.

Although many of the mentioned methods are more or less ssftdeGuinness et al. object
that several signal processing schemes that improve rgmmym mismatched conditions fail
when the conditions during training and test are similar §5685]. They applied noise-masking
by separating the input signals into 64 channels and letithereels with the higher energy dom-
inate. This reduced error during recognition. Howeverirttest data were created by artificially
distorting a portion of the training data and were hence ma¢pendent from the training set.

Noise can also be removed from the signal before the speedgniion phase by pre-
processing algorithms. For reverberation this will be dégd in Chapter 6.3. The next two
sections will introduce two feature types that were exanhiiog their ability to cope with con-
volutive noise. A closer look at speech recognition in hasyironments in general is taken
e.g. in [Jun00, Gon95, Hun99].

5.2.2 The Root Cepstrum

Feature extraction methods are very often based on a modie¢ afpeech production process,
e.g. the Linear Prediction (LP, [AS67]), the PerceptualdanPrediction (PLP, [Her90]), the
cepstrum [OS68, OS75], or the Mel-frequency cepstrum [DM80

The feature extraction of Mel-Frequency Cepstrum Coefitsi§MFCC) which were used
in the baseline recognizers was described in detail earlithris chapter (see also Figure 5.3).
For the experiments relevant for the recognition under niflaence of reverberation, the focus
was on one special property of the MFCC features. The prollgmthe logarithmic compres-
sion of the filterbank coefficients is that it is most sensitiy spectral parts with the lowest power,
i.e. where the signal-to-noise ratio (SNR) is usually woFtrthermore, low feature or coeffi-
cient values smaller than 1 might not be exactly represediiedto the limitations of the float
number range of the computer. Replacing(z) by log(z + ¢) may solve this problem where
c is a small constant or a minimum threshold to which criticales will be set. On the other
hand, it is possible not to use the pure logarithm at all amulyafunctions with more suitable
companding characteristics (see also Chapter 5.2.3). ddteepstrum, introduced in [LIm79],
simply replaces the logarithm by a root functigfz. Bourlard et al. assume that root-spectral
compression improves modeling spectral envelope zeroshwdtdcur in nasalized and fricative
sounds and thus is beneficial for recognition [BHM96].

In addition to the MFCC features of the baseline recogni@@hapter 4.1 and 4.3), the coef-
ficients of the root cepstrum were used as feature set. lltees were made with a root cepstrum
parameter of, = 3 which is reported in the literature as the optimal valuddw signal-to-noise
ratio (SNR, [Hun99]). However, results on the EMBASSI teatadwere so much worse than
with MFCC features that only values between 4 and 9 weredugkamined (see Chapter 6.2.1).

5.2.3 p-Law Features

The logarithm for compressing the Mel-filtered spectrumfiocents was also replaced by an-
other function that is usually used for data compressioelacommunications in order to achieve
histogram equalization and a better signal-to-noise .ratiee i:-law (often written as “mu-law”
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or “u-law”) coding has the formula

1 forx >0,
. log(1 + p|x|/Tmax) , + v
f(x) =signz - log(L+ 10 wheresignz =< 0 forz =0, (5.1)
: -1 forxz <.

In the feature extraction described in Chapter 5.1,3x iS equal to 1 because before the com-
panding step an energy normalization is made. While lowufeadr coefficient values below 1
are always set to a minimum threshold when using logaritreoiopression, the-law cod-
ing attenuates this problem. It “compands” the input, iteaises low values and compresses
high values; the compression is even stronger than by aitbgac function. A similar idea
has also been used within the RASTA methodology when in JTAA8e logarithm before the
filtering was replaced b¥og(1 + Jz) in each frequency band wheteis a user-defined fac-
tor [KMH 794, MH92] just likey in (5.1). Using theu-law function during feature extraction,
different values foy, were analyzed (see results in Chapter 6.2.2).

The methods described up to now are suitable for data desktbst some kind of noise. In the
case of a substitute voice, the distortion is in the voicelfitathich means that the recorded
signal cannot be separated easily into “signal” and “noisgfe next section will describe a
method to adapt the acoustic models of a speech recogniaesntall test set in order to improve
recognition results. It can also be applied to speech daia ¥oices with “in-built” noise.

5.3 Recognizer Adaptation to TE Voices

5.3.1 Basic Principles

The HMM interpolation technique was originally used for t@arse data problem. When a
speech recognizer has to be built for a domain with a smalluatnof training data, then its
acoustic models can be made more robust by interpolatidnmatdels from another recognizer.
Stemmer describes an interpolation method which was useddpt a recognition system to
non-native speech without using a second recognizer [Sg3.39-145]. It is based upon an
algorithm introduced in [SSHO3] which allows to select not only one but a variable numier o
interpolation partners for each HMM. The same approach wpbe now to adapt the baseline
speech recognizer to substitute voices.

First, the polyphone-based recogniddV-base-polycf. Chapter 5.1.6) was converted into
the monophone-based recognidBi-base-monoThe polyphone models dN\W-base-polye-
came the candidates for the adaptation of the monophonelstod€E speech. This was done
unsupervised as follows: In contrast to [SS)8], the adaptation was not done with the help
of a validation set on which the recognition results wererogzed. Instead, théaryngl8data
set (Chapter 4.4.2) was processed by the original recogniegethe best word sequence was
computed, and the result was assumed to be correct. Thenathepimones underlying the best
word sequence were interpolated.
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01

Figure 5.5: Interpretation of the linear interpolation lplem (5.2) as a semi-continuous
HMM [SSH*03]; the arrows denote state transitions.

5.3.2 Linear Interpolation of Hidden Markov Models

The description of the interpolation algorithm in the negttsons for the general case df
interpolation partners follows [SSH3]. All J hidden Markov models are assumed to have the
same number of states. Another condition is that the reezegms based on semi-continuous
HMMs, i.e. all HMMs share one common codebook consistingfdbaussian densities. Th¢e
output mixture weights;;, of one HMM states; are interpolated with the mixture weights;, of

the interpolation partners,, ..., s;,, wheres;, = s; andc;,;, = c;, as follows:

J
VEk - él-k:g1~cl-1k+...+gJ-ciJk with ZQJ:l (52)

j=1

Afterward, the transition probabilities of state are interpolated with the same interpolation
weightsp;.

5.3.3 Estimation of the Interpolation Weights

The interpolation is done using the EM algorithm [JM80]. Twerall number of parameters to
be estimated is very large because each HMM state that hasitddopolated has its own set of
interpolation weightg;. Instead of a validation set, the recognition result ofiingng18data set
on the polyphone-based recogni28N-base-polyvas defined as a reference, i.e. the underlying
polyphone HMM sequence was assumed to be correct and thesidable as interpolation
partners for the monophone modelsNdV-base-monaoSince this is equivalent to the approach
that uses a second recognizer and a validation data se&fartrpolation, in the following just
the term “validation set” will be used. The estimation fotamifor the interpolation weights are
based on [Sch95, p. 305].

The EM algorithm can be used to estimate the weighiseratively when the problem (5.2)
is interpreted as a semi-continuous HMM (see Figure 5.5¢. é&timates of the parameter values
serve as the basis for the further interpolation. Again,ititerpolation partners of state=s;,
are the states;, to s;,. The interpolation weightg; represent the transition probabilities from
states; to the states;;;. The mixture weights:; ; correspond to the output probabilities of
the HMM. For a given set of estimatgs the probability of being in state;, if the output is



5.3. RECOGNIZER ADAPTATION TO TE VOICES 73

codewordk can be calculated as

P(Si'uk‘shg) Q] Ci.k
P(si; | k,5i,0) = ? = A (5.3)
P<k | Sis Q) Z;-Izl 9j5 « Cijk
which can be used to obtain transition probabilitigs
K
- P SZJ ‘ SZ7Q ZP k ‘ SZ7Q (Sij ‘ kasiu Q) (54)
k=1

In order to get new estimates of the transition probabditithe termP (% | s;, ) in (5.4) is
replaced by the probability(i, k) = P(s;, k | X, A) whereX is the sequence of observations
and\ is the HMM sequence. This is calculated on the validation set

K

~ . Qj CzJ
0j =) Cli,k) =—— (5.5)

The new estimates of the transition probabilities have tmdmenalized afterward in order to
fulfill the condltlonz _, 0; = 1 again:

R 0;
Qj = 7 ~ (56)
Ejjzlgj

The algorithm stops when tig do not change any more. The success of the HMM interpolation
can be evaluated without recomputing the likelihdodX | A) of the validation set by a quality
measure defined in [Sch95, p. 305]:

K [ J ¢(irk) K J
l(o1,...,00) = logH (Z 95" Cz‘]-k> = ZC(Z} k)log (Z 95" Cz‘.ik) (5.7)
k=1 \ j=1 k= j=1

5.3.4 Determination of the Interpolation Partners

For each HMM that is supposed to be interpolated, a set of gderpolation partners has to be
selected. For this purpose, each HMM of one speech recagihiees:NW-base-monas inter-
polated with all models of the other recognizer (h&@/-base-polyindividually, andn possible
partners are selected with the help of the quality functoi)( Regarding the relative improve-
ment of the quality function, however, it is not useful simpb choose the:-best list. It was
determined that HMMs which represent polyphones (Chapte2pbwith the same core phone
and similar left and right context often show similar impeavent alone, but in combination there
is no further improvement any more. New interpolation pargrshould have a distance above a
certain threshold to the already selected set. For thisgsespthe Kullback-Leibler divergence
between corresponding HMM states is used as distance neeasur

d(s;, s;) Z Cik * log Cﬁ (5.8)
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For the experiments with tracheoesophageal voices, fiessimgle interpolation partner was
chosen for each HMM. Then, in a second step, the number afgrarivas set to 40 because this
number had achieved the best results in [S88]. The results of the experiments on substitute
voices will be summarized in Chapter 7.2.

HMM adaptation can not only serve for enhancing recognitésults but also for the graph-
ical representation of a person’s voice or speech propaatid even speech pathology. How this
can be achieved will be presented in the next section.

5.4 Visualization of Recognizer Adaptation

5.4.1 Introduction

For speech therapists, it might be very helpful to get sonteraated and objective support
for the evaluation and classification of pathologic voicespeech. However, the results of
such an automatic evaluation are often sequences of nurabenslti-dimensional measures.
For a human user, it is much more convenient to get a graphisablization of these data.
This means that the high-dimensional data representingsoips voice or speech properties
have to be reduced to one single pair (2-D graphics) or t{ilB graphics) of coordinates by
an adequate reduction of dimension. Additionally, thishmodtshould allow to compare a new
speaker’s properties to an existing database of previguelyessed persons.

The basis of the distance measure between different sgeakethe HMM parameters of
a speech recognition system that are changed when the reeogs adapted to the current
test speaker. This is very similar to the procedure that wasduced in Chapter 5.3. Here,
the interest does not focus on recognition or accuracy p@pd the first place but to gain
insight into individual voice disorders. The results of tieeognizer adaptation are presented
graphically. A mapping technique, the so-callt@dmmomapping [Sam69], allows the graph-
ical representation of abstract data unveiling underhgtrgctures and configurations. This
method of mapping data is not new, but it has not been apptig¢tlis concrete problem be-
fore (see also [HZ806, HZN"06]). The features computed to express the differencesaastw
speakers are obtained from the adaptation of a speech ieeogo the current test speaker.
With the interpolation method from [SSH3, SSHNO04] (cf. Chapter 5.3) for recognizers based
on semi-continuous Hidden Markov Models (SCHMMs), the atitpeights of an existingyW-
base-monaecognizer (Chapter 5.1.6) are adapted to individual sgreetkaracteristics. Like in
the previous section, this is done with a small amount of ddiaglata, i.e. the standard text
“The North Wind and the Sun” (Chapter 4.4.1) uttered by tlepeetive speaker. For a given
group of speakers, in this way a set of speaker-adapted mezawg is achieved. The output
weights of each recognizer are used for the mapping proeedur

5.4.2 A Distance Metric for Semi-Continuous HMMs

The Sammon mapping (Chapter 5.4.3) is a non-linear tramsfoon preserving data topology.
This topology is represented within a matrix of respectiviérance distances”. The quality
and information quantity of a Sammon map is fully determibgdhis metric and not by the
mapping itself. Thus, it is extremely important to have aahle distance metric. On the other
hand, the distance metric can be chosen without any matieaiagstrictions, like linearity, etc.
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The great advantage of the Sammon Transform against soreedithension reduction oper-
ations, like the Principal Component Analysis (PCA), istttige transform is not linear and
therefore loses less information. For the purpose of thesih) a good distance calculus for
speaker-adapted SCHMMs is needed in order to get the destaeteveen a pathologic voice
and the normal voices represented by the baseline recogoizeetween two pathologic voices.
A measure computed from the distances of the respectiveeel@any SCHMMs of different
speaker-dependent speech recognizers fulfills this repeint. The artihmetic mean of these
model distances serves as the final result. The basic prabldra definition of the distance be-
tween the states of two SCHMMs. Distance calculation hasé¢otlie interpolation weights but
still take into consideration the densities from the reéogncodebook containing the Gaussian
output densities. This is due to the varying informatiordi@ich can be considered higher for
densities with low variance and vice versa. If a simple Eledn distance of the weight vectors
were used, this information would get lost and the qualitthefdistance metric would diminish.
The codebook itself is static and common to all speakers.

The distance metric for HMM states is based upon the Mahaiartistance [Mah36] of cor-
responding codebook densities of two recognizers. In tlaptad recognizers, for each state
of a Markov modelp the mean vectofn;.(p) of each codebook density is scaled with the
corresponding output weighf (p):

ik (p) = cir(p) - ma(p) (5.9)
Given two HMMsp andq, the Mahalanobis distance for such a pair of weighted meetorsis
dir(p,q) = \/(mzk<p) —m ()" Si(p,q) = (Mur(p) — mix(q)) (5.10)

where the estimaté&; for the global covariance of two HMM states is computed frdme t
weighted covariances of th€ single densities:

Si(p,q) = 5 > _(ca(p) + cn(q)) - cov(k) (5.11)

1

DO —

K
k=

In the end, the resulting set df density distanced,;(p, q) is summed up to provide a
single state distance between the corresponding statdsnodelsp andq. The overall HMM
distance),, betweerp andq is the sum of allV state distances:

Opg = szik(pv q) (5.12)

i=1 k=1

The HMM distance in (5.12) is computed for each pair of eletagnHMMSs. It fills up a ma-
trix holding the speaker distances. This matrix is symmgeso forn utteranceéi;" distances
have to be calculated.

5.4.3 Sammon Mapping

The Sammon mapping performs a topology-preserving reslucif data dimension. It mini-
mizes a “stress function” between the topology of the lomelisional Sammon map and the
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high-dimensional original data. The latter topology is ndedi by the distances between utter-
ances or speakers, as defined in Chapter 5.4.2. The low-diomath Sammon map is usually
visualized as 2-D or 3-D image. With respect to [SNO4], a Sammmap is called &osmos
while a mapped utterance inside a cosmos is callgdma

The heart of Sammon’s method is its special error funcfibwhich yields a stress factor
between the actual configuration of stardidimensional target domain and the original data in
R-dimensional spacd(< R):

n—1 n

" 1 33 (Opg = vpa)® (5.13)
n—1 n .
Zp:l Zq:p—}—l 5pq p 5

=1 g=p+1 pq

d,q denotes the distance between HMMs with numpandg, as in (5.12),,, is the distance
betweerstar(p) andstar(q) in the cosmos map? is within [0, 1] where £ = 0 means a lossless
projection fromR- to 7-dimensional space. Due to (5.13), utterances formingeisisn original
space will tend to cluster also in destination space. Theedsotds for utterances being far apart
from each other. In order to achieve the final map, standaepstst descent is applied to (5.13).
For more details, see [Zor06] or [HZ86].

5.4.4 Mappings of Voice Disorders

An example for the application of the previously describegthds is depicted in Figure 5.6.
It is clearly visible that different speaker groups were @sincompletely separated into differ-
ent areas. In addition, the genders of the hoarse and yotergmnee speakers were separated.
The degree of voice pathology is growing from right to leftwihe hoarse speakers located be-
tween the laryngectomees and the normal speakers. Pitcomsng from the top to the bottom
of the cosmos. However, which voice properties are arrangethich direction by the Sammon
Transform, is dependent on the data and not known in advartis.phenomenon was already
reported in [SNO4] where a cosmos map was suggested to hawelianited number of axes.
Most of them represent complex properties of the data anthasdifficult to describe.

With a slightly modified mapping method, it is possible tojpod an unknown speaker into
an existing cosmos of well-known and previously evaluatesks of pathologic voices [Zor06].
The pre-computed cosmos serves as a reference, and the eakesp degree or even the type
of pathology can be determined by the position where therdeog is projected into the map.
For experiments on the visualization of substitute voises, Chapter 7.6.

The Sammon Transform can be applied to various problemsnivi at all restricted to the
analysis of speech signals. Another example is the visatédiz and graphical separation of
classes of written digits [NW79]. A newer approach for ddtestering which is even suitable
for data that are not represented in a vector space was uaeddby Roth et al. [RLKBO3].

It can handle data units for which a pairwise proximity is dedl, e.g. between the items of
psychometric tests. For the combination of automatic vaita@ysis and human evaluation (see
Chapter 2.4), this might be an interesting alternative.
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Figure 5.6: Cosmos of four speaker groups and their arraegeioy the Sammon Trans-
form [Zor06]; the laryngectomized speakers wereldrgngl8group (see Chapter 4.4.2). Sym-
bols without additional gender specification denote maéakers.

5.5 Prosodic Analysis

5.5.1 Overview

One of the voice criteria that the human experts had to etalas the use of prosody in the test
data (see Table 4.12) because this is an important aspeatwihspeech. Older listeners rely
on prosodic elements during speech perception more thamggopeople do [Bau03, WWS92].
The main reason might be their reduced hearing ability. Tmmunication partners of laryn-
gectomees are often persons of the same age, i.e. eldepiepso it is even more relevant that
the ability for producing prosodic elements is tested duspeech therapy. As the goal of this
thesis is to provide methods for speech analysis and notfonloice evaluation, the prosodic
analysis of the TE speech test data was an important paredatk. This means that it is not
sufficient to take into account a sustained vowel only likeeotapproaches for measuring voice
quality [GFV*05, RML04, WP03]. On a spoken text, it is possible to evaltlaegatient’s voice
and speech together. A similar approach was introduced bgriian et al. [MPM04], but
the text consisted of only 18 words there. Correlations tmduwu ratings are only given for the
“overall impression” of the substitute voice, and they doexaceed  =0.49.

Gandour and Weinberg state that TE speakers can produckesitgnational contrast (like
e.g. rise vs. fall) as good as normal speakers [GW83]. Thed test sentences lik®&vloves
Bob.” vs. “Bevloves Bob?” and “Bev loveBob” vs. “Bev lovesBol3?” that were read out by
the patients. 40 listeners unfamiliar with substitute esievaluated the recordings. Indeed,
some alaryngeal speakers were able to produce prosodermmivhich means that they can
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control and regulate the fundamental frequency in speecha study with 9 esophageal and
10 TE speakers by Rossum et al., all speakers were able teyxwamrd accent. When they were
not able to controkFy, they used alternative strategies [RKNQO2]. For this thebe analysis of
intonation was not of high priority since the patients reatieendard text without any questions,
exclamations, etc. Further prosodic properties in patiiolspeech have been examined (see also
Chapter 2): Ainsworth and Singh reported that the rhythms#rgtience is judged to be normal if
the intervals between stressed syllables are fairly e @02]. In a study with German speakers,
the voice quality correlated with the word stress [CB8].

The analysis of prosodic features from acoustic measuves, though done by hand, was
already described by Robbins et al. in 1984 [RFBS84a]. Tiudysinvolved pause durations,
the number of pauses, percentage of total reading time angl, fil@ it is done automatically by
the prosody module described in the next section.

5.5.2 The Prosody Module

The Chair of Pattern Recognition has a profound experientiesianalysis of prosody in speech,
e.g. published in [BFH03, Hub02, GNNWO02, NBK00, Kom97, Not91, NK88], which lead to
the development of therosody Modulaluring the \ERBMOBIL [Wah00] and the BARTKOM
project [Wah06]. The major role of prosody in human-humamewnication is segmentation
and disambiguation. Prosodic information is attached &esp segments which are larger than
a phoneme, i.e. syllables, words, phrases, and whole tliasmeaker. To these segments, per-
ceived properties like pitch, loudness, speaking ratesevquality, duration, pause, rhythm, etc.,
can be attributed. In human-human communication, thenkstextracts information out of the
perceived phenomena. The prosodic functions which arergiyneonsidered to be the most
important ones are the marking of boundaries, accentsersemtmood, and emotional state
of the user [NBK'00]. The task of the automatic prosodic evaluation is to fifefeatures
which highly correlate with these perceived properties, #he acoustic feature fundamental fre-
qguency ) which correlates teitch, and the short time signal energy correlatingaodness
For the analysis of substitute voices, features have todiiced that correlate with the human
rating criteria defined in Chapter 4.4.3.

Basic prosodic features are extracted from the pure spegehl svithout any explicit seg-
mentation into prosodic units. Examples are the frameaswaction ofF, and energy. Struc-
tured prosodic features are computed over larger speeth (sgilable, syllable nucleus, word,
turn). Some of them are based on the basic prosodic fearigedeatures describing the shape
of the Fy or the energy contour. Others are based on segmental iniomthat can be pro-
vided from the output of a word recognizer, e.g. featuresctvhiiescribe durational properties
of phonemes, pauses, or other speech units. For this retasoprosody module processes two
means of input. The first one is the speech signal itself, ¢tersd one is a word hypotheses
graph (WHG) which is the output of the word recognition madah this signal. A WHG is a
directed acyclic graph [ON93] where each edge correspamdsword hypothesis which has
attached to it its acoustic probability, its first and laste¢iframe, and a time alignment of the
underlying phoneme sequence. In this way, the time alignraed the information about the
underlying phoneme classes (e.g. “long vowel”) can be ugatidprosody module.

Since itis not clear in advance which prosodic featureselexant for different classification
problems and how the different features are interrelatBK[NOQ], a highly redundant feature
set is used. In earlier projects, likee¥BMOBIL and SUARTKOM, a neural net classifier was
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supposed to find the relevant features and their optimalhtieig. Experiments on the use of
prosodic information for linguistic analysis showed thatas always the best to use all features
if there are enough training data available [BB#®]. However, the effort needed to find the
optimal set usually does not pay off in terms of classifiaaperformance [BBHO01]. In this
thesis, the correlation between the prosodic feature salod human ratings (see Chapter 4.4.3)
was used to decide which features are the most suitable.€Bbagrés proved to be effective for
linguistic and emotion analysis [BFH3], so they were expected to be sufficient for the analysis
of the rating criteria used in this thesis.

Local prosodic features are computed for every word, shdlab other speech unit defined
by the user. For the experiments on substitute voices, owoly\wased features were used.
The word is a well-defined unit in word recognition which caa firovided by any standard
recognizer. A fixed reference point from which all positi@me measured is chosen at the end
of the currently processed word. The features are obtaipeahalyzing silent and filled pauses,
the signal energy, word and syllable durations, and thedomahtal frequency,. Usually the
basic prosodic features cannot be directly used for presddssification because they contain
speaker-dependent properties, like the specific artiomabte orF,. For this reason, many of
the features are normalized with respect to their mean saamss the whole utterance or even
the entire training database. The local features are (Wwéim hame components in parentheses):

e Duration features (Dur): absolute durationAps) of the speech unit, normalized dura-
tion (Norm) with respect to the entire utterance; the normalizatiaoise using the global
valueDurTauLoc which is determined from a global table containing the darestof words
or subword units, respectively. For details see [BBN]. AbsSyl is the absolute duration
divided by the number of syllables and represents anotlieonormalization.

e Energy features En): regression coefficient within the speech uRie¢Coeff) and mean
square errorNiseReg) of the energy curve with respect to the regression curvegnrme
energy {ean), maximum energyNax) with its position on the time axisMaxPos), ab-
solute Abs) and normalizedNorm) energy values; for the normalization with the global
valueEnTauLoc which represents the relative average sentence energygBiie 00].

e F, features (F0): regression coefficienReggCoeff) and mean square erravi¢eReg) of
the Iy curve with respect to the regression curve; meédeaf), maximum (ax), mini-
mum (Min), onset On), and offset Off) values as well as the positionsax (MaxPos),
Min (MinPos), On (OnPos), andOff (OffPos) on the time axis. Allf, values are not stored
as absolute values but transformed into semitone values@nuialized with respect to the
utterance-specific mean valg@MeanG.

e Length of pauses Pause): duration of the silent pause beforea(ise—before) and af-
ter (Pause—after), and filled pause beforePguseFill-before) and after PauseFill-after)
the respective word in context.

The speech unit which is the basis for the computation is raghge to the feature name; for this
thesis, this marker isword”.

For each reference point, 95 local prosodic features oved wbervals of different sizes are
extracted (see Table 5.2): The current word, i.e. after wthe reference point is set, gets the
number0. The interval containing only this word is denoted @y0d". The interval containing
the two words before word and the pause between them is callez]-1” because it begins at
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word -2 and ends at the end of wortl (Figure 5.8). In the same way, words after the reference
point get positive numbers. The interval code is added tdg¢hture name. For instance, the
featureEnMaxWord1,2 denotes the maximum energy value in the two words after tieeerece
point, andFOMeanWord-1,0 contains the meai; of the interval including the current word
and the previous one. The high degree of redundancy is ofyviouinstance, there is a strong
correlation between the normalized word duratimNormWord for the context®,0 and-1,0.

For a detailed description of all features, see [Hub02].

In addition to the local features, 15 global features forehére file are computed regard-
ing jitter, shimmer, and voiced/unvoiced decision. Thesatudres are explained in Table 5.3.
The names are used according to [BF)].

Figure 5.7 shows how some prosodic features, likehat voice onset and offset or the
Fy minimum andF, maximum, are determined for a single word. The position$eé¢ fea-
tures are negative for the current word and all words befeoabse they are situated before the
reference point. If no voiced frame is found in the word, tlaénF,, values are set to 0, and all
Fy positions are set to —1.

The linear regression coefficients Bf contour and energy contour are computed over 6 dif-
ferent word intervals (see Table 5.2). An important differe to the prosodic analysis by other
research groups is that tlig contour is not “stylized”, i.e. no hard decisions are maahe!
contour labels, like “hat contour”, “rise”, “rise fall”, ‘lgh tone”, etc., are assigned, because in
this way information gets lost. The features of the prosodylute describe thé, and the en-
ergy contour implicitly: High values at the beginning of ard@nd low values at the end of the
word can be combined to a “fall” label when it is required, the values themselves can also be
used directly for classification and leave the decision atimiappropriate label to the classifier.

For the detection of disfluencies in pathologic speech, Lal.gLSS03] proposed the cou-
pling of word-based and part-of-speech-based methodsth&nsuggestion of them is to define
possible interruption points in the language model. Pagpeech features can also be obtained
by the prosody module, and interruption points can be iatiegrinto the acoustic-phonetic net-
work of the ISADORA system (Chapter 5.1; see also [NNA]). However, due to the low
number of disfluency phenomena in the test data, only the dvasgéd prosodic analysis was
applied, and the ISADORA network was not changed.

The particular experiments with the prosody module will ksaibed in Chapter 7.3. In the
next chapter, experimental results on the problem of digtdking speech will be addressed.
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features context size
2|-1]0]1]2
DurTaulLoc; EnTauLoc; FOMeanG °
Dur: Abs, Norm, AbsSyl YRR
En: RegCoeff, MseReg, Mean, EEREK)
Max, MaxPos, Abs, Norm o oo
FO: RegCoeff, MseReg, Mean, o oo
Max, MaxPos, Min, MinPos o oo
Pause—before, PauseFill-before o | o
FO: Off, OffPos o | e
Pause—after, PauseFill-after °
FO: On, OnPos °
Dur: Abs, Norm, AbsSyl ° °
En: RegCoeff, MseReg, Mean, ° °
Abs, Norm ° °
FO: RegCoeff, MseReg ° °
Dur: Norm
En: RegCoeff, MseReg
FO: RegCoeff, MseReg

Table 5.2: 95 local prosodic features and their computatitarvals (“context”, [BBN 00])

| feature | description
StandDevFO0 standard deviation af, for entire file
MeanJitter mean jitter in all voiced sections
StandDevJitter standard deviation of jitter in all voiced sections
MeanShimmer mean shimmer in all voiced sections
StandDevShimmer | standard deviation of shimmer in all voiced sections
#+Voiced number of voiced sections in file
#-Voiced number of unvoiced sections in file
Dur+Voiced duration of voiced sections in file (in frames)
Dur—Voiced duration of unvoiced sections in file (in frames)
DurMax+Voiced maximum duration of voiced section
DurMax—Voiced maximum duration of unvoiced section
RelNum+/-Voiced | ratio of number of voiced and unvoiced sections
RelDur+/—Voiced ratio of duration of voiced and unvoiced sections
RelDur+Voiced/Sig | ratio of duration of voiced sections and duration of signal
RelDur-Voiced/Sig | ratio of duration of unvoiced sections and duration of signa

Table 5.3: 15 global prosodic features computed by the pisostodule for each file



Chapter 6

Speech Recognition in Reverberated
Environment

This chapter contains the experiments for the enhancerhsptech recognition in reverberated
environment. Three different approaches were examineca fif$t one concerns the training
data. Atrtificially reverberated speech signals were usegrder to cover many possible test
environments (see Chapter 6.1). The second kind of modditabf the baseline recognizer
involved the feature extraction (Chapter 6.2). Finallyregoocessing step was taken into con-
sideration. Recordings from multiple microphones were loim@d by beamforming in order
to create a single, less distorted test signal (Chapter @.8¢ speech recognizers used in this
chapter are the EMBASSI- ande®BMOBIL-based recognizers introduced in Chapter 4.

6.1 Experimental Results on Reverberated Training Data

6.1.1 Experiments with the EMBASSI Baseline SystereMB-base

The word accuracy (WA) which is based upon the Levenshteitadce [Lev66] between the
recognized and the reference word sequence was used asiteneasure for the evaluation of
a recognition system. If the number of words in the referasacenoted by:,, and the number
of substituted#s,y), inserted 4is), deleted 44e)) and correctly recognized words.,,) are also
known, then the word accuracy in percent is computed as

(6.1)

WA = 100 - (1 _ Nsub+ Ndel + nins)

Nall

A prototype of theEMB-baserecognizer was trained with a 4-gram language model and a
pre-trained codebook from [Ste05]. It achieved a word aacyiof 94.0% on the EMBASSI
close-talking test data (Chapter 4.1.3). With a 0-gram rhdawvever, the word accuracy was
only 54.7%. In order to attenuate this effect of the purelyustic-based recognition, the word
penalty parameter which has an influence on the length ofgbegnized words was altered.
Figure 6.1 shows how the word accuracy depends on the womtgemue to these findings,
the parameter was set to~®dor all 0-gram experiments, and it was left at 0.1 throughtbig
thesis when a 4-gram model was applied. The latter value wasudt of earlier experiments in
the working group.

83
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Figure 6.1: Word accuracy for different word penalty valoasa prototype version of tHeEMB-
baserecognizer (EMBASSI close-talking test set; 0-gram lamgguanodel)

On the baseline systeEMB-basewith close-talking training data and a 4-gram language
model, the word accuracy for the close-talking test data %h8%. For the distant-talking
recordings, 90.2% were reached for 1 m microphone distande84.1% for 2.5m distance.
With 0-gram language model and with the optimal value of 16r the word penalty, 70.0% for
close-talking data, 52.4% for the 1 m distance, and 37.5%f®2.5 m distance are the baseline
results (see also Table 6.1). The error correction effeth®imore complex language model is
clearly visible especially for the distant-talking data.

The training of anEMB-baserecognizer on an AMD Athloh XP 2800+ machine with
2.08 GHz clock frequency and 1 GB of main memory took about 3 twurs, depending on
the number of codebook reestimation iterations (cf. Chrete.

6.1.2 TheEMB-rev Recognizer with Distant-Talking Training Data

The reference for the recognition in reverberated envimmnis a recognizer whose training
data were recorded under the same acoustic properties esvdrberated test data. The recog-
nizer EMB-rev(Chapter 4.1.4) was trained with the signals from a distalking microphone
that recorded synchronously with the close-talking mibimpe. One half of the training data
for EMB-revwere recorded at a distance of 1 m and the other half at 2.5t@andes (see also
Table 4.2). The validation data were composed in the same Wayjy the test data were ex-
actly the same as f@&EMB-base Table 6.1 shows that much better results were achievedeon th
reverberated test data. Both microphone distances which re@resented in the training data
show word accuracies of far beyond 90% when the 4-gram lgeoedel is used. Compared
to the baseline system, the signals from 1 m distance read®®which is almost 5 percent
points more than oEMB-base With a 0-gram language model, the WA is 66.3%; it had been
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| mic. dist. | lang. model]| EMB-base| EMB-rev| EMB-12| EMB-2 |

close-talk| 4-gram 94.3 87.5 91.7 95.5
close-talk| O-gram 70.0 40.0 57.7 71.4
1m 4-gram 90.2 94.1 94.0 94.4
Im O-gram 52.4 66.3 61.9 63.0
2.5m 4-gram 84.1 93.1 88.4 89.6
2.5m O-gram 37.5 63.2 52.4 55.3

Table 6.1: Word accuracy for EMBASSI-based recognizers@kFeatures) on test data with
different microphone distances; results in italics araiicantly better f < 0.01) than orEMB-
base The best results in each line are printed in boldface.

only 52.4% on the baseline system. The recordings at 2.5 tandis almost catch up to the
1 m signals with 93.1% where the baseline value was 84.1%n @tk only the 0-gram model,
the WA is now 63.2% in contrast to poor 37.5% before. The digathge in this approach is
with the high-quality close-talking signals. Already witie 4-gram language model, the loss
is severe (87.5% vs. 94.3% d&MB-basg, and with the 0-gram model only 40.0% WA are
achieved which is 30 percent points below the baseline tteJuhining a recognition system
with reverberated speech is a rather easy way to improvesthdts on test data recorded with a
certain distance from speaker to microphone, but the gdaltiain a recognizer in one single
surrounding with its specific acoustic properties and thmlyait successfully in any other room.
In the described experiment with tB#VIB-revrecognizer, the acoustic properties of the training
data are the same as in the distant-talking test data. Fuaxlaeninations have been made with
artificially reverberated data. These will be describedhriext section.

6.1.3 Artificially Reverberated Training Data in EMBASSI Recognizers

The EMB-12recognizer was trained with approx. 12 hours of artificiaéyerberated training
data which was basically the one hourEi¥1B-baseraining data in 12 different acoustic qual-
ities (see also Chapter 4.1.7). The results for the reciognéxperiments are summarized in
Table 6.1. Especially interesting are the results of thedata recorded with a distant-talking
microphone. As expected, the recognition rates of the dial&eng test data are lower than for
the baseline system, and the reverberated data were reeddmetter. Training a speech recog-
nizer in different acoustic environments can obviouslyarde the recognition also on signals
from an environment that was not included in the trainingemat. However, recognition on
the close-talking training data lost some accuracy, yetsooimuch as with th&MB-rev ap-
proach. With 4-gram language model, still 91.7% instead48% as on the baseline system
are reached. The results for the close-talking test dat@ever, get worse when only a O-gram
model is used (57.7% vs. 70.0% &BMB-bas¢.

A mixture of reverberated and clear training data was tefsteids ability to keep the recog-
nition rates for the near and distant microphones on thgin level. One part of the training set
were the entire training data of tiEVIB-baseecognizer. The other part consisted of one twelfth
of the artificially reverberated training files f&@MB-12 i.e. the final training set was twice as
big as for the baseline system (see Table 4.2). For thismedss denoted aEMB-2(see details
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in Chapter 4.1.7). The results for this approach (Table $hbw that the recognition could be
enhanced for all three test sets, even for the close-talldogrdings. Although this was very
pleasing at first sight, the question arose whether the nefasdhis improvement was only an
effect of the reverberation of the training files. The baseliecognizeEMB-basehad a very
small training set of only about one hour of speech data tscdwas used for time-efficient
testing of different features. The vocabulary size was 4n8,the number of training speakers
was 12, so the training set might have been simply too smak fmbust estimation of all the
phone models. When the same utterances are added to thetaga®s in another speech qual-
ity (EMB-2), it is very likely that the parameter estimation becomesaneliable by the larger
amount of data, and hence the recognition performance ¢wve been improved. If the same
sentences are used 12 times, convolved with 12 room impetgp®nsesEMB-12), this effect is
intensified even more.

Another aspect in the EMBASSI experiments was that theitrgiand the test set were
recorded in the same room (see Chapter 4.1). Even the impmdpenses for the artificial re-
verberation of the close-talking signals were measuredarsame room. This does not reflect a
real application situation where the target environmeunhisnown before. These problems were
solved by employing different speech databases. The regpexperiments are subsumed in
the next section.

6.1.4 Experiments on \ERBMOBIL and Fatigue Data

Because of the different sizes in training data for the EMBA$ased recognizers, further tests
involving a bigger baseline set with constant size amongxakriments were performed. This
excluded under- or overadaptation, because always the a@oent of training data was avail-
able for each phone model. The new training data were a patieoVERBMOBIL German
corpus; the recognizers created with these data are ngividohse VM-12 andVM-2 (see also
Chapter 4.3). In addition to theBRRBMOBIL test sets, a subset of the Fatigue corpus was used
as test data (Chapter 4.2). Similar experiments were albbsbed in [HNH"05] where in the
training phase always 10 iterations for the codebook nesibn were performed. In the frame
of this thesis, however, the codebook was reestimated asdsithe negative log-likelihood of
the validation data decreased (cf. Chapter 5.1.5). Trginofra VERBMOBIL-based recognizer
takes about 6 days on a 2.08 GHz machine (AMD AthlotP 2800+) with 1 GB RAM when
10 codebook reestimation iterations are made. The numibeespective iterations for the dif-
ferent recognizers are summarized in Table 6.5. Table &@sgome information about the
recognition performance of théM-baserecognizer. The real-time factor on the close-talking
test data is about 2.5 and rises to about 4 on reverberatedatas The positive influence of the
4-gram language model not only for the recognition rateslsd for the performance is impres-
sively clear when looking at the corresponding factors figr @-gram experiments. For distant-
talking recordings from the Fatigue experiment, the fa@s high as 36.5. The reason is that,
especially for the reverberated test sets, the searchdreg®y the recognition phase were very
complex.

Table 6.3 and 6.4 show the recognition results. The wordracguor the Fatigue close-
talking test set is highest for théM-baserecognizer (86.5% word accuracy when using a 4-gram
language model) and lowest fgM-12(80.9%) where only reverberated files were in the training
data. VM-2 (85.1%) almost reaches the baseline result. Regardingatigué data recorded at
1 m distance in a room witliz, =300 ms, the close-talking recogniZéM-baseshows least
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| test set | #files | lang. model| time | timeffile | RTF |
VERBMOBIL close-talk 268 4-gram 1.2h 17s 2.4
VERBMOBIL close-talk 268 0-gram 8.8h| 135s | 16.9
VERBMOBIL artif. reverb.| 268 4-gram 1.9h 26s 3.7
VERBMOBIL artif. reverb.| 268 0-gram 12.8h| 197s | 245
Fatigue close-talk 1445| 4-gram 6.4h 18s 2.5
Fatigue close-talk 1445| O-gram | 47.1h| 117s | 18.3
Fatigue reverberated 1445| 4-gram 10.7h| 31s 4.2
Fatigue reverberated 1445| O-gram | 93.7h| 233s | 36.5

Table 6.2: Performance of full recognition phase onWh&-baserecognizer (MFCC features)
on a 2.08 GHz machine (AMD AthlghXP 2800+) with 1 GB RAM; total recognition time and
time per file are given for two language models. “RTF” dendbesreal-time factor.

accuracy as expected (47.8%) avibll-12 the highest one (69.8%)VM-2 with 68.5% nearly
reaches the same value. Taking the average of the resultat@ué& close-talking data and
distant-talking data, the baseline word accuracy of 68.a%lwe improved to 76.8% oviM-2
which means a relative reduction of word error rate of 27.08ble 6.4). The texts read by the
Fatigue test speakers were part of the training data of tigukge model (see Chapter 4.3.2).
This is visible in the 4-gram results of the Fatigue test sgtich are almost in all cases better
than for the \ERBMOBIL test data. The results for the 0-gram language model, howake
mostly lower than their ¥RBMOBIL counterparts which is most likely a consequence of the
acoustic mismatch between training and test data.

The results show that artificially reverberated trainintagan help to improve the robustness
of speech recognition in reverberant acoustic environm@ven if there is a mismatch between
the room impulse responses used for training and thosedanher the test files. The average
values confirm the results from the EMBASSI recognizers ig#&bl). They show that across
different acoustic properties in the test signals Me2 recognizer is the best choice. In the next
section, the combination of differently reverberatednirag data and different feature extraction
methods will be examined.

6.2 Experimental Results on Modified Features

6.2.1 Root Cepstrum Features

All speech recognizers that were applied compute 24 fempael6 ms frame. For tieMB-base
recognizer, the features were the signal energy, @2 2" MFCC, and the first derivatives of
those 12 static features (see also Chapter 5.1.3). Thegmnoblth the logarithmic compression
of the filterbank coefficients in the usual MFCC feature ecttom (Figure 5.3) is that it is most
sensitive to spectral parts with the lowest power, i.e. wlilee signal-to-noise ratio (SNR) is usu-
ally worst. Furthermore, the float number range of the coempuiy not be sufficient for feature
values below 1. As an alternative to MFCC, the root cepstraefficients (RCC, [Lim79]) were
applied. The root cepstrum replaces the logarithm by a nawttfon /z. Experiments were
made on the EMBASSI-based recognizEMB-baseEMB-12 andEMB-2following the same
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test set lang. model|| VM-base| VM-12 | VM-2
(MFCC) | (MFCC) | (MFCC)

VERBMOBIL close-talk 4-gram 79.7 69.0 76.6
VERBMOBIL close-talk O-gram 51.7 36.7 46.7
VERBMOBIL artif. reverb.| 4-gram 60.4 65.2 64.9
VERBMOBIL artif. reverb.| 0-gram 28.9 38.1 36.9
Fatigue close-talk 4-gram 86.5 80.9 85.1
Fatigue close-talk 0-gram 49.5 37.3 45.4
Fatigue reverberated 4-gram 47.8 69.8 68.5
Fatigue reverberated 0-gram 12.4 30.8 28.1

Table 6.3: Word accuracy fordBRBMOBIL-based recognizers (MFCC features); results in italics
are significantly bettern(< 0.01) than oiWM-base The best results in each line are printed in
boldface.

test set lang. model| VM-base| VM-12 | VM-2

(MFCC) | (MFCC) | (MFCC)
VERBMOBIL close-talk/artif. reverbl  4-gram 70.1 67.1 70.8
VERBMOBIL close-talk/artif. reverb,  0-gram 40.3 37.4 41.8
Fatigue close-talk/reverberated 4-gram 68.2 75.4 76.8
Fatigue close-talk/reverberated 0-gram 31.0 34.1 36.8

Table 6.4: Average word accuracy foEXBMOBIL-based recognizers (MFCC features) across
different acoustic situations; results in italics are gigantly better < 0.01) than on/M-base
The best results in each line are printed in boldface.

recognizer| VM-base| VM-12 | VM-2 | VM-base| VM-12 VM-2
(MFCC) | (MFCC) | (MFCC) | (#=10°) | (1=10%) | (©=10°)
literations | 7 | 4 | 6 | 6 | 9 [ 10 |

Table 6.5: Number of codebook reestimation iterationstierVERBMOBIL-based recognizers;
if the stop condition was not fulfilled after the f@eration, then the process was stopped.
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scheme as in Chapter 6.1. Preliminary tests had shown thavahd accuracy for. =10 gets
worse rapidly in comparison to the MFCC features. The sant@stor n <3. Therefore, the
experiments described below are restricted to a range=dt; 9]. Since thdex4feature extrac-
tion program expects the root parameter as, the reciprocal values of were given with the
precision of 4 decimal places for the training procedurg, @1428 forn =7.

All results are summarized in Table 6.6 for the recognizdth the EMB-baseraining set,
in Table 6.7 for theEMB-12training set, and in Table 6.8 for ti&VMB-2 data. Concerning the
number of cases where the MFCC word accuracies were reacredeeded, the best results
were achieved fon =7. However, this happened only on a few test sets, and theoirament
was not significant. The remaining test sets on the resgectivognizer showed significantly
worse results than with MFCC features. The reason for thiotsclear. Taking into account
the experiments altogether, the root cepstrum was not comg in reverberated environment.
For EMB-basethe results are also displayed graphically in Figure 6.2Fagdre 6.3 in order to
give an impression of the best interval for the root paramete

6.2.2 p-Law Features in the EMBASSI Baseline SystenEMB-base

In the u-law features, the logarithm that is usually applied to thel Bpectrum coefficients is
replaced by a companding formula (see Chapter 5.2.3). Fesaivith different powers of 10 for
the user-defined factqr were analyzed in order to find alternatives for MFCC featumesse-
verberated environment. Preliminary experiments with1(? andy = 10° achieved bad results,
abovey, = 10° the word accuracies declined as well. For this reason, thairéng experiments
were restricted to integer exponents fobetween 4 and 9.

The recognition results are summarized in Table 6.9. Inra@give an impression about
the relation of MFCC andgi-law features, the results for these experiments are aksepted
graphically in Figure 6.4 and 6.5. With tliEeMB-basetraining set, improvement of the recog-
nition results could be achieved for all test sets, i.e. fbotheee microphone distances and for
4-gram and 0-gram language model. Witk 10° and 4-gram language model, the close-talking
signals reached a word accuracy of 95.0% (MFCC: 94.3%). imipeavement for the recordings
with 1 m microphone distance (92.3% vs. 90.2%) and the 2.5stanice recordings (87.0% vs.
84.1%) was even more clearly and significant on a 0.01 levet. seme holds also for the recog-
nition with 0-gram language model. In contrast to the finding[HSNO3] where erroneously
different initialization vectors for the features were disthere was no indication for the former
assumption that the best value fors dependent on the degree of reverberation in the test data.

It was reported for Root Cepstrum Coefficients that — at lBadtinear Frequency Cepstral
Coefficients (LFCC) without a Mel-like filterbank — differeroot functions for training and test
set can improve performance when noisy signals are testedreoognizer trained with clear
speech [AL93, LA94]. In order to find out whether this mighd@be valid foru-law features,
the data from 2.5 m microphone distance were tested oBEMig-basaecognizer (= 1) with
someyu values smaller than the one for training. But in contrasth® baseline MFCC result
of 84.1%, the word accuracy reached only about 75% for sksteps betweep=9-10° and
=10 so this approach was not further examined.
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\ EMB-baseroot cepstrum features \
| mic. dist. | lang. model| n=4|[ n=5|n=6|n=7|n=8| n=9| MFCC |
close-talk| 4-gram 90.6| 93.6| 940| 94.6| 94.4| 94.2 || 94.3
close-talk| 0O-gram 47.0| 59.2 | 63.8| 69.2| 66.7| 66.3| 70.0
1m 4-gram 77.8| 87.2|88.0|91.1| 90.7| 88.1| 90.2
Im O-gram 27.3| 424 | 483 | 48,6 | 479 | 46.6 || 524

25m 4-gram 66.7| 77.3| 82.1| 82.0| 80.5| 81.0|| 84.1
25m 0-gram 20.2| 29.0| 32.2| 345| 33.8| 345| 37.5

Table 6.6: Word accuracy f&MB-baseecognizers (root cepstrum features) with different root
parameters on test data with different microphone distances; the kesilts in each line are
printed in boldface.

| EMB-12 root cepstrum features |
‘ mic. dist. ‘ lang. modeIH n=4 ‘ n=5 ‘ n=6 ‘ n=7 ‘ n=8 ‘ n=9 H MFCC ‘
close-talk| 4-gram 81.6| 89.9|91.8| 926|924 | 91.2| 91.7
close-talk| 0-gram 345|485 | 53.6| 55.7 | 57.0| 57.4 | 57.7
Im 4-gram 78.4 1 89.3| 93.3| 92.7| 923 | 91.7| 94.0
Im O-gram 34.3| 47.7| 54.8| 60.0| 60.8| 57.9|| 61.9

2.5m 4-gram 69.6| 84.8| 87.6| 89.6| 89.0| 89.0| 88.4
2.5m O-gram 26.3| 39.7| 446 | 514|529 | 521 | 524

Table 6.7: Word accuracy fdEMB-12recognizers (root cepstrum features) with different root
parameters on test data with different microphone distances; the besilts in each line are
printed in boldface.

\ EMB-2, root cepstrum features \
‘ mic. dist. ‘ lang. modeIH n=4 ‘ n=5 ‘ n=6 ‘ n=7 ‘ n=8 ‘ n=9 H MFCC ‘
close-talk| 4-gram 91.6| 94.2| 94.7| 95.0| 94.8| 93.8|| 955
close-talk| 0-gram 50.6| 62.1| 66.6| 69.4| 69.2| 67.1| 71.4
Im 4-gram 82.2|1 921 93.8| 94.2| 943|924 | 94.4
Im 0-gram 36.5| 52.4 | 58.0| 61.5| 61.1| 59.3| 63.0
25m 4-gram 72.0| 83.9| 88.5| 88.1| 89.3| 89.7| 89.6
2.5m 0-gram 25.7| 40.3| 46.6 | 47.9| 499 | 51.2 | 55.3

Table 6.8: Word accuracy fdEMB-2 recognizers (root cepstrum features) with different root
parameters: on test data with different microphone distances; the beEsilts in each line are
printed in boldface.
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Figure 6.2: Word accuracy f@MB-baseecognizers with root cepstrum features and a 4-gram
language model; the horizontal lines represent the refultMB-basewnith MFCC.
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Figure 6.3: Word accuracy f@MB-baseecognizers with root cepstrum features and a 0-gram
language model; the horizontal lines represent the refultMB-basewnith MFCC.
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Figure 6.4: Word accuracy f&MB-basaecognizers with.-law features and a 4-gram language
model; the horizontal lines represent the resultdEbiB-basewnith MFCC.
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Figure 6.5: Word accuracy f&MB-basaecognizers with.-law features and a 0-gram language
model; the horizontal lines represent the resultdEbiB-basewnith MFCC.
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6.2.3 p-Law Features and Atrtificially Reverberated EMBASSI Data

As pointed out in the previous section, thdaw companding function shows advantages in
speech recognition for undistorted and reverberated mestomments on th&EMB-baserecog-
nizer that was trained on clear speech. It was further exadnivhether this also holds for artif-
ically reverberated training data on t&®B-12andEMB-2recognizer (Chapter 4.1.7). Again,
powers of 10 were used as values forThe results are summarized in Table 6.10 for the bigger
EMB-12training set and in Table 6.11 f&MB-2 In contrast to th&eMB-baserecognizer (Ta-
ble 6.9), here the-law features show positive effects mainly on the reverieertest data only.
There is also not only one single value fothat could be identified as the best one. These values
rather came from the entire range betweef diid 16. None of them reached a significance
level of p<0.01, however.

Again, theEMB-2recognizer with the training set consisting of close-tadkspeech and arti-
ficially reverberated recordings is the best compromisalfatifferent test environments. For the
close-talking test, however, MFCC are better thalaw features. In Chapter 6.1.3, the problems
arising from the different sizes of the EMBASSI trainingssahd their partial match of training
and test environment were discussed. Because of thesese#is® EMBASSI experiments can
only be seen as preliminary tests where the short training hielped to accelerate the search for
better feature parameters. Selected experiments froragbtgn were repeated orE¥BMOBIL
and Fatigue data. For the details, see the next section.

6.2.4 p-Law Features and Atrtificially Reverberated VERBMOBIL Data

Since the training of a ¥RBMOBIL recognizer and the recognition experiments are very time-
consuming (see Table 6.2), only the features and parameteeschosen that performed best
on the EMBASSI approach. This means that the Root Cepstrueffi€ents (Chapter 6.2.1)
were not taken into account any more as they mostly could vest e2sach the baseline results.
Only the-law features with the value ¢f= 10° were examined and compared to the respective
MFCC results.

Table 6.12 summarizes the results on therRgmoBIL-based recognizers with-law fea-
tures. It clearly shows the same tendency as for MFCC (cfleTal3), i.e. that on average the
recognize®VM-2 with the combination of clean and artificially reverberatesining speech is
most suitable for the recognition in different acousticiemvments (Table 6.13). This confirms
the EMBASSI results from the previous section once more.

The results best representing a real-world experiment e€agnizer that does not have any
information about the test environment are those from thigfra test data as their reverberated
version does not match any of the room acoustics seen indimeng data. Taking into account
the recognition with a 4-gram language model, the averagd accuracy on close-talking and
reverberated Fatigue data could be improved from 68.2%@viNhbaserecognizer with MFCC
to 76.8% on thé/M-2 recognizer with MFCC and finally to 77.2% withxlaw features where
the last step is unfortunately not a significant enhancenimertheless, Table 6.12 shows that
u-law features perform better in all of the testébl-12andVM-2 cases, regardless whether the
test signals were from a close-talking signal, artificialtlyerberated or recorded by a distant-
talking microphone. One exception has to be noted: In centmatheVM-2 recognizer with
MFCC, the word accuracy of theBRBMOBIL close-talking test set drops from 76.6% to 75.8%.
The reason for this could not be identified; the correspandigognition results with the 0-gram
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| EMB-base.-law features |
| mic.dist. | lang. model| =10 | p=1C° | x=10° | p=10" | x=10° | 4 =10 || MFCC |
close-talk| 4-gram 94.3 95.0 95.0 94.9 94.4 94.8 94.3
close-talk| 0O-gram 68.1 71.2 69.9 70.0 68.7 69.7 70.0
Im 4-gram 90.5 92.3 92.1 91.6 91.0 90.2 90.2
Im O-gram 51.7 55.7 52.4 53.1 50.9 52.2 52.4
2.5m 4-gram 85.3 87.0 83.6 85.4 84.5 84.3 84.1
2.5m O-gram 35.9 41.6 41.0 40.6 36.3 38.6 37.5

Table 6.9: Word accuracy foEMB-baserecognizers j-law features) with different values
for © on test data with different microphone distances; resultgailics are significantly bet-
ter (p <0.01) than orEMB-basewith MFCC. The best results in each line are printed in bold-
face.

| EMB-12 u-law features |
| mic.dist. | lang. model|| 4=10* [ =10 | p=10C° | y=10" | p=10° | p=10° | MFCC |
close-talk| 4-gram 92.3 91.9 91.8 924 92.3 92.0 91.7
close-talk| 0-gram 57.2 56.2 57.7 56.3 56.6 57.1 57.7
Im 4-gram 93.7 94.5 94.6 95.4 94.1 95.0 94.0
1m 0-gram 62.9 62.8 62.6 62.9 61.8 63.5 61.9
2.5m 4-gram 89.2 88.9 90.0 89.1 89.0 89.1 88.4
2.5m 0-gram 54.6 54.8 54.6 54.3 53.5 53.9 52.4

Table 6.10: Word accuracy f&MB-12recognizers-law features) with different values for
on test data with different microphone distances; the bestlts in each line are printed in
boldface.

| EMB-2, u-law features |
| mic.dist. | lang. model|| 4=10* [ =10 | p=10C° | 4=10" | p=10° | p =10 | MFCC |
close-talk| 4-gram 954 95.3 95.3 94.8 95.0 95.2 95.5
close-talk| 0-gram 70.8 69.4 70.0 68.6 70.3 70.5 71.4
Im 4-gram 94.7 94.1 94.4 93.8 94.3 94.3 94.4
1m 0-gram 64.2 63.2 63.2 64.6 65.3 63.6 63.0
25m 4-gram 89.5 90.7 89.0 89.9 88.7 89.3 89.6
2.5m O-gram 53.9 52.1 55.5 54.7 54.2 54.9 55.3

Table 6.11: Word accuracy f&MB-2recognizers(-law features) with different values faron
test data with different microphone distances; the beslttes each line are printed in boldface.
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test set lang. model| VM-base VM-12 VM-2
(n=10) | (n=10) | (u=10)
VERBMOBIL close-talk 4-gram 79.9(+0.2) | 73.4 #4.4) | 75.8 (—0.8)
VERBMOBIL close-talk 0-gram 50.2(-1.5) | 39.7 #3.0) | 49.1 (+2.4)
VERBMOBIL artif. reverb.| 4-gram 57.3(-3.1)| 68.1(+2.9) | 66.9(+2.0)
VERBMOBIL artif. reverb.| 0-gram 26.0 (-2.9)| 39.7(+1.6) | 38.4(+1.5)
Fatigue close-talk 4-gram 86.6(+0.1) | 82.1 ¢+1.2) | 85.5(+0.4)
Fatigue close-talk 0-gram 48.2(-1.3) | 39.6 +2.3) | 46.6 +1.2)
Fatigue reverberated 4-gram 44.4 (-3.4)| 71.1(+1.3) | 68.7(+0.2)
Fatigue reverberated 0-gram 11.1 (-1.3)| 31.7(+0.9) | 28.8(+0.7)

Table 6.12: Word accuracy forBRBMOBIL-based recognizerg:.{law features); the values in
parentheses are the difference to the corresponding reghlMFCC (see Table 6.3). Results
in italics are significantly bettep(< 0.01) than orWM-base(. = 10P) or on the corresponding
recognizer with MFCC (in parentheses), respectively. Tés besults in each line are printed in

boldface.

test set lang. model| VM-base VM-12 VM-2
(p=10) | (n=10) | (u=10)
VERBMOBIL close-talk/artif. reverh. 4-gram 68.7 (-1.4)| 70.8(+3.7) | 71.4(+0.6)
VERBMOBIL close-talk/artif. reverh. 0-gram 38.1(-2.2)| 39.7 #2.3) | 43.8(+2.0)
Fatigue close-talk / reverberated 4-gram 65.5 (-2.7)| 76.6(+1.2) | 77.2(+0.4)
Fatigue close-talk / reverberated 0-gram 29.7 (-1.3)| 35.7(+1.6) | 37.7(+0.9)

Table 6.13: Average word accuracy fOERBMOBIL-based recognizergi{law features) across
different acoustic situations; the values in parentheseshe difference to the corresponding
result with MFCC (see Table 6.4). Results in italics are iicgmtly better  <0.01) than on
VM-baseg(;. = 1C°) or on the corresponding recognizer with MFCC (in parerebggespectively.
The best results in each line are printed in boldface.

language model (49.1% withh= 1 vs. 46.7% on MFCC) show contrary behavior. Compared
to MFCC, most of the results for théM-baserecognizer got worse with-law features.

The outcome of these experiments is thdaw features in combination with artificially re-
verberated training data are beneficial for the recognitiocieverberated speech while they also
keep the recognition of clear speech at a high level.

6.2.5 Gaussianization of Feature Components

Gaussianization means the normalization of a set of vatusstch a Gaussian density function
with a mean value of 0 and a standard deviation of 1. Appliefé#&dures, it follows the idea
of cepstral mean subtraction [GM02] and was supposed tdecraare noise-robust features.
For this thesis, the normalization was not applied to alhef24 features that are computed per
frame (cf. Chapter 5.1). The speech energy and its derevatere left untouched as they repre-
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Figure 6.6: Gaussianization of the second MFCC @&R¥gmoBIL file 1G071A:HAHOO1A,
the original file’s mean value was 0.09 with a standard dmnadf 3.17. The corresponding
values of the gaussianized version were 0.05 and 0.88.

sent a completely different feature type and range. Onlyltheemaining components and their
first derivatives were normalized with respect to the eritiee This was done for MFCC (Chap-
ter 5.1.3), root cepstrum features (Chapter 5.2.2),,atalv features (Chapter 5.2.3). Figure 6.6
illustrates the distribution of one feature component foe éle before and after gaussianization.
The normalization was combined with all the EMBASSI tramscenarioEMB-base(Chap-
ter 4.1.3) EMB-12 andEMB-2(Chapter 4.1.7). The three test sets from the close-tatkiicgo-
phone and the distant-talking microphone with 1 m or 2.5 rtadise to the speaker, respectively,
were the same as in the previously described experimergsa(se Table 4.3).

There are not many experiments where the normalization wasflzial. Mostly the im-
provement was so small that it was not significant. Table 6umarizes all these cases. Only
anEMB-12recognizer with root cepstrum features{4) received consistently and significantly
better results than without gaussianization. Nevertelbdgy are still far below the recognition
rates that are reached with MFCC features.

Except for the mentioned exceptions, the feature normadizan general does not help to
improve recognition. For this reason, it was no longer usddrither experiments. The detailed
results for all recognizers are subsumed in Appendix C.

The next section will describe a preprocessing operatiahithcommonly used to enhance
the quality of noisy signals when more than one microphorevaslable. When they record
synchronously, then their signals can be combined to aesonyg and attenuate noise in this way.

6.3 Results on Beamformed Test Data

In the previous sections, two different approaches for eaing speech recognition in rever-
berated environment were introduced. The first one usdtatlly reverberated training data in
order to integrate the acoustic environment into the phooeats of the recognizer (Chapter 6.1).
The second one was based on features that were supposediaffeeied by reverberation. This
means that they should allow to recognize distorted sperch recognizer which was trained
on undistorted signals (Chapter 6.2). In this section, pnoeessing operation will be applied in
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| recognizer]  feature | mic.dist. | lang. model|| WAgauss| WAorig |

| EMB-base] root,n=6 | 1m | 4-gram | 89.6 | 88.0 |
EMB-12 root,n=4 close-talk| 4-gram 87.4 81.6
EMB-12 root,n=4 close-talk| 0O-gram 42.9 34.5
EMB-12 root,n=4 Im O-gram 36.9 34.3
EMB-12 root,n=4 25m 4-gram 73.8 69.6
EMB-12 root,n=4 25m O-gram 28.6 26.3

| EMB-12 | root,n=5 | close-talk] 4-gram | 90.8 | 89.9 |

| EMB-12 | root,n=5 | close-talk] O-gram | 64.2 | 62.1 |
EMB-base| u-law, p =10 || close-talk| 0-gram 68.2 68.1
EMB-base| u-law, =10 1m 0-gram 51.8 | 51.7
EMB-base| u-law, = 10° 2.5m 4-gram 84.0 | 83.6
EMB-base| u-law, i =10° 2.5m 4-gram 85.7 84.5
EMB-base| p-law, n=10° | 2.5m 0-gram 37.8 | 36.3
EMB-base| u-law, ;= 10° im 4-gram 90.9 | 90.2
EMB-base| u-law, ;= 10° 2.5m 4-gram 86.3 | 84.3

Table 6.14: Word accuracy for experiments where gaussdrigatures achieved better results
than the non-converted features; numbers printed in galenote improvements at least on a
0.01 significance level.

order to remove distortions from the test data and allow te@ss it with a recognizer for clean
speech.

6.3.1 Removing Reverberation from Audio Signals

Dereverberation on a single microphone is very difficult &1 TLK93]. The use of several mi-
crophones is much more successful [OSM98, Jun0Q]. It oftersistance the method of Blind
Deconvolution [MK88, Hay01, BAKO4]. Convolutional noisartalso be handled in the cepstral
domain by Blind Equalization [Mau98, CLLO3]. The quality@kpeech signal is highly depen-
dent on the type of the microphones. The use of a microphaag alows to separate signals
from different spatial locations, even if their bandwidthaerlap [OSM98]. When using more
than one microphone, the microphones do not have to be expetis/en with very cheap mi-
crophones, the error rate in far-field speech recognitionbeasubstantially lowered [DGMO03].

A completely different way to solve the problem is the apgiion of an artificial neural net-
work (ANN) which is trained with synchronously recordedsaetalking speech and reverberated
signals. The ANN learns to map a distorted signal to an uodexd one. This approach can be
used on the time-domain signals [Sgr91, Wei02] or in theufeatiomain [LCY'96]. For the
EMBASSI corpus (see Chapter 4.1), this was examined in [8{ei0

6.3.2 Beamforming

If more than one microphone is available, then the qualitgisforted recordings can be im-
proved by combining several synchronously recorded auléi® o a new one. The basic idea is
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that the desired signal, i.e. the speaker’s voice, is aragliind noise is canceled by appropriate
addition of the single microphone outputs. A rather simpleraach to achieve this is the delay-
and-sum beamformer (DSB), sometimes also called delayadddeamformer. It introduces a
time delay for each microphone in order to equalize the ifieruntimes from the sound source
and adds up the signals using weighting factors (cf. e.gM@8). These conventional beam-
formers do the runtime synchronization, the weighting dreldummation one after the other.
With noise reduction and adaptation of the acoustic moaslsrding to the preprocessing chan-
nel, better improvement can be achieved [USB03]. Howekiexwas not applied for this thesis.
Examples for advanced beamformers are the General Sid€kheeller (GSC, [GJ82]) and the
Frost beamformer [Fro72]. For an overview and further digtaf. [Her05].

6.3.3 Experiments with the EMBASSI Baseline SystereMB-base

Beamforming was performed in order to combine one new sigagbf several synchronously

recorded signals of the EMBASSI microphone array (Figug.4l his was done at the Chair of

Multimedia Communications and Signal Processing (LMSk $ignals from session 10 of the
EMBASSI corpus (see Chapter 4.1) served as the basis foethky oreated data. In this session
where the particular speaker was alone in a quiet room, gtartie to the array microphones
was 2.5 m, and the reverberation tiffig was 400 ms. Like for all other EMBASSI experiments,
the test speaker group consisted of 3 male and 3 female spdake also Table 4.3).

The delay-and-sum approach was applied in combination MECC andy-law features.
The experiments were performed with training and test filwgaining one single sentence each.
Note that the preprocessing was done on a recording of tive eession first (60 sentences), and
the signal was cut into single sentences afterward. Forghtife extraction, the mean feature
files of the particular recognizers which had been computetthe respective training data were
used for initialization.

The results for th&eMB-baserecognizer (Chapter 4.1.3) are shown in Table 6.15. There is
only one case where beamforming could enhance the wordacon the test data:E 10°),
and this improvement could only be achieved for the case eviiex 4-gram language model
was applied. With a 0-gram model, the results on data fromsamgle microphone without
preprocessing were always better.

6.3.4 Beamforming and Artificially Reverberated EMBASSI Ddaa

The recognizer&EMB-12andEMB-2 (Chapter 4.1.7) were also applied to the preprocessed data
in order to find out whether the combination of artificial rdseration in the training data and
beamforming of the natural reverberation in the test dassah@ositive effect on the recognition
results. Table 6.16 shows that the beamforming is beneiictake EMB-12scenario where only
reverberated training data are used. fFerl0’ andp = 1, the improvement almost reaches a
0.01 significance level when a 4-gram language model is uBkd.experiments were repeated
with theEMB-2recognizer which is trained with close-talking and revesled data (Table 6.17).
Here the improvement was not as good and consistent amotegtat values ofi. The advan-
tage is clearly on the side of tl&MB-12approach with the large training set. In order to exclude
the effects of different amounts of training data, beamfirtest data were also processed by
the VERBMOBIL-based recognizers. The results will be presented in theseexion.
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| EMB-basei-law features |
| mic.dist. | lang. model] x=10* | =1C° | x=1C° | =10" | =10 | ;=10 || MFCC |
25m 4-gram 85.3 87.0 83.6 85.4 84.5 84.3 84.1
2.5m O-gram 35.9 41.6 41.0 40.6 36.3 38.6 37.5

2.5m,DSB| 4-gram 778 | 86.0 | 851 | 833 | 816 | 82.7 80.6
2.5m,DSB| O0-gram 279 | 404 | 339 | 36.1 | 342 | 36.1 32.8

Table 6.15: Word accuracy f&@MB-basaecognizersy-law features) with different values far
on test data from one single distant-talking microphonefamith 11 microphones after delay-
and-sum beamforming (DSB); the best results in each linpraméed in boldface.

| EMB-12 u-law features |
| mic.dist. | lang. model] x=10" | ;=1C° | x=1C° | ;=10 | x=10° | ;=10 || MFCC |
2.5m 4-gram 89.2 88.9 90.0 89.1 89.0 89.1 88.4
2.5m O-gram 54.6 54.8 54.6 54.3 53.5 53.9 52.4

2.5m,DSB| 4-gram 90.1 | 89.8 | 909 | 916 | 914 | 90.1 90.2
2.5m,DSB| 0O-gram 521 | 52.2 | 56.7 | 55.2 | 56.1 | 54.1 53.9

Table 6.16: Word accuracy f&MB-12recognizers-law features) with different values for
on test data from one single distant-talking microphonefamith 11 microphones after delay-
and-sum beamforming (DSB); results in italics are signifisabetter { <0.01) than on one
single microphone. The best results in each line are printbdldface.

| EMB-2, u-law features |
| mic.dist. | lang. model] x=10* | =1C° | x=1C° | =10" | =10 | ;=10 || MFCC |
25m 4-gram 89.5 90.7 89.0 89.9 88.7 89.3 89.6
2.5m O-gram 53.9 52.1 55.5 54.7 54.2 54.9 55.3

2.5m,DSB| 4-gram 89.6 | 885 | 89.2 | 89.7 | 89.9 | 89.3 90.8
2.5m,DSB| 0-gram 50.6 | 49.7 | 51.7 | 523 | 53.1 | 51.0 53.1

Table 6.17: Word accuracy f&MB-2 recognizers j-law features) with different values for
on test data from one single distant-talking microphonefamah 11 microphones after delay-
and-sum beamforming (DSB); the best results in each linpraméed in boldface.
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6.3.5 Results on the ¥RBMOBIL -Based Recognizers

For the beamforming experiments with th&®MoBIL-based recognizers, a simple delay-and-
sum beamformer was implemented at the Chair of Pattern Réamy To determine the time
shift between two signals, this program randomly choosesih@ows from the current speech
signal with a length of 30 ms each. Since it could be assunmegdltle signals contain only the
speaker’s voice and no further noise source, it was suffitteassume the presence of speech
when a certain energy threshold is exceeded. In this caseedipective window is selected for
further processing. Otherwise the window is removed froenslection list, and a new window
is randomly chosen. Then each window of the current signadmspared to the corresponding
window of a reference signal (here from array microphonesé®; Figure 4.5). The time shift
between the signals is determined by the minimum differdreteveen the energy integrals of
both windows. The rounded shift average of all 10 windowsssuaned to be the actual shift
between current and reference signal. The current sigttamsshifted by this value. In the end,
all corresponding amplitude values of all synchronousagare summed up and divided by the
number of signals which is 13 here as the entire upper roweF#tigue microphone array was
involved.

Table 6.18 shows the results for the beamformed Fatigusée$Chapter 4.2) on the recog-
nizers trained with ¥RBMOBIL data and MFCC features. Table 6.19 shows the results when
p-law features were applied witlhh= 1(° which has been the best value foon the former test
sets (Chapter 6.2). Like for the signals from one single ophone, th&M-baserecognizer can-
not take advantage from thelaw features. The word accuracy of 63.1% (with 4-gram laggu
model) falls to 59.0% on the alternative features. ¥bdbt-12andVM-2, the u-law features gain
about one percent point which is significant on a 0.01 lewelcdmparison to the signals from
a single, distant-talking microphone (Table 6.3 and 6.tt#) beamforming yielded an unexpect-
edly large enhancement. For the best of the recogni¥@isi2, 1. = 10°), the word accuracy rose
from 71.7% and 31.7% (4-gram and O-gram, respectively) fa array microphone to 77.4%
and 37.0%, respectively, on the beamformed Fatigue testsetheVM-baseapproaches, even
a gain of 15% absolute for the 4-gram language model can benadas Obviously the signal
quality was substantially enhanced by adding up the 13 sgnclus, reverberated distant-talking
recordings. One of the reasons why the error reduction wasush less effective on the EM-
BASSI data might be the larger microphone distance theBeng.

An important note has to be made: The recordings in the Fatigtpus are not equally mod-
ulated. Signals from microphone #1 to #9 reach only about 80fe possible amplitude while
microphones #10 to #13 reach 50-60%. The design of the aammyot be the reason. All of
the microphones were in one line which excludes environaientluences during recording.
Probably an error occurred during the composition of theHBkersion of the corpus. It had to
be tested how strong the influence of this error was on the aosgn between microphone #7
alone, i.e. the original distant-talking test set, and tearbformed data. For this purpose, all
recordings were fully amplified by a sound processing pnogidoXversion 12.17.4). However,
an experiment with the modified beamformed test set oviiebaserecognizer showed just an
improvement of 0.1% word accuracy absolute. Nevertheiegaye a helpful impression of the
influence of different signal energies on beamforming areksh recognition: Recorded signals
of different modulation are the usual case in a living-roa@arsario where the microphones are
distributed within the room. Obviously weak signals do ne¢d adjustment to be beneficial for
speech recognition.
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test set lang. model|| VM-base| VM-12 VM-2
(MFCC) || (MFCC) || (MFCC)
Fatigue reverberated 4-gram 47.8 69.8 68.5
Fatigue reverberated 0-gram 12.4 30.8 28.1
Fatigue reverberated, DSB 4-gram 63.1 76.5 76.3
Fatigue reverberated, DSB 0-gram 19.6 36.1 34.4

Table 6.18: Word accuracy for BRBMOBIL-based recognizers (MFCC features) on test data
from one single distant-talking microphone and from 11 mjtrones after delay-and-sum beam-
forming (DSB); results in italics are significantly bettgr{ 0.01) than on one single microphone.
The best results in each line are printed in boldface.

test set lang. model| VM-base VM-12 VM-2
(u=10) | (=10) | (u=10)
Fatigue reverberated 4-gram || 44.4 (-3.4)| 71.1(+1.3) | 68.7(+0.2)
Fatigue reverberated 0-gram 11.1 (-1.3)] 31.7(+0.9) | 28.8(+0.7)
Fatigue reverberated, DSB 4-gram 59.0 (-4.1)| 77.4(+0.9) | 77.0(+0.7)
Fatigue reverberated, DSB 0-gram 17.6 (-2.0)| 37.0(+0.9) | 35.2(+0.8)

Table 6.19: Word accuracy forBRBMOBIL-based recognizerg{law features) on test data from
one single distant-talking microphone and from 11 micropsoafter delay-and-sum beamform-
ing (DSB); the values in parentheses are the differenceetadiresponding result with MFCC.
Results in italics are significantly better € 0.01) than orVM-base(.. = 1) or to the corre-
sponding recognizer with MFCC (in parentheses), respagtiihe best results in each line are
printed in boldface.

6.3.6 Summary and Conclusion

In this chapter, different methods that are supposed torexgthe recognition results of reverber-
ated test data have been introduced. The first one was thieatppi of artificially reverberated
training data. It was assumed that the test environmentisn@avn at training time. For this rea-
son, 12 different room impulse responses were measureffexedi positions in a room where
the reverberation time could be changed by curtains at this.wBhey were used to reverber-
ate the close-talking training data of a speech recognizie results for th&EMB-2 and the
VM-2 recognizer showed that it is possible to process both dilkeig and reverberated test
data sufficiently when the training set is composed fromesiadking recordings and artificially
reverberated signals. On the Fatigue test set, the averagkeagcuracy on clean and naturally
reverberated signals rose from 68.2%\dvl-baseto 76.8% onvM-2.

The second kind of changes to the baseline system concdraéekiture extraction. The root
cepstrum did hardly perform as good as the standard MFC@risgtbut some improvements on
u-law features were significant on the EMBASSI data. On thegbettest set, the average word
accuracy on clean and naturally reverberated signals edaci.2% on the/M-2 recognizer.
Although this is just slightly better than with MFCC, thdaw features can be recommended for
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the recognition of distant-talking speech.

Normalizing the features to a Gaussian distribution waefeial for some of the root cep-
strum features, but in general the gain in word accuracy roedunot consistently enough in
order to regard the procedure as reliable for other data.

The third approach did not change the recognizer but thel&tat Since several synchronous
recordings of the EMBASSI and Fatigue set were availablesdlsignals were combined by
delay-and-sum beamforming in order to create a new sigriblless noise. Indeed, for théM-
baserecognizer (MFCC features), the word accuracy on the revated part of the Fatigue test
set rose from 47.8% to 63.1%. Again, an artificially revedbed training set and-law features
have a positive effect on the results. The best word acclaelsieved was 77.4% on thév-12
recognizer withy =10,

Taking all results into account, the following conclusisrdrawn: For a recording scenario
in a room with distributed microphones where the test emvirent is not known at training time,
a speech recognizer should be trained with a mixture of di@&ag speech and artificially re-
verberated signals. It should apply beamforming as a poessing step and;alaw companding
function for the Mel spectrum during feature extraction.

The experiments in this chapter were performed in view ofeesp therapy session where
a patient should not be aware of the recording situation kvimght make him or her feel con-
trolled. The experiments were not made with samples of pagimspeech because there were
no speech corpora available that were large enough andiextby distant-talking microphones.
However, in Chapter 7.5 some of the results from this chaptéebe verified on artificially rever-
berated recordings of tracheoesophageal substitutesvoite next chapter will present methods
for the automatic evaluation of this kind of voice patholggy. automatic measures that correlate
with human evaluation criteria.



Chapter 7

Automatic Analysis of Tracheoesophageal
Voices

This chapter will discuss the agreement between human awodatic rating. As a reference,
5 experts (denoted by K, L, R, S, and U) judged the 41 availedaterdings of the patients
with tracheoesophageal (TE) substitute voice by 11 catésee Chapter 4.4). The recognizers
which were used for the initial experiments were deriveditbe VERBMOBIL-basedVM-base
recognizer (Chapter 4.3). One of them is polyphone-basddisatherefore calledNW-base-
poly; the other one is monophone-basdi¥\(-base-mono The recognition vocabulary for both
of them was reduced to the words of the text “The North Wind gredSun” (Chapter 4.4.1).
For details see also Chapter 5.1.6.

7.1 Automatic Speech Recognition vs. Human Evaluation

7.1.1 Baseline Recognition Results on tHéW-baseRecognizers

The recognizerBlW-base-polandNW-base-monwere both trained on young normal speakers.
One reason was that there were not enough data to train thitnalisiorted speech from elderly
people, and the other reason was that the recognizers wgpesed to simulate a naive listener
who had never heard TE speech before. Hence, there is noaanigmatch between the degree
of pathology in training and test speech but also in the agiheftraining speakers and the
laryng41test speakers (Chapter 4.4.2). Already the age differesaceause a loss in recognition
rate [WJ96]. For this reason, the recognizers were alsedesith an older and a younger group
of normal speakers (Chapter 4.5) in order to determine tlgeegeof recognition error that is
caused by age and by speech pathology. Because the wor@@cewas assumed to express the
speaker’s pathology in some way, all recognizers used aami¢ganguage model. In this way,
the error correction by the language model was kept at a nimifihe recognition results for all
speaker groups are summarized in Table 7.1. All speakeddhedext “The North Wind and the
Sun”. The lowest word accuracy for one TE speaker ofléingng41set onNW-base-polyvas
only —3.7% while the best one reached 71.6%; the average wals 36.9%. The control group of
16 young laryngeal speaketsas16§ showed an average of 83.3%. Sinceltas16group is age-
matched to the training speakers of the recognizers, thigdtres regarded as the maximum that
can be reached by any of the considered test groups. Nottheh@ato words that are different in
thebasl6variant of the text — “abzunehmen” instead of “auszuzielam “erwarmte” instead of

103
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| recognizer | speakers]| w(WA) | o(WA) |min(WA) | max(WA) |

NW-base-poly | bas16 83.3 5.7 69.4 92.6
NW-base-poly | kom18 67.3 9.1 49.1 81.7
NW-base-poly | laryng4l| 36.9 18.0 -3.7 71.6
NW-base-mono bas16 69.1 9.6 52.8 88.0
NW-base-mono kom18 58.0 7.2 40.7 72.2
NW-base-mono laryng4l| 35.3 13.7 0.9 63.3

Table 7.1: Word accuracy foMW-baseaecognizers (normal and TE speakers)

recognizer | speakers rater

K | L | R | s | U | al
NW-base-poly | laryng41| -0.74| —-0.79| —-0.82| -0.81| -0.75| —0.88
NW-base-mono laryng41| —0.67| -0.71| -0.81| —0.75| -0.71|| —0.82

Table 7.2: Correlatiom between word accuracy &fW-baseecognizers and human raters (in-
telligibility criterion, laryng4ldata)

“warmte” —were added to the recognition vocabulary of gmognizers (see also Appendix A.1).
The influence of age in normal speakers can be seen in them#éoogates for the oldekom18
group. Their mean word accuracy was 67.3%. The worst resast49.1%, the best speaker
reached only 81.7% WA. Neglecting minor influences by therabhone channel, the age of the
elderly speakers causes a 15 percent points lower recogméte than for the young speakers,
and the speech pathology of the TE speakers is responsitdadther 30 percent points.

The NW-base-monoecognizer was created because the more robust trainifgahono-
phones was supposed to have a positive effect on the remognit substitute voices. For the
laryng18group, the mean word accuracy slightly rose (see Chaptgr BuR on thelaryng41
group this effect could not be observed. Figure 7.2 showdhled'low quality” voices were rec-
ognized better while the monophone models were disadveotegfor the clearer voices. One
outlier appeared (filerD00059s01; speaker 10 in the figure). The voice of this man had a
gargling sound, and he breathed audibly very often. It isctedr whether this is the reason for
his bad results.

7.1.2 Correlation betweenNW-baseRecognizers and Human Rating

At the Department of Phoniatrics and Pedaudiology, 5 erepedad phoniatricians and scien-
tific engineers evaluated the voice and speech of the 41 éesbmps (see also Chapter 4.4.3).
The scores given by the experts were represented by numbexedn 1 (“very high”) and
5 (“very low”) for the respective criteria. The highest pidrs score for “quality” was 4, however.
The “overall quality” had to be rated without regarding &k tprevious criteria on a continuous
scale with values between 0.0 (“very good”) and 10.0 (“veay'D.

The possible maximum of the word accuracy is 100%, a lowenbtaloes not exist. In order
to compute the agreement between recognizers and humanss¥pesome agreement measures
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| WA interval || J—o;0[ | [0;15 | [15;2] | [25;4( |[40;10( |
| score | 5 ] 4] 3 | 2 | 1 |

Table 7.3: Mapping for word accuracy (WA) conversion to thege of human rating criteria

introduced in Chapter 3 the word accuracy has to be mappdttesame number range as the
raters’ scores. Experiments on the first human evaluatiohefaryng18 group yielded the
mapping of Table 7.3 (cf. [SHNO6]) for the conversion of the recognition results. Thisesole
was afterward used for all further experiments with ldmgng41data which also includes new
human ratings for thiaryngl18subset (see Chapter 4.4.3). In Chapter 7.2.4, an optiroizafi
the mapping with respect to tharyng4ldata will be addressed.

Table 7.4 and 7.5 contain the agreement between the wordaaycaf NW-base-polhand
NW-base-monarespectively, and the criteria of the human raters. Ford#szription and the
abbreviations of the criteria, see Table 4.12. Note thabhd« were not computed for “overall
quality” since this was marked on a continuous scale. ligibility, vocal tone, quality and use
of prosody during speaking have the highest correlatiorhéoword accuracy. This confirms
also the findings summarized in Table 4.13 that these @itmirelate highly with each other.
In the following, the intelligibility judgment will be focsed on since it is an expression of the
percentage of words the listener understood, just like thiehaccuracy.

The correlation between the average rater and the word aoctor the intelligibility crite-
rion wasr =—0.88 for theNW-base-polyecognizer and =—0.82 forNW-base-monoThe co-
efficient is negative because high recognition rates caora fgood” voices with a low score
number and vice versa. These values were compared to theatee agreement among the
expert group. For the files of tHaryng4ldata set, the correlation of each single rater’s intelligi-
bility scores to the average scores across the other fosopgmwas calculated (see Table 4.15).
All correlation values were between 0.80 and 0.87, i.e. thedvaccuracy as an measure of in-
telligibility is as good as the average human rater. Tabld 4hows the inter-rater correlation
between single experts. It ranges from 0.69 to 0.82. Agai@,agreement between the rec-
ognizers and single raters is almost the same, except farapative sign due to the different
domains (Table 7.2). The values for the weighted multifrage(w) among the group of 5 raters
and for the rater group vBlW-base-polare both 0.45, i.e. the agreement among the humans and
the agreement between the human raters and the machineatieadl The<pr(w) for the rater
group vs.NW-base-mone 0.41. Krippendorff's, which was 0.66 for the rater group, shows
the same tendency with=0.65 for NW-base-polyand o =0.61 for NW-base-mono The av-
erage score of the 5 raters and the word accuracy fronN¥Webase-monoecognizer are also
depicted in Figure 7.1. The next section will describe hogogaition and agreement change on
recognizers that were adapted to TE speech.

7.2 Results of Recognizer Adaptation to TE Voices

The interpolation of the output weights of semi-continuéllMMs with a small data set was
introduced in Chapter 5.3. The adaptation to the trachgdbegpeal speakers was performed
based upon th&lW-base-monoecognizer. The vocabulary of the recognizers for the @iot
periments with théaryngl8speakers group, however, consisted of the 71 words ocgurritne
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| NW-base-polylaryng4ldata |
ciiteion| r | p | k& [|ror(w)]| a |
quality || —-0.82| —-0.81| +0.26| +0.45 | +0.63
hoarse | +0.64| +0.66| +0.12| +0.17 | +0.20
effort +0.70| +0.69| +0.10| +0.16 | +0.16
penetr || -0.71| —-0.66| +0.15| +0.27 | +0.39
proso -0.80| -0.82| +0.15| +0.33 | +0.49
brsense | -0.73| -0.76| +0.12| +0.31 | +0.47
noise +0.52| +0.43| +0.02| +0.08 | +0.04

tone —-0.79| -0.80| +0.23| +0.44 | +0.61
change || +0.39| +0.37| +0.01| +0.02 | —0.08
intell —-0.88| -0.86 | +0.20| +0.45 | +0.65

overall -0.85| -0.84| — — —

Table 7.4: Agreement between the word accuracy oNWebase-polyecognizer and the human
rating criteria (Table 4.12) averaged over 5 experts onldhgg4l1speaker group; given are
Pearson’s,, Spearman’y, Cohen’sx, the weighted multi-rater by Davies and Fleiss, and
Krippendorff’'sa (see Chapter 3). For the “overall” criterion, rRaanda was computed due to
its continuous range.

| NW-base-mondaryng4ldata |
ciiterion| » | p | k& [|ror(w)| o |
quality | -0.72| -0.75| +0.27| +0.44 | +0.59
hoarse || +0.60| +0.64 | +0.13| +0.20 | +0.25
effort +0.55| +0.54 | +0.14| +0.22 | +0.26
penetr || -0.62| —0.60| +0.14| +0.24 | +0.34
proso -0.68| -0.71| +0.15| +0.31 | +0.45
brsense || -0.58| —-0.64 | +0.12| +0.28 | +0.41
noise +0.59| +0.51| +0.04| +0.11 | +0.09

tone -0.75| -0.77| +0.22| +0.42 | +0.58
change || +0.33| +0.28| +0.01| +0.03 | —-0.07
intell -0.82| -0.82| +0.19| +0.41 | +0.61

overall -0.76| -0.78| — — —

Table 7.5: Agreement between the word accuracy ofNNé-base-monaecognizer and the
human rating criteria (Table 4.12) averaged over 5 experthelaryng4lspeaker group; given
are Pearson’s, Spearman’e, Cohen’sx, the weighted multi-ratet by Davies and Fleiss, and
Krippendorff’'sa (see Chapter 3). For the “overall” criterion, Reanda was computed due to
its continuous range.
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Figure 7.1: Word accuracy vs. intelligibility score fiW-base-polyecognizer laryng4ldata,
see also Table 7.1 and 7.4); the scores were averaged acegperienced raters. The patients
are ordered with respect to their word accuracy.

text “The North Wind and the Sun” and the additional 32 wondd word fragments uttered by
these speakers (cf. [HS04] and Chapter 4.4.2).

7.2.1 Adaptation to Single Speakers

The recordings of théaryngl18test speakers showed a wide range in intelligibility andigua
of the substitute voices. Therefore, the interpolation firas not done for the speaker group as
a whole but to each single speaker separately. This lead thfféBent recognizers which will
in the following be treated as if they were a single one. Egdaker was tested on “his own”
recognizer only. The approaches where each HMM state wapolated with one single inter-
polation partner for each HMM state will be together denastl\W-i1-mono The 18 recog-
nizers interpolated with 40 interpolation partners willdzledNW-i40-mondsee Chapter 5.3).
The effects of the adaptation can be seen in Table 7.6 andd-igA. Recognition rates were
enhanced for almost all speakers whii-i40-monaowith its mean word accuracy of 36.4%
outperformedNW-i1-mondy 3 percent points. The results cannot be compared direchiyV-
base-mondecause the new recognizers were adapted to single spebietbey confirm the
findings by Steidl et al. that a high number of HMM interpadatipartners is better than a very
small one [SSHO03]. This is not the only conclusion that can be drawn. Thewnatcome of the
experiments is that speech recognition on tracheoesophsiglestitute voices can be improved
already by a small amount of appropriate adaptation data.

Like in Chapter 7.1.2 for the baseline recognizers, theetation between human and ma-
chine rating for the intelligibility rating was computed aie the word accuracy of a particular
speaker’s entire utterance served as the automaticallpetad score. The results for the single
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| recognizer | speakers| ;(WA) | o(WA) |min(WA) | max(WA) |
NW-base-poly | laryngl8| 28.2 18.1 2.8 62.7
NW-base-mono| laryng18| 28.7 12.1 10.0 50.0
NW-il-mono laryng18| 33.5 13.2 10.0 54.1

NW-i40-mono | laryng1l8| 36.4 14.7 9.2 55.6
NW-ilall-mono | laryng18| 31.9 12.8 10.8 50.9
NW-i40all-mono| laryng18| 33.8 13.4 8.3 52.7

Table 7.6: Word accuracy falW-baserecognizers and recognizers adapted to each single
speaker or the entire groufafyngl8data), respectively

recognizer speakers rater

K | L | R ] S | u | al
NW-base-poly | laryngl8|| -0.78| -0.61| -0.84| -0.81| —0.54| —0.83
NW-base-mono| laryng18|| -0.81| -0.65| -0.81| -0.79| -0.55|| —0.84
NW-il-mono laryng18| —0.82| —-0.60| —0.78| —0.80| —0.49|| -0.81
NW-i40-mono | laryngl18|| -0.81| -0.62| -0.73| -0.83| —-0.56|| —0.83
NW-ilall-mono | laryng18|| —-0.84| -0.60| -0.80| -0.80| —0.56|| —0.84
NW-i40all-mono| laryng18|| -0.81| -0.56| -0.73| -0.79| —-0.52|| —-0.79

Table 7.7: Correlatiom between word accuracy 6fW recognizers and human raters (intelligi-
bility criterion, laryngl18data)

raters and the overall correlation (average of the 5 exparésshown in Table 7.7. Despite the
adaptation of the derived recognizers with TE speech ankiigher recognition rates (Table 7.6),
the correlation between human and machine rating couldenenhanced.

7.2.2 Adaptation to the Entire laryng18 Speaker Group

The adaptation to single speakers will now be compared tosore recognizer which was

adapted to the entire group of 18 speakers. The approaclongtimterpolation partner for each
HMM state will be namedNW-ilall-mong andNW-i40all-monas the recognizer adapted with
40 partners for each state. Both of them are monophone-lm®kdise a unigram language
model, like their competitors.

The results are worse than for the single speaker optiroizatit still better than for the base-
line system (see Table 7.6 and Figure 7.3). Compared to befdlyphone- and the monophone-
based baseline recognizer, an increase of 3 and 5 perces$ pbword accuracy was achieved,
respectively. In order to confirm the positive effect of tluaptation with thdaryngl8data,
theNW-i40all-monaecognizer was also applied to tleeyng41group. The gain of word accu-
racy was the same. For the normal laryngeal speakers, thisrase still in the same range as
for NW-base-mon¢rable 7.8 and 7.1).

For thelaryngl8speakers, no significant improvement in the correlationushén and au-
tomatic evaluation of intelligibility was observed (Tallez). On thelaryng41data, theNW-
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| recognizer | speakers| ;(WA) | o(WA) |min(WA) | max(WA) |

NW-i40all-mono| bas16 67.7 10.0 50.0 87.0
NW-i40all-mono| kom18 59.3 6.2 48.1 74.1
NW-i40all-mono| laryng4l| 40.1 12.6 7.4 65.7

Table 7.8: Word accuracy for tiéW-i40all-monaecognizer (normal and TE speakers); for the
NW-baseecognizers, see Table 7.1.

recognizer speakers rater
K | L | R | s | U | al
| NW-i40all-mono] laryng41| —0.69| —0.72] —0.83| —0.76] —0.74| —0.84|

Table 7.9: Correlation between word accuracy diW-i40all-monorecognizer and human
raters (intelligibility criterion Jaryng4ldata); for theNW-baseecognizers, see Table 7.2.

i40all-monosystem was slightly better than the monophone-based haseliognizer (Table 7.9
and 7.2). For criteria other than intelligibility, there suao improvement (see Table 7.10 and 7.5).

7.2.3 Correlation of the Word Accuracy Computed vs. the Refeence Text

Usually the text reference for the calculation of the wordwaiacy was not the original written
text that the test person had to read but a hand-labelediteaason of the audio files in or-
der to exclude an influence of reading errors on the intéliligy evaluation. This ensured that
the word accuracy reflects merely the acoustic recognitimrewhich was important for these
basic experiments. Nevertheless, reading errors by thenpathave to be taken into account.
The laryng4l1speakers used 13 words that were not in the vocabulary ofetlie¢ The North
Wind and the Sun” (see also Table 4.11). The transliteraisfdhese data shows a word accu-
racy against the text reference of 98.7%, i.e. the rate afingaerrors is very low. When the
word accuracy between the recognized word sequence andférernice text is computed, then
the values are hardly affected (Table 7.11; for the reswlitsgithe transliteration, see Table 7.1
and 7.8). The correlation between the word accuracies ctedmn the text reference and the
experts’ average intelligibility scores (Table 7.12) was—0.82 for the baseline monophone-
based recognizéd\W-base-monandr =—0.84 for the interpolatedW-i40all-mongjust like for
the transliteration. The loss on the polyphone-ba$ddbase-polyrom » =-0.88 tor =-0.87 is
not significant (cf. Table 7.2 and 7.9). This means that theraatic evaluation of intelligibility
works also for data with some reading errors. For a futuneicdi application where record-
ings with higher error rates might occur, however, the twaetyof error — by reading and by
recognition — should be separated. Otherwise a patientanitigh-quality voice might get bad
evaluation results due to misread words.
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Figure 7.2: Word accuracy fadW-baseand recognizers adapted to single speakeryr{gl8
data, see also Table 7.6); the speakers are ordered withctasptheir result omNW-base-poly
Recordings processed by the same recognizer are conngdiaddfor the sake of clarity.
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Figure 7.3: Word accuracy fddW-baseand recognizers adapted to speaker grdapyigl8
data, see also Table 7.6); the speakers are ordered withctasptheir result omNW-base-poly
Recordings processed by the same recognizer are conngdiaddfor the sake of clarity.
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| NW-i40all-monglaryng4ldata |
ciiterion| » | p | k& [|ror(w)]| o |
quality | —0.71| -0.70| +0.24| +0.40 | +0.55
hoarse || +0.58| +0.58| +0.11| +0.20 | +0.27
effort +0.54 | +0.52| +0.13| +0.22 | +0.25
penetr || -0.67| —0.62| +0.13| +0.22 | +0.30
proso -0.67| -0.67| +0.13| +0.28 | +0.39
brsense || -0.57| —0.58 | +0.09| +0.26 | +0.38
noise +0.59| +0.50| +0.04| +0.11 | +0.07

tone -0.73| -0.72| +0.21| +0.38 | +0.52
change || +0.33| +0.30| +0.01| +0.03 | —0.08
intell —-0.84| —0.80| +0.17| +0.39 | +0.58

overall -0.76| —0.73| — — —

Table 7.10: Agreement between the word accuracy oNWei40all-monarecognizer and the
human rating criteria (Table 4.12) averaged over 5 experthelaryng4lspeaker group; given
are Pearson’s, Spearman’e, Cohen’sx, the weighted multi-ratet by Davies and Fleiss, and
Krippendorff’'sa (see Chapter 3). For the “overall” criterion, Reanda was computed due to
its continuous range. For tidW-baseecognizers, see Table 7.4 and 7.5.

| recognizer | speakers| ;(WA) | o(WA) |min(WA) | max(WA) |

NW-base-poly | laryng41l|| 36.9 18.0 -3.7 71.3
NW-base-mono| laryng41|| 35.2 13.4 0.9 61.1
| NW-i40all-mono] laryng41| 40.0 | 124 | 74 | 66.7 |

Table 7.11: Word accuracy fofWrecognizerslaryng4ldata); the word accuracy was computed
against the reference text andt against the transliteration of the audio files (for thoseiltes
see Table 7.1 and 7.8).

recognizer speakers rater

K | L | R ] S | u | al
NW-base-poly | laryng41| -0.73| -0.78| -0.81| -0.80| —-0.73|| —0.87
NW-base-mono| laryng41|| -0.67| -0.71| -0.80| -0.76| —0.70|| —0.82

| NW-i40all-mono] laryng41 || —0.68| —0.71| —0.82] —0.77] —0.72]| -0.84|

Table 7.12: Correlation between word accuracy d6fWrecognizers and human raters (intelligi-
bility criterion, laryng4ldata); the word accuracy was computed against the refetertand
not against the transliteration of the audio files (for thoseltessee Table 7.2 and 7.9).
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recognizer score Kpr(w)
5 | 4 | 3 | 2 | 1
| standard conversion |
NW-base-poly | ]—o;0[ | [0;19 | [15;29 | [25;4( |[40;10Q| 0.47
NW-base-mono|| ]-oo;0[ | [0;19 | [15;2F | [25;4d |[40;10Q| 0.36
NW-i40all-mono| ]—oo;0[ | [0;1H | [15;2 | [25;4] |[40;100 || 0.24
| optimal conversion |
NW-base-poly | ]—0;0[ | [0;29 | [25;39 | [39;61 |[61;10Q| 0.79
NW-base-mono|| ]-oo:5] | [5:24 | [22;3] | [30;5 |[55;10Q| 0.78
NW-i40all-mono|| ]—oo;10[ | [10;2d | [26;35 | [35;59 |[58;104 || 0.78

Table 7.13: Standard and optimal mapping intervals for warduracy conversion to human
intelligibility scores on thdaryng41ldata; the agreement (weighted multi-rateafter Davies
and Fleiss; see Chapter 3.2.4) was computed for the rouneedge score of 5 experts and the
respective recognizer.

7.2.4 Optimal Conversion of Word Accuracies to Integer Scags

The agreement of the automatic measures and the human s@s@sainly described by means
of Pearson’s correlation coefficientso far because of the following reasons: As described in
Chapter 3, the agreement measures based upon Cohant$ Krippendorff’sae weigh the dif-
ference between the automatic and human rating. This, rewemquires a conversion of the
continuous word accuracy or prosodic features (see Ch&@gto the same integer range as the
human rating criteria. Since different recognizers, edyphone- vs. monophone-based, yield
different intervals of word accuracy on the same data, foh@acognizer a particular conversion
has to be determined. In the case of the prosodic featurels feature may have its own range,
i.e. it needs its own specific mapping table. With the coti@tecoefficient, this is not necessary.
It expresses how closely the human ratings can be approxéhigt the automatic measure ex-
cept for a linear transformation. It was not the goal of thisstis to find this transformation for
each used feature. For judging the ability of automatic messsto approximate human rating
criteria, the correlation coefficient was sufficient.

In Table 7.3, a word accuracy mapping was introduced thatleasloped using tharyng18
data. In Table 7.13, the conversion was optimized with retsfpethe multi-raterpe(w) for the
special case daryng41ldata and the intelligibility criterion. Note thapr(w) was computed for
the rounded average score of the 5 experts and the respestivgnizer. Therefore, its values
deviate from those in the previous sections where the meags computed for the entire group
of 5 human raters and one recognizer. This example showshmwagreement can be tuned by
optimization to certain data. This, however, strongly i@ithe comparability to experiments
with other data, recognizers, or other automatically coiegpevaluation measures. Hence, it is
preferable to avoid the use of agreement measures thatmeddind of range mapping.

7.2.5 Conclusion

There is a strong correlation between the results of the huama the automatic method of
evaluating intelligibility. The word accuracy can obvihuserve as a valid stand-alone measure
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for this criterion, even if the speech recognizer was tringh normal speakers only. In a
communication situation between humans, the dialogue@ariare able to adapt their hearing
to the other person’s voice. The same aspect was simulatdteliyMM adaptation where the
recognition system was adapted to the particular persors ifitproved recognition rates, but
it corresponds to a human listener that knew the respegbgeker before. Therefore, these
approaches cannot be used in an objective evaluation methadcognition system that was
adapted to a group of pathologic speakers could be regasias &xpert who has listening
experience with the respective type of speech pathologweder, the adaptation obviously just
causes a shift of the word accuracy range towards higheesako no positive effect on the
correlation between word accuracy and human ratings cauldbiserved. For this reason, the
time-consuming adaptation is not necessary; later exgerisnwere only performed with the
baseline system. Furthermore, the adaptation incorpokat@wvledge that a naive listener does
not have, and it should be regarded how a person in everyi@again understand the patient.

The word accuracy is a very good measure for intelligihilitiiere are, however, evaluation
criteria that cannot be expressed by the number of correcttierstood or recognized words.
In order to find appropriate automatic counterparts for thersodic features were computed.
The results will be introduced in the next section.

7.3 Prosodic Analysis vs. Human Evaluation

Although there was a human rating criterion called “prosddwble 4.12), the prosodic features
that were introduced in Chapter 5.5 were not expected tceelater highly with this particular
criterion. One reason is that all patients read a standatdmi¢hout questions or quotations,
i.e. the occurrence of prosodic phenomena was not veryligcond, the human auditory im-
pression of prosodic phenomena is a complex combinatioaude signal energy and frequency
features. Each of these feature groups contributes justtaircgart to the overall impression.
Single features were supposed to express other critdk@aely.F, values for the evaluation of
“vocal tone”. For the pause duration measures, it is impottaat silent pauses at the beginning
or end of a file are not counted because they were often noeéddaysthe patient’s disability but
by the therapist using the recording program.

7.3.1 Prosodic Features on TE Speakers and Laryngeal Speake

In order to find out which prosodic features are particulaffgcted in tracheoesophageal speech,
the prosodic feature values of TE speakers and laryngeakepewere compared. Since only
18 elderly normal speakers were available, koen18group (Chapter 4.5) and tHaryng18
group (Chapter 4.4.2) served as the databases for thisiesgrer The required word hypotheses
graphs (WHGs, see Chapter 5.5.2) were provided byNWebase-monoecognizer. In order
to reduce the amount of word-based (local) and file-basexb&i)l features, each feature was
reduced to its mean value and standard deviation per spgaiap. Table 7.14 contains the
prosodic features whose average was at least 20% highewer for TE speakers. This thresh-
old was chosen arbitrarily in order to find a reasonably srfeallure group to examine. If the
threshold would have been at 10%, only 4 more features waud heen selected. Note that the
focus of this thesis is not to distinguish normal from sutbsti voices but to find the correlation
to human rating criteria that were defined for pathologicesionly. For this reason, the compar-
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ison between the TE speakers and the control group will oelgddressed shortly here. Large
differences were expected in the duration of pauses andsnord in the portions of voiced and
unvoiced sections (cf. Chapter 2). Many word-based featyedded similar results in different
word intervals, e.g. for the normalized enegpyNormWord-2,-1 andEnNormWord1,2 (cf. Chap-
ter 5.5). Therefore, the table shows one word interval fehdaature only.

Table 7.14 confirms that the articulation rate is lower with §peakers (cf. Table 4.11) be-
cause pause and word durations are much longer than for theahepeakers. The higher ab-
solute energy in an interval that contains words and thegphasveen themEnAbsWord-2,-1;
no. 4 in the table) might be caused by a higher perturbatioel i@ speaking and breathing.
The highest and lowest detected normalizgdaluesFOMaxWord0,0 andFOMinWord0,0 (no. 7
and 8) are the result of octave errors; for this aspect, sae @hapter 7.3.3. The voice on-
set position in the next word=0OnPosWord1,1; no.9) is so much higher for the pathologic
speech fiayng1d 1tkom1s= 1.80) because it combines the longer pause between thiemeéepoint
and the next word and the initial voiceless section of thiefahg word (see Figure 5.8). For the
current word, the ratio foFOOnPosWord0,0 is 0.93 (taryng18=—26.6, fikom1s=—28.7) which
shows that the distance from the reference point back todioe wnset is smaller than in normal
speech. This again reflects the long initial voiceless sectilhe global features show that the
portion of unvoiced frames is much higher with the laryngewtes, and again that they speak
slower. For jitter the difference between the speaker ggasimot so clear. It might have been
strongly affected by the unreliablg detection.

The trajectory of the features gets lost when they are aeerager entire recordings. In order
to obtain information whether a feature value shows a aentige or decline over time, the
covariance, correlation, regression coefficient, regoessonstant, and the mean square error,
respectively, between the word numbers within the file amdiélature values for the respective
words were computed. However, these features did not sHevarg differences between normal
and pathologic speech.

The next section will compare prosodic features of pathiolsgeech to human rating scores.

7.3.2 Correlation between Prosodic Features and Human Ratg

Finding the prosodic features that correlate with any ofrtiteng criteria of the human raters
introduced in Chapter 4.4.3 is difficult due to the high numifeneasures. All features have to
be compared to one single score value given by the ratersdertain criterion. Since the local
features are word-based, and the raters evaluated in &dsgtd manner, a similar method like
in Chapter 7.3.1 was applied to quickly exclude the scoatdfe pairs probably least useful for
automatic speech evaluation. First all values for eacHesfiegture in a file were reduced to their
mean value and standard deviation as in the previous sedtmmeach human rating criterion,
they were then compared to the average score of all rateesitdr speaker of tHaryng4lgroup.
Integrating information about the feature trajectory byaswing the interrelation between fea-
ture value and word number, like in Chapter 7.3.1, yielddastantially worse results and was
therefore discarded after the first tests.

On thelaryng18group, pilot experiments including also the statisticaidrey of this method
were performed (see [HNT7, HNS 06]). On thelaryng4ldata set, several measures reached
a correlation ofr| > 0.7. These results are summarized in Table 7.15 foNivebase-monand
theNW-base-polyecognizer. The results of both recognizers are very sintiiare are only few
remarkable differences. While the standard deviation efrtbrmalized word energgtNorm-
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‘ no. ‘ feature name H Hkom18 ‘ Hiaryng18 H Okom18 ‘ Olaryng18 ‘
1 | Pause—beforeWord0,0 14.1 31.2 4.2 18.6
2 | EnRegCoeffWord0,0 -5.6| -12.9 51 5.9
3 | EnNormWord-2,-1 -0.55| -0.29 0.05 0.32
4 | EnAbsWord-2,-1 95700| 121940 23760| 53370
5 | DurNormWord-2,-1 0.23 0.92 0.15 0.70
6 | FOMseRegWord-2,-1 64 210 17 87
7 | FOMaxWord0,0 0.15 0.33 0.05 0.09
8 | FOMinWord0,0 -0.14| -0.37| 0.03 0.15
9 | FOOnPosWord1,1 17.8 32.0 4.4 15.9

10 | FOOffPosWord0,0 -3.6 -4.9 0.8 1.9
11 | #+Voiced 1.74 2.53 0.20 0.67
12 | #-Voiced 0.74 1.71 0.20 0.57
13| Dur+Voiced 21.6 15.2 3.1 6.5
14 | Dur—Voiced 4.0 8.4 1.0 2.8
15 | DurMax+Voiced 16.7 9.1 2.5 4.5
16 | DurMax—Voiced 3.4 6.0 0.7 2.1
17 | ReINum+/-Voiced 3.5 2.7 1.0 1.6
18 | RelDur+Voiced/Sig 0.89 0.70| 0.16 0.28
19 | RelDur—Voiced/Sig 0.11 0.30 0.16 0.28
20 | StandDevFO 0.15 0.40 0.03 0.13

Table 7.14: Prosodic features (Chapter 5.5) with mean sahad differ at least by 20% between
normal speakerkém1§ and TE speakerdaryngl18; the upper part contains local, the lower
part global features.

Word0,0; no.10in the table) reaches=0.76 for the intelligibility criterion on the monophone-
based recognizer, the corresponding values on the polgphased approach dropsie 0.67.
No explanation for this phenomenon could be found. When tdredsrd deviation of the max-
imum Fy position in a word EFOMaxPosWord0,0; no.15) is compared to the human score de-
scribing the match of breath and sense units (“brsensegj tbr NW-base-mone=0.72 and
for NW-base-polpnly » =0.61 are reached. In general, theposition features achieved worse
results when then polyphone-based recognizer was usedre@len could be the less robust
training of the polyphone models due to less amount of tngiiata for each HMM. This might
lead to less accurate detection of the phone positions wieewaord hypotheses graphs are cre-
ated. For some of the rating criteria, some interestingriigslshould be noted:

e speech effort (“effort”): Itis expressed by articulatiaie, i.e. by the duration of words and
pauses. Several features readh 0.7 and higher; among them is the standard deviation of
DurAbsWord-2,-1 (no.13in Table 7.15), i.e. an interval containing two words and asea
Obviously, it is hard for the affected persons to keep thticalation rate constant.

e prosody (“proso”): Several duration features reach=0.6 and higher, but the human
“prosody” criterion describes complex phenomena and cémallg not be expressed by
single features.
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e match of breath and sense units (“brsense”): The humargsator this criterion can be
mapped by the prosody module although it does not recoghzddoundaries between
sense units (see also Chapter 7.3.4). When a patient bseaiifn syntactic constituents
and not only at phrase or sentence boundaries as a normakespezuld do it, the overall
duration of pauses will get longer which influences manyuest. Word duration features
get higher values as well when they are computed over moredha word because the
pause between the words is also included.

e vocal tone (“tone”): Itis expressed by energy featuresnigday the regression coefficient
of the error betweeldy trajectory and its regression linE{MseRegWord0,0; no.2) and
the absolute energy in two words and the pause between thefbgWord-2,-1; no.11).

e change of voice quality during reading (“change”): No relefeatures were found which
might be influenced by the fact that the information on thgti@ry of the single features
was lost by averaging over the entire files.

¢ overall intelligibility (“intell”): Duration features sbw the best correlations again, prob-
ably reflecting the fact that a slow speaker is understoogtbeHowever, intelligibility
could be much easier and more reliably judged by the wordracgysee Chapter 7.1).

e overall quality score (“overall”): The overall quality raty can be estimated from simi-
lar features like e.g. the intelligibility rating. It is natear at first sight why the quality
impression should be mostly dependent on some duratioaréessgtbut the data from the
rating session showed that the human ratings for intelligjtand overall quality are very
similar (see Chapter 4.4.4). This explains the findings erptiosodic features.

Like for the comparison between the prosodic features ofmaband pathologic speakers, the
results concerning the voice onset position in the currestdwWF0OnPosWord0,0) are much
worse than for the position in the following wordQOnPosWord1,1; no.5 and14in Table 7.15,
cf. Chapter 7.3.1) and for the voice offset position in thevpyus word F0OffPosWord-1,-1;
no.6). In both cases, the duration of the pause that is betweenepective word and the
reference point is essential for a good correlation to thagariteria. Computed on the current
word only, the best correlation is only abdut=0.45.

For the criteria of hoarseness (“hoarse”) and distortionmbufficient occlusion of the tra-
cheostoma (“noise”), no features were found that exceededyiven threshold ofr| >0.7.
For hoarseness the mean square error betwgerajectory and its regression curve yields val-
ues around =—0.6. For the noise criterion, the normalized energy it feature with about
r=-0.56, but the results are not reliable since the critewias actually defined as “distortions
by insufficient occlusion of tracheostoma”, and there weyeemough recordings that actually
contained stoma noise. For the quality of the substituteev@iquality”), the same features like
for the overall quality show similar but still worse result§he agreement between those two
criteria among the raters was=0.97 (see Table 4.13), so this result can easily be exmglaine
For the voice penetration (“penetr”) criterion, there wameelation ofr =—0.71 to the normal-
ized energyEnNormWord1,2, but it was not clear how the raters defined “voice penetmafior
themselves due to an unclear definition on the evaluatiostgbee also Chapter 4.4.3).

Nevertheless, the conclusion that can be drawn from thgseriexents is that some human
rating criteria have reliable automatically computablerelates. These should be taken into
account for a later refinement of the evaluation procedure.
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| no.| feature name

| correl.r (NW-base-monjo | correl.r (NW-base-poly

1 | Pause—-beforeWord0,0 (1) || intell +0.70, overall +0.70, | intell +0.70, overall +0.70,
brsense +0.73, effort —0.75| brsense +0.72, effort —0.74
2 | EnMseRegWord0,0  (u) || tone +0.68 tone +0.71
3 | DurNormWord-2,-1 () || overall +0.70, intell +0.72 | overall +0.69, intell +0.72
4 | DurAbsWord-2,-1 (1) || overall +0.70, brsense +0.75¢pverall +0.70, brsense +0.75,
effort —0.75 effort —0.76
5 | FOOnPosWord1,1 (1) || quality +0.72, intell +0.73, | quality +0.66, intell +0.68,
overall +0.74, brsense +0.71%0verall +0.69, brsense +0.69
6 | FOOffPosWord-1,-1  (w) || intell =0.70, proso -0.71, | intell-0.67, proso —0.67,
quality —0.71, overall -0.74, quality —0.69, overall —0.70
brsense —0.74 brsense —0.71
7 | Pause—beforeWord0,0 (o) || effort —0.72 effort —0.72
8 | Pause—afterword0,0 (o) | overall +0.70, intell +0.70, | overall +0.70, intell +0.71,
effort —0.75 effort —0.75
9 | EnMseRegWord0,0 (o) | tone +0.71 tone +0.72
10 | EnNormWord0,0 (o) || intell +0.76 intell +0.67
11 | EnAbsWord-2,-1 (o) || tone +0.70 tone +0.69
12 | DurNormWord0,0 (o) | intell +0.74 intell +0.73
13 | DurAbsWord-2,-1 (o) || effort -0.72 effort —0.71
14 | FOOnPosWord1,1 (o) || overall +0.70 overall +0.69
15 | FOMaxPosWord0,0 (o) | brsense +0.72 brsense +0.62

Table 7.15: Correlatior between prosodic features (Chapter 5.5) and human ratimgs f
TE speakersléryng41 group) on theNW-base-mon@and NW-base-polyecognizer; the cor-
relation was measured using the mean vajueof the standard deviatiomw) of all words per
file. Given are criteria with a correlation of| > 0.7 for at least one of the recognizers. For the

criteria names, see Table 4.12.
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7.3.3 Analysis of the Fundamental Frequency

The final F; values from the Prosody module (Chapter 5.5) are only adailm a normalized
form and after application of a logarithmic function. Fonsmexperiments, however, titg val-

ues from the basic feature computation of the prosody moaate used. In the prosodic anal-
ysis described in the previous section, all features wenepted for an interval containing at
least one word, or for the entire file. The basic prosodicuiest, however, are computed per
frame. The basid features are available as their original values computederiz; if no

Fy could be detected, the value O is returned for the respeftwee. TheF, computation al-
gorithm chosen for the task was a modification of the algoridteveloped by Bagshaw and
Medan [BHJ93, MYC91]; in the prosody module, it is denotedviesian-Bagshaw-Nutt algo-
rithm [Zei07]. Although it is very robust against distomis the results on the TE speech record-
ings suffer from many octave errors, i.e. instead of the featlamental frequency one of its
harmonics one or more octaves higher is found. Figure 7 wskite distribution of the detected
values for thdaryngl18speakers and their corresponding age-matched controp gkoun1§.
The graphics shows only those frames whereAheould be computed, i.e. all voiced sections.
In the case of the laryngectomees, these were 34809 of 1@ Tr&rhes (27.2%), and for the
elderly laryngeal speakers 44010 of 93971 frames (46.8%)inD reading the text “The North
wind and the Sun”, no majoF, changes were expected as the text doesn’t contain questions
or exclamations. Furthermore, both speaker groups coofsmstle persons only, and the voice
of laryngectomees mostly have rather Idy (cf. Table 2.5). For these reasons, all detected
values above 200 Hz for both groups were considered to beethudt I0f octave errors and were
excluded from further statistic analysis. This affecte@8 &ames (3.7%) of theom18record-
ings and 8988 frames (25.8%) of theryngl8signals. Interestingly, the maximum for both
groups is in the interval between 110 and 120 Hz, althoughaukl be higher for the laryn-
geal speakers. While, however, tkem18group shows an almost perfect Gaussian distribution,
there is a significant peak for the laryngectomees betweesn@070 Hz. The real portion of
Fy values is probably higher in the region below 100 Hz, but duedtave errors it might be
distributed among higher frequencies. The minimum fregué¢a be detected was set to 50 Hz.
Below 60 Hz, the detection algorithm has some problems desea during earlier experiments
in the working group which means that the results betweenneD&® Hz should also not be
considered for further analysis.

In order to achieve correlation measures between the @étégtvalues and the human rat-
ings, the frame-base#f, features had to be converted to word-based representdftus.was
done with the help of the word hypotheses graphs (WHGs, sept€h5.5.2) which contained
the proposed start and end frame numbers for each word. Ebrveard, the number of all
frames with 60< F; <200Hz and their averagg, were computed. The correlation between
these numbers and the human ratings was computed for theeBkespgroups. Unfortunately,
the best correlation values were substantially lower tlwaritfe prosodic features in the previ-
ous section for both thiaryng18and thelaryng4lspeakers, so no improvement over the “real”
prosodic features was reached. These results allow thenasism that for highly pathological
voices the automatic detection of exdGt values is less advantageous than the restriction to
the binary voiced-unvoiced decision. This is supportedhgyfindings in Table 7.15 where no
Iy feature could reach a high correlation to the rating catémiote that th&0 position features
represent durations, nét, values).

Figure 7.5 shows the detectdq values of the prosody module and the Hoarseness Dia-
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Figure 7.4: Distribution of automatically detectéy values for 18 laryngectomeelsifyngl18
and 18 laryngeal speaketsofn1§; 14 erroneous values (0.04%) faryngl8between 600 and
863 Hz are not displayed.

gram (Chapter 2.5.4) in vowel recordings of a group of 24 Téagers (cf. [TBS06]). The num-
ber of octave errors by the Hoarseness Diagram is obviousthrhigher than for the prosody
module because on highly pathologic voices the prosody ieodiecides that the respective
frame is unvoiced and returns 0. This again confirms thainbtsalways helpful to try to find an
Fy value under all circumstances and that the method of thegyasiodule is more suitable for
this type of voices.

The next section will focus on the speech properties of thegersons. It will use not only
guantitative information about pauses but also regard evimethe text they were set.

7.3.4 Measuring the Match of Breath and Sense Units

For measuring the match of breath and sense units (abledwiat “brsense”, see Table 4.12)
in the speech data of tharyng41group, segmental markers were added to the text “The North
Wind and the Sun” (see Appendix A.1). These markers definbdhadaries of text segments at
which speaking pauses are usually tolerated by the list@iagle 7.16 shows the marker types
used for the following experiments. For a detailed list axpl@nation, see [BKK98].

For each test signal, a word hypotheses graph (WHG) wasedreaing theNW-base-mono
recognizer (Chapter 5.1.6). It was made by forced alignrhaesed upon the text reference of
the original text “The North Wind and the Sun”. AfterwardsetWHG and the reference text
with segmental markers were aligned, i.e. the differenedwden them were analyzed. The rec-
ognizer detects pauses with a minimum duration of 90 ms. Wewsuch short pauses are not
perceived by a human listener. The minimum time for a paustes defined to 200 ms in order
to avoid misinterpretation of the stopgap of voiceless ipkssas pause, not only in the anal-
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Figure 7.5: Automatically detectefl, values by the prosody module and the Hoarseness Di-
agram (cf. [TBS06]); recordings of sustained vowels (/a/) were analyzedhfa group of

24 TE speakers. The speakers are ordered with respecttdthalue obtained by the Hoarse-
ness Diagram. They are connected by lines for the sake atyclar

\ marker\ at boundary between

SMB

main clause — main clause

SWe

main clause — subordinate clause

SC2

subordinate clause — subordinate cla

LISe

| C2

constituent — constituent

Table 7.16: Segmental markers denoting boundaries in feeeree text
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ysis of TE speakers [RFBS84a, PFKB89, BPH95, BLGO01], bui &s other speech patholo-
gies [NN06, NNH 00]. Examinations of stutterers’ speech had revealed #layd shorter than
250 ms are only identifiable by a trained listener, and delstgveen 250 and 500 ms cannot
be identified uniquely as being pathologic or not [MOO79].tMfiespect to the fact that many
laryngectomees have similar problems speaking fluente/niimimum pause duration for the
automatic evaluation was set to 500 ms.

Three types of mismatches between the WHG and the text wgtineetal markers had to be
distinguished in the alignment:

e Segmental marker vs. detected pause: There is a pause anhargagboundary; hence,
it was placed correctly by the speaker.

e Segmental marker vs. “NIL” symbol in WHG: No pause was detécit a segmental
boundary. This is not necessarily an error when the tesbpespeaks fast, or the re-
spective segments are on a lower hierarchical level, ergstitoents (markek C2).

e Pause in WHG but no segmental marker in the reference: This is\wanted pause since
no segmental boundary was defined.

These mismatch types can be evaluated for each of the defiadcers. In order to find out
how the human “brsense” criterion is influenced by the o@nwe of wanted (*w”) and un-
wanted (“unw”) pauses, the duratieh) the number of pauses, and the median duratiom
for each of the test files and both pause classes were complitedwanted pauses were also
separated into subtypes according to the segmental baesdiaey represent. Several automat-
ically computable measures were defined (see Table 7.178.fifl& one () was the ratio of
the durations of unwanted pauses and all pauses in the aledioSince the dialogue distortion
recognized by a listener is mostly dependent on the unwagraedes, forp, the duration of
unwanted pauses was weighted by their numbgy. For o3 the weighting factor was?,, be-
cause the degree of perceived dialogue distortion might gtmnger than linearly with a higher
number of breaks. In order to control whether the mediaor the mean valug is more advan-
tageous for the measures, the next experimeptwas performed with the median durations of
wanted and unwanted pauses instead of the average valueasTihe median has the advan-
tage that single, very long pauses do not affect it. Consigehe different classes of syntactic
boundaries in Table 7.16, one might suggest that a longaklretween constituents C2) is
likely to be “punished” harder by the raters than e.g. at lolawies between main or subordinate
clauses$MB, SM2 or SC2). Therefore, the maximumax,c,, the medianc,, and the meap,c;

of thel C2 pauses were integrated into the definitionpgfandyg. For the final measurg,, the
idea was extended by regarding also the boundaries betweendsnate clause$C2).

Table 7.17 shows the correlation of all measures to the gedraman rater’s “brsense” score.
Different correlation coefficients for single raters migéfiect the way how a listener judged for
the criterion. If a listener tolerates a few long pauses &eplbreathing during the text, then
an automatic measure regarding the median pause length b@detter than a measure based
upon the average pause durations. But obviously this wasumfor the test datas vs. ¢,).
The best correlation of =0.62 was reached fap, that simply distinguishes between the two
classes of wanted and unwanted pauses; employing@eand SC2 pauses is not necessary.
Further attempts using measuresSM3 andSM2 pauses were even less successful; the correla-
tion dropped drastically.
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measure rater

K| L|R|]S]U]al
pr = ghme — i || 0.49| 0.57| 0.37| 0.41| 0.42|| 0.54
(g = dumwtumy 0.52| 0.59| 0.43| 0.54| 0.49 0.62
(py = Lam i 0.39| 0.43| 0.30| 0.46| 0.39 || 0.47
(g = o 0.46| 0.55| 0.37| 0.42| 0.40| 0.53
p5 = g . MAXC 0.50| 0.51| 0.33| 0.42| 0.43 0.53
(o = i . fc2 0.50| 0.52| 0.32| 0.39| 0.42| 0.51
pr = T pc . pisc 0.51| 0.54| 0.35| 0.40| 0.43|| 0.54

Table 7.17: Correlatiom between human raters and automatically computed measurésef
criterion “match of breath and sense units” (“brsense”)lwlaryng41speaker group

A possible problem in the formulae is that the measures ddmmoomputed if the speaker
speaks without any pause as several denominators in thé@mwould become zero. But in
practical applications, this will not happen because a fimxspeech evaluation should have a
certain length to produce reliable results. Reading the"iéxe North Wind and the Sun” with-
out breathing is almost impossible for a laryngeal and evererfor a TE speaker. However, the
approach with the segmental markers was not further degdlbpcause the prosodic features
described in Chapter 5.5 reached correlation coefficieeystd|r| = 0.7 to the “brsense” crite-
rion (see Table 7.15). They do not even need a text refererthesyintactic annotations because
they do not differentiate between different pause classal. a

7.3.5 Summary

In this section, it was shown that the analysis of prosodatuiees reveals measures that show
a high correlation to human rating criteria. TE speech isaligislower than normal speech,
and the amount of voiced sections is strongly reduced. Tiesta many features measuring
voice onset and offset, and also word and pause durationsseTteatures show correlations
of |r| > 0.7 to criteria like “intelligibility”, “speech effort”, ‘match of breath and sense units”,
or “overall quality”. The criterion “vocal tone” is reflealeby energy measures. Due to the
high irregularity of substitute voices, it is not easy toadtcorrect values ofy. This might

be the reason whyy features do not match the rating criteria very well. Forgtiar voices,
features based upon the decision whether a frame is voicadvmiced are the better choice.
In order to measure whether a patient breathes only at sicbeindaries where also a normal
speaker would breathe, segmental markers were added textheeference of the audio files.
In this way, different pause types could be identified andsuesd. However, this approach
was less successful than the prosodic features that sirophain the average pause durations
in any place. Hence, the prosody module alone provides énfaagures to evaluate several of
the human rating criteria. Only the word accuracy as a medsuintelligibility (Chapter 7.1.2)
was better so far. The combination of prosody module and woodiracy will be addressed in
Chapter 7.7.
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The following section will introduce the automatic versiohan intelligibility test for tra-
cheoesophageal telephone speech.

7.4 The Post-Laryngectomy Telephone Test (PLTT)

7.4.1 |Initial Experiments with Telephone Speech Data

For a human being, it is possible to recognize a person’ssvover the telephone even when
the fundamental frequency is cut off. The perceived pitareonstructed by the human brain
from its harmonics ([Gol01] or [Gol02, pp. 407—-408]). TE akers are also able to do telephone
communication although the percentage of voiced sectiotiseir speech is very low. For ini-
tial experiments with “telephone” speech, tlaeyng41data were resampled with a sampling
frequency of 8 kHz. The files of this nelaryng418kHzset were then used to test speech rec-
ognizers for telephone data. In order to keep also the rezexgnthe same, the training data
were downsampled to an 8 kHz version. The recognikdfsbase-poly-8kHand NW-base-
mono-8kHzcorrespond taNW-base-polyand NW-base-monaespectively, which were trained
with 16 kHz data (Chapter 5.1.5). Table 7.18 compares thegration results of the 16 kHz and
the 8 kHz recognizers and shows the influence of the sampiaggéncy. Not only the mean
of the word accuracy is lower on the downsampled recordibgsalso its standard deviation
was reduced above average. This means that the range ofcibgnigon rates was not just
shifted to lower values; removing the frequencies above Z-&ldo removed a large portion of
the noisy parts in the signals which caused e.g. the minimond &ccuracy omNW-base-mono-
8kHzto rise from 0.9% to 5.6%. The correlation between the sirggelts of the 16 kHz and the
8kHz version of the polyphone-based recognizer is higherQ(95) than for both versions of
the monophone-based recognizer(0.92). The correlation of the word accuracy for the 8 kHz
data to the human rating criterion “intelligibility” is siam in Table 7.19. It is only slightly lower
than for the 16 kHz data (see also Table 7.4 and 7.5 or [RIBSRHN"06]).

7.4.2 Intelligibility Tests

In 1997, Lippmann stated that the recognition performari¢deiman listeners on different tasks
is by far better than that of machines [Lip97]. One decads |#tere are still unsolved problems
in this field especially when pathologic speech is examiidd recognition rate depends very
much on the amount of training data [Moo03, LGAO02]. A humastener of 50 years of age
heard about 100,000 hours of speech in his or her life whiohbeaseen as the “training data”
for the human “recognizer”. Moore [Moo03] states that it Wwbrequire a “fantastic amount of
speech” as training material for an automatic recognizeactieve the same recognition rates
as a human listener. Earlier studies revealed that in lisfeto laryngeal samples the dominant
human recognition error is a misperception of manner of pctdn while the dominant error for
TE speech is the perception of voiceless instead of voicedgnes [SCB01, SC02].

A German sentence test for subjective and “objective” dpagelligibility assessment was
developed by Kollmeier and Wesselkamp [KW97]. 20 test kststain 10 sentences each whose
phoneme frequency distribution approximates the didtiobwof the German language. This sec-
tion will present a similar approach for automatic evalomtof the intelligibility of tracheo-
esophageal substitute voices on the telephone [Rie07, HRM It involved two factors that
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| recognizer | testset | w(WA) | o(WA) [min(WA) | max(WA) |
NW-base-poly laryng41 36.9 18.0 -3.7 71.6
NW-base-poly-8kHz| laryng418kHz| 32.3 17.4 —7.4 69.4
NW-base-mono laryng41 35.3 13.7 0.9 63.3
NW-base-mono-8kHzlaryng418kHz | 33.4 12.1 5.6 62.0

Table 7.18: Recognition results on tlaeyng41speaker group for 16 kHz and 8 kHz recordings

| recognizer | testset || r | p [ & [roe(w)] a |
NW-base-poly laryng41 —-0.88| —0.86| +0.20| +0.45 | +0.65
NW-base-poly-8kHz| laryng418kHz | —0.85| —0.84| +0.23 | +0.47 | +0.68
NW-base-mono laryng41 -0.82| -0.82| +0.19| +0.41 | +0.61
NW-base-mono-8kHzlaryng418kHz| -0.81| —0.76| +0.19| +0.42 | +0.63

Table 7.19: Agreement between word accuracy and inteiliyitscore of 5 experts on the
laryng41speaker group for 16 kHz and 8 kHz recordings; given are Bears, Spearman’y,
Cohen’sk, the weighted multi-ratex by Davies and Fleiss, and Krippendorftis(see Chap-
ter 3).

substantially influence the intelligibility: the telepl®ohannel and the substitute voice.

7.4.3 PLTT Overview

The Post-Laryngectomy Telephone Test (PLTT, [Zen86, ZP86inetimes denoted as “Post-
Laryngectomy Telephone Intelligibility Test”) was devpé&l in order to represent the commu-
nication situation outside the patient’s usual environtnee. the family, by taking into ac-
count both voice and language. The patient calls a naie# cater a standard landline tele-
phone [Mad03]. The rater should not know about the text medtef the test and may not have
any hearing impairment.

The PLTT vocabulary consists of 400 monosyllabic words ad@ dentences, each of them
written on an individual card. For one session, 22 words asdriences are randomly chosen.
The first two words and the first sentence are not taken intoustdor evaluation. Instead, they
are supposed to allow the listener to adapt to the speaker.spbaker may only read what is
written on the cards. Any further utterances, like artiftbe German language has different ones
for each grammatical gender), are not allowed. The tesihBegith reading the words. If the
listener does not understand a word, he or she may say exextty “Please repeat the word.”
Further feedback about the intelligibility is not allowékhe sentences may not be repeated.

Three measures are computed from the experiment. The nushbesrds w the listener
understood correctly during the first attempt is multiplld5 and thus represents the word
intelligibility 7y0rq in percent. Words that were repeated do not get a point. Eatlersces gets
a score, of 0 to 2 points. Two points are assigned when the sentencandesstood completely
correct. One point is given if one word is missing or not usteed correctly. In all other cases,
the reader gets no point. The sentence intelligibility;in percent is the resulting sum of points
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multiplied with 10. The total intelligibilityi,s In percent is then given by

. . 5
1
A Wt =3 <5w +10 § cs> _ (7.1)
s=1

The test was shown to be valid, reliable and objective [Ze@#86], and it was also applied
to patients with ProvoX shunt valves before: Patients with voice prostheses reaahever-
age PLTT result of about 70 while the results of esophagesdisg's (Chapter 2.2.2) were just
under 60 ([MZ96], see also Table 2.1). During the developroéthe test, words with two sylla-
bles were excluded from the test material as they could besgaktoo easily by the listener even
when the voice quality was very low [ZP86]. A reason why tret ghould be done via telephone
was also given: A quiet room does not reflect a real-world comigation situation as noise is
present almost everywhere. In a noise-free environmeat/dice rehabilitation progress would
be overestimated. The telephone situation is easy to niaisuta thus suitable for practical use.
But like each evaluation that involves human raters, thasigesubjective (see also Chapter 2.4).
Therefore, an objective and automatic version of the PLT$ developed.

7.4.4 \Words and Sentences in the PLTT

The PLTT vocabulary was originally defined for a test dena@sdFreiburger Sprachverstand-
nistest” [Hah57, Bar01]. Six of the 400 words appeared tWiBart”, “Feld”, “Geld”, “Schiff”,
“Schrift”, “Tracht”). The electronic version of the 100 gences (“Marburger Satzliste”, [NB62])
was taken from the online resources of the Bavarian ArclovéSpeech Signals [BAS]. Words
and sentences were available in the old German orthogrdyatymas valid until 2005. They
were, however, not converted to the new orthography. On tleehand, the necessary changes
were rather small. On the other hand, all the readers weeglgloeople mostly not familiar with
the new way of writing (e.g. “Bass” instead of “BalR”) whichghi have caused confusion and
interruptions during reading.

For recording the PLTT, each patient got a unique sheet oémpafih instructions and the
texts to read on the telephone (see Appendix A.2). Firstlphadustained vowel (/a/) and the
story of “The North Wind and the Sun” (see Appendix A.1) weeearded. The last part of
the telephone session was the PLTT where each reader hadr@2 s 6 sentences that were
randomly extracted from the lists described above. The dat@ collected with a dialogue
system provided by Sympalog Voice Solutibndhe speech therapist who was present when
the patients called the system reported that some peopldifi@dlities to listen to and follow
the instructions and do the reading task alternately. FHerr#ason, later recordings were not
interrupted by the system any more (see Appendix A.2).

A speech recognition system can only recognize the wordedtm its vocabulary list.
This list had to be created from the words and sentences rogun the PLTT. This, how-
ever, is not enough to simulate a human listener. A humargbdeiows more words than those
occurring in the test which might cause misperceptions. rtteioto simulate this in the auto-
matic test, the vocabulary list of the recognizer had to iereded by words phonetically similar
to those of the actual vocabulary. This was done in [RieO7hieydefinition of a modified Lev-
enshtein distance for phonetic transcriptions. It invdheeweighting function which assigns

http://www.sympalog.com
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phoneme pairs that sound similar (e.g. /s/ and /z/) a low meigd thus finds the desired words.
In this way, the basic PLTT vocabulary that consisted of 788ds PLTT-smal) was expanded
to 1017 wordsPLTT-largg. The additional words and their transliterations weretakkom the
CELEX dictionary [BPG95]. The ¥RBMOBIL baseline training seatM-base(see Chapter 4.3)
was downsampled at 8 kHz sampling frequency,ERBMOBIL recognizer was trained and the
vocabulary changed to tHeLTT-smallor PLTT-largeword list, respectively. For both cases,
a polyphone-based and a monophone-based version weredreatO-gram language model
was used so that the results are only dependent on the acowxtels.

7.4.5 Test Data and Automatic Evaluation Results

Atest set of PLTT recordingpltt_8kH2 from 31 TE speakers was available where each record-
ing contained all words and sentences the respective spegceout. The speakers were 25 men
and 6 women (63.4 8.7 years old); all of them were provided with a shunt valvéhefProvo®
type (Chapter 2.2.5). The files were also segmented so thatveard and sentence was stored
in a separate file. This was done in order to explore whetheelatliomatic evaluation is in-
fluenced by noise or non-verbals between the words in therdabbrdings. This database is
denoted apltt_-mod 8kHz The human listeners were 8 male and 3 female students (evage:
22.5+ 1.2 years). None of them had experience with voice and spaealysis. For recording
the PLTT, each patient got a unique sheet of paper with iostns and 22 words and 6 sentences
of the test that were randomly chosen. The first two words heditst sentence were neither
used for human nor for automatic evaluation. The ratersriist to thepltt_seg8kHzdata set.
They could pause the play-back to write down the understdtedaunce.

Although the raters had never heard TE voices before, tke-rater correlation between one
rater and the remaining 10 for the total intelligibility;.; was greater than=0.8 for all persons.
However, perceptive results varied strongly among thesat€he difference in the average of
Tiotal fOr the “best” and the “worst” rater was more than 20 pointsoktshows how strongly
the test depends on the particular listener. The standardta was very similar for all raters,
however (see [Rie07]).

The recognition results and the PLTT measures both for rezegs and human raters are
displayed in Table 7.20. Since the first part of a PLTT sessasists of single words, not only
the word accuracy (WA) but also the word recognition rate Wilds computed. It is based on
the formula for the word accuracy (6.1), but the number ofdsar,s that are wrongly inserted
by the recognizer is not counted. In comparison to the humamhich reached 55%, the
automatic recognition rates are much lower due to the foligweasons: The speakers had read
the text “The North Wind and the Sun” right before the PLTT amele therefore exhausted.
The bad signal quality of the telephone transmission andattethat the training data of the
recognizers were just downsampled and not real telephagechphad also negative influence.
No sentence was recognized completely correct accorditiget®LTT rules. For this reason,
isentWas 0 for all recognizers. Word accuracy and word recognmitade for the human raters
were computed from their written transliteration of the iaudes.

Although the automatic recognition yielded so bad resthis,correlation to the human rat-
ings was high (see Table 7.21). The best correlation betweeautomatic measure and the
overall PLTT resulti Was reached for the word recognition rate on the polyphaset rec-
ognizers. Both Pearson’s and Spearman’s correlation veret®.9. Since a word that was not
understood by the listener on first attempt does not get & jpoiyway, it is not necessary to
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data set pltt_8kHz pltt_mod 8kHz

vocabulary | PLTT-small| PLTT-large | PLTT-small| PLTT-large || raters
recog. units| mono| poly | mono| poly | mono| poly | mono| poly

1(WA) 10.0| 1.8 8.0|-0.1 92| 03| 7.4|-15| 551
a(WA) 14.8| 20.4| 13.5|19.9| 14.7|21.4| 12.9|20.2|| 214
1(WR) 17.3| 16.6| 14.4|13.7|| 16.4|15.6| 14.2|13.2|| 55.3
c(WR) 13.2| 12.6| 9.3|11.2 9.9|10.8| 8.7|10.3| 214
1(iword) 17.8| 13.1| 145|10.9| 14.1|11.1| 12.0| 94| 414
o (iword) 15.1| 13.0| 12.8|10.9| 13.8|11.6| 12.7|11.1} 21.3
14 (iseny 0.0, 0.0f 0.0| 0. 00| 0.0 0.0| 0.0| 52.8
0 (isent) 0.0, 0.0f 0.0| 0. 00| 0.0 0.0| 0.0 283
1 (total) 89| 6.6/ 7.3| 55 70| 55| 6.0| 47| 47.1
o (itotal) 75| 65| 6.4| 58 69| 58| 6.4| 56| 220

Table 7.20: Average word accuracy (WA), word recognitiaie I&VR), and the PLTT measures
Tword, sent @Nd o fOr Speech recognizers and human raters [RiePkt;8kHz denotes the
recordings containing all words and sentences of one patiemne file; in thepltt_mod8kHz
data, the files were hand-segmented and contained one worge@entence each.

data set pltt_8kHz pltt_mod 8kHz

vocabulary PLTT-small| PLTT-large | PLTT-small| PLTT-large
recognition units | mono| poly | mono| poly | mono| poly | mono| poly
7(WArec, itotal, um) || 0.71 | 0.72] 0.72 | 0.71| 0.72 | 0.67| 0.71 | 0.70
P(WA rec, itotal, hum) || 0.84 | 0.81| 0.83 | 0.80| 0.81 | 0.76| 0.79 | 0.79

7(WRrec, ttotal, hum) || 0.81 | 0.88| 0.82 | 0.85| 0.85 | 0.89| 0.86 | 0.89
P(WReg, itotar, hum) || 0.86 | 0.93| 0.87 | 0.92| 0.88 | 0.90| 0.90 | 0.90

Table 7.21: Pearson’s correlatioand Spearman’s correlatigprbetween the speech recognizers’
results (“rec”) and the human raters’ average values (“hyRie07]); the best results in each
line are printed in boldface.

consider word repetition in the automatic version at alk. iRore details, see [Rie07].

The outcome of these experiments is that the PLTT can beaggblay an objective, automatic
approach. The question whether monophone-based or palgpbased recognizers are better for
the task could not be answered. When the word accuracy wagareohtoi;..;, monophones
were advantageous; when the word recognition rate was aseshd, the polyphone-based rec-
ognizers were closer to the human rating. There were alse sases in which the correlation
was slightly better when each word and sentence was pratesparately, but in general the
long pltt_8kHzrecordings which contain the entire test can be used withigot segmentation.

The PLTT deals with speech that is — in addition to its pathple also deteriorated by a
telephone channel. The next section will address a simitaslpm, namely recordings within a
room but with a certain distance between speaker and mioraph
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7.5 Simulated Distant-Talking TE Recordings

In Chapter 5.2, the root cepstrum and fidaw features were introduced in order to achieve
better recognition results under reverberation. Howemdly the latter was successful. In this
section, these features will be tested on substitute vano@smulated) reverberant environment.
The usual recording situation where a headset is used mayl& & negative influence on the
patient. The patient might feel watched or controlled whermhshe is aware that other people
could get access to the recording. If the microphone is sdreeelse in the room, this effect
is attenuated. For patients after head or neck surgery,ingearheadset can also be painful.
Furthermore, in everyday communication the listenersaislb be at some distance to the speaker
and thus get influenced by room reverberation. Therefoessd¢bnario with a distant microphone
reflects the acquisition of more realistic data.

7.5.1 Test Data and Recognizers

As no real distant-talking data from laryngectomees weedl@vle, the experiments were made
using artificially reverberated close-talking signals.stead of thdaryng4l data sampled at
16 kHz, thelaryng418kHz data set was examined because speech recognizers usergtiff
features were available for 8 kHz data already, and the ledioa between the human intelligibil-
ity criterion and the word accuracy was almost the same orH¥Gnd 8 kHz data (Chapter 7.4).
For testing, théaryng41 8kHzdata were convolved with three room impulse responses @ee T
ble 7.22) which were chosen from those which had been séléotdhe training data of some
of the VERBMOBIL-based recognizers (see Table 4.4). The impulse resporesesid11090
simulating a room with a reverberation tinig, of 250 ms, a microphone distance of 60cm
and a microphone in front of the speaker, i.e. at an angle 6ft®@he microphone array,
h413120 (T, = 250 ms, distance 240 cm, angle 120°), &d@2105 (T, = 400 ms, distance
120 cm, angle 105°). They are depicted in Figure 7.6.

Three types of features were investigated following theeexpents on normal voices in
Chapter 6. The recognizer that used MFCC features was ddWédbase-mono-8kHas intro-
duced in Chapter 7.4. Two further recognizers were availabiploying modified features and
the respective parameter values that yielded the besttsesulthe \ERBMOBIL and Fatigue
data. The root cepstrum recognizer which uses theobt in the feature companding func-
tion (see Chapter 5.2.2 and 6.2.1) will be denotetl¥&root7-mono-8kHzFor theu-law fea-
tures (Chapter 5.2.3), the factor= 10° was chosen according to the findings in Chapter 6.2.2.
The respective recognizer is callBW-mule5-mono-8kHZAIl recognizers were trained with
close-talking speech only. They were monophone-basedsediaiunigram language model.

7.5.2 Results

Table 7.23 shows the word accuracy computed using the ifienasion of the respective data
sets. When the word accuracy was computed against the fexémee, the differences were
marginal. Analogous to the findings in Chapter 6.2, the repstrum could not improve the
results, the MFCC are always better. Tiraw features, however, are consistently better even
on substitute voices and thus proof to be an alternativedacliaissic Mel-cepstrum approach
also for pathologic speech. However, the improvement wasigaificant on the data used in
this thesis. The degree of reverberation in the test sigi@ds not only have an impact on the
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Figure 7.6: Waveform and spectrogram of the impulse regsingl 1090 (75, =250 ms, left),
h413120 (Tgo =250 ms, middle), and422105 (Ts, =400 ms, right)

word recognition but also on the correlation between wortligacy and human intelligibility
score (Table 7.24). For close-talking speech, it was absut0.8 (Chapter 7.1.2). For the rever-
berated data, it is much worse. Note, however, that for tkpeement the human ratings of the
laryng41close-talking data had to be used since no human evaluatidhé reverberated files
was available. Nevertheless, the results show an integeaipect: The same kind of reverber-
ation must have different effects on different voices. @bgiy the relation between the word
accuracy on close-talking and deteriorated speech is meddj otherwise they would yield the
same correlation to the human ratings. This effect shouleiaenined again on a database that
contains real distant-talking data and human evaluatisnli®for exactly these data.

7.6 Visualization of Results

The Sammon transform, introduced in Chapter 5.4, was apfi¢he speech data of the laryn-
gectomees (Chapter 4.4) in order to achieve a graphicatseptation of the evaluation results.
The “distance” between the speakers was determined by iadapie NW-base-moneecog-
nizer (Chapter 5.1.6) to the single speakers and measuowngtine Hidden Markov Models
changed during this procedure. In the Sammon map (or “caynedghe laryng18 speaker
group and the normal-speaking elderly and younger contolgkoml18andbas16 see Chap-
ter 4.5), all speaker groups were separated from each dilgaré 7.7). It confirms the results
of Zorn [Zor06] where in a similar setup also the groups witk highest and lowest speech
pathology had the largest distance between them. The gldennal speakers can be regarded
as “slightly pathologic” due to natural changes in the vatéigher age. For this reason, they
are located between the young, normal group and the TE gifeuthermore, the high-pitched
voices among which are all women in thas16set are located in the lower area of the cosmos
while the low-pitched voices can be found in the upper region

In order to find out whether the Sammon transform can alsoidigtate subgroups within
one speaker group, tharyng4lset was examined. Which voice or speech properties are ex-
pressed by the map can be visualized by assigning gray saakesvo the markings representing
the speakers (“stars”). In Figure 7.8, the word accuracyheNW-base-polyand NW-base-
monois depicted. It shows that there is obviously a tendencywase speakers — in terms of
word accuracy — appear in the upper area of the map. This @sisumis confirmed when the
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| test set | speakers| impulse response T, (ms) | dist. (cm)| angle ()]
laryng418kHzrev-a | laryng41l h411090 250 60 90
laryng418kHzrev-b | laryng41l h413120 250 240 120
laryng418kHzrev-c | laryng4l h422105 400 120 105

Table 7.22: Artificially reverberated TE speaker sets

| recognizer | test set | w(WA) | o(WA) | min(WA) | max(WA) |
NW-base-poly-8kHz | laryng418kHz 32.3 17.4 —7.4 69.4
NW-base-mono-8kHz | laryng418kHz 33.4 12.1 5.6 62.0
NW-base-mono-8kHz | laryng418kHzrev-a|| 31.3 10.9 10.2 58.3
NW-root7-mono-8kHz | laryng418kHzrev-a|| 28.3 10.6 5.6 51.4
NW-mule5-mono-8kHzlaryng418kHzrev-a|| 31.8 11.0 111 57.4
NW-base-mono-8kHz | laryng418kHzrev-b | 24.8 8.6 9.3 46.3
NW-root7-mono-8kHz | laryng418kHzrev-b 22.7 8.0 4.6 40.4
NW-mule5-mono-8kHzlaryng418kHzrev-b 26.1 9.2 7.4 47.3
NW-base-mono-8kHz | laryng418kHzrev-c 21.4 5.7 8.3 35.2
NW-root7-mono-8kHz | laryng418kHzrev-c 20.1 6.2 6.5 35.2
NW-mule5-mono-8kHzlaryng418kHzrev-c 22.0 6.0 12.0 36.1

Table 7.23: Word accuracy for different features on theinaband artificially reverberated
laryng418kHzdata (computed against the transliteration of the tespfiles

| recognizer | test set | r | p | & |koe(w)] o |
NW-base-poly-8kHz | laryng418kHz -0.85| -0.84| +0.23| +0.47 | +0.68
NW-base-mono-8kHz | laryng418kHz -0.81| -0.76| +0.19| +0.42 | +0.63

NW-base-mono-8kHz | laryng418kHzrev-a| —0.73| —0.70| +0.20| +0.42 | +0.62
NW-root7-mono-8kHz | laryng418kHzrev-a| —0.75| —-0.74| +0.23| +0.45 | +0.64
NW-mule5-mono-8kHzlaryng418kHzrev-a | —-0.66 | —0.64| +0.20| +0.42 | +0.62
NW-base-mono-8kHz | laryng418kHzrev-b || —0.58| —0.59| +0.18 | +0.39 | +0.59
NW-root7-mono-8kHz | laryng418kHzrev-b || —-0.55| —0.50| +0.19| +0.41 | +0.61
NW-mule5-mono-8kHzlaryng418kHzrev-b || —-0.59| —-0.62| +0.21| +0.42 | +0.61
NW-base-mono-8kHz | laryng418kHzrev-c | —0.56| —0.52| +0.14 | +0.37 | +0.57
NW-root7-mono-8kHz | laryng418kHzrev-c | —-0.61| —0.59| +0.18 | +0.38 | +0.57
NW-mule5-mono-8kHzlaryng418kHzrev-c | —0.58| -0.58| +0.17| +0.39 | +0.60

Table 7.24: Agreement between word accuracy and intelliyilscore of 5 experts on the orig-
inal and artificially reverberateldryng418kHzdata; given are Pearson's Spearman’s, Co-
hen’sk, the weighted multi-ratet by Davies and Fleiss, and Krippendorftis(see Chapter 3).
Note that the human ratings were actually made foldhngng4ldata set.
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Figure 7.7: Sammon map of tHaryngl8 data @) and the normal-speaking control groups
kom18(v) andbas16(o with gender symbol); basis of the map was the adaptationeoNil-
base-monweecognizer to each speaker.

human evaluation results are coded by shades of grey. Inkira@es in Figure 7.9, a speaker
was drawn the darker the better he or she was rated. In oraltéomine how good the Sam-
mon transform mapped the respective rating criteria, theegarocedure was applied as by Zorn
in [Zor06, Chapter 3.5]: All speakers are orthogonally megppo a line through the center of
the graphics. The correlation of the positions of the prtai@stars on the axis and the respective
human ratings is then used as a measure how good the rati@gasriis represented in the map.
Table 7.25 contains the best correlation for all criterigetiher with the angle of the axis in the
cosmos where an angle of 0° means a horizontal line. For thid accuracy, the correlation
values are in the same range as those that Zorn had achieubd lanyng18group. ForNW-
base-polyit wasr =0.74 for an angle of —60°, for thdW-base-moneecognizer; =0.63 was
reached at —70°. These results were also confirmed by negitession with th&Vekapack-
age [WFO05]. The absolute correlation values were exactysdime as with the line projection
method.

Rating criteria like intelligibility and overall qualityan be expressed better than the change
of voice quality during reading, for instance (see Figur@ &nd Table 7.25). This affects the
same criteria as when the speaker is evaluated by meanswbtheaccuracy (cf. Chapter 7.1).
In this way, Sammon maps can provide a descriptive reprasentof speech data at least for
several criteria which may be helpful for the medical persdin clinical practice.

Up to now, the correlation of only one automatic measure todmu evaluation results was
examined at a time. A concluding experiment will reveal vileethere is a group of features that
can together represent human ratings better than singleuresa This experiment will follow in
the next section.
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Figure 7.8: Sammon maps of theyng41ldata; the shading denotes the word accuracy of the
NW-base-poly (leftand theNW-base-moncecognizel(right).
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Figure 7.9: Sammon maps of theyng4ldata; the shading denotes the experts’ ratings on the
change of voice quality during readirfigft) and intelligibility (right).
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criterion | angle (°)| r |

quality -69 | —0.60
hoarse -80 | +0.50
effort -72 | +0.70
penetr —-42 | -0.52
proso —-63 | -0.61
brsense —-69 | -0.57
noise —-72 | +0.51
tone -75 | -0.68
change -90 | +0.40
intell —-60 | —-0.66
overall —-68 | -0.64

Table 7.25: Maximum correlation between human rating criteria (see Table 4.12) and star
positions in Sammon maps t#ryng41data; lines are drawn through the center of the map at
certain angles, and the position of the stars mapped onrtée ik compared to the human rating.

7.7 Selection of a Set of Objective Measures

In Chapter 7.1, the word accuracy was introduced as a goainatic measure for the human
rating criterion of intelligibility. On theNW-base-polyecognizer and thiaryng4lspeech data,
it reached a correlation of=—0.88 to the averaged intelligibility score of 5 ratersk€a7.4).
In Chapter 7.3, the correlation between human rating caiterd several prosodic features (Chap-
ter 5.5) was presented. For tleyng4lspeakers, there were also correlations abo\e0.7 for
the intelligibility criterion, mainly on features that negsent word and pause durations but also —
at least for theNW-base-polyecognizer — for the normalized word energynfNormWord0,0, see
Table 7.15). In the frame of [RieQ7], it was examined whetheombination of prosodic features
and the word accuracy can improve the agreement betweenmhamdeautomatic evaluation.
The computation was done with PEAKS (“Program for Evaluatad Analysis of all Kinds
of Speech disorders”, [Mai06]) a client-server environimgeveloped at the Chair of Pattern
Recognition that allows to record and analyze speech rewgsdLeave-one-speaker-out multi-
correlation/regression analysis [CC83] was applied tdaheng41files in order to find the fea-
tures with the best average rank among word accuracy anodgioofeatures. These features
and the average expert rating were then the input data fopd@upector Regression (SVR;
[Pla98, SS04]). The multi-correlation/regression analgetermined the following features as
being most relevant for intelligibility analysis:

1. word accuracy; on average it had the best r&ri@r all configurations in the leave-one-out
experiment £ =0).

2. globalFy mean FOMeanG, R=1)

3. position of the energy maximum in a word, averaged ovewaitls EnMaxPosWord0,0,
R=3.2)

4. mean square error computed betweenAheurve and the regression line of tlig for
word pairs FOMseRegWord-1,0, R =3.6)
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Figure 7.10: SVR value and human average intelligibilitprecfrom 5 human raters for the
laryng41speakers

None of the three selected prosodic features had shown acbigélation to the human rating
alone. For the position of the energy maximum, it was very (ow0.15); FOMseRegWord-1,0
reached-=0.34, the globaF, meanr=0.51.

Given the average human intelligibility score as referatate, the SVR on the word accuracy
and the three prosodic features for each speaker tried thcptee human score and produced
the regression values shown in Figure 7.10 from the autcalBticomputed measure. The
correlation between these values and the human scoress@82. This is better than for the
word accuracy alone with-| =0.88. However, the word accuracy was independent from the
human evaluation while the SVR tried to match the human scaee the regression optimized
the result with respect to the actual test data and only ®isgecific criterion. For this reason,
it is not clear whether there was a real improvement by combithe prosodic features and the
word accuracy.

No difference in the correlation between SVR and human gatias found when the word
accuracy was not computed against the transliterationedfatiyng4l1files but against the text
reference. This supports the findings of Chapter 7.2.3theerate of reading errors was so low
that the time-consuming manual transliteration of the mrdiog before the automatic analysis
could be avoided by using the reference text instead. Foe metails, see [Rie07, NMH7].

7.8 Conclusion

In this chapter, measures and features for the automatioaian of tracheoesophageal sub-
stitute voices were introduced. The examined methods ayatitims allow for the following
conclusions: The speech data acquired from a patient sth@uédread out standard text in or-
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der to get comparable material for all readers. Usually eesp intelligibility tests, like the
PLTT (Chapter 7.4), a naive listener who does not know theds/or texts in advance writes
down the understood words. It was shown in this thesis, hewévat the human-machine corre-
lation for a known standard text evaluated by expert ratetlssespeech recognizer is in the same
range (cf. Chapter 7.1 and 7.4). When the text is the samdlfep@akers, then the variance in
the utterances among different speakers can be used tonileeinformation about voice and
speech pathology. Since intelligibility is the most imgart criterion in human evaluation, the
word accuracy of a speech recognizer is an essential meaSareooperative speakers, who
keep to a given text, the word recognition rate yields alrmdesitical results and can therefore be
neglected. For non-cooperative speakers, like littledehit, it should be taken into account (see
e.g. [MNNSO06]).

The evaluation of other human rating criteria is not suffite possible without prosodic
analysis based upon features computed from word and paustos, speech energy, and fun-
damental frequency. Averaged across word or word-pausd-wtervals, they serve as objective
measures for criteria like the match of breath and senss,waital tone, or speech effort (Chap-
ter 7.3). The speech recognizer for the analysis shouldhgottie words from the standard text
in its vocabulary list only. It was shown that the word accyraan be computed with respect
to the text reference, i.e. no transliteration of the spedath is necessary (see Chapter 7.2.3).
Only a zerogram or unigram language model should be useder@te the model eliminates
too many recognition errors that might reflect a low degrdatetligibility for a particular voice.

The best results for human-machine correlation are actiieten the signal quality is high,
i.e. when speech is recorded with 16 kHz sampling frequendyndnen a headset is used. Never-
theless, it was shown that for telephone-based evaluasioreeded for the PLTT, for instance,
the correlation is only slightly worse (Chapter 7.4). Thaupeof the speech recognizer does not
have to be changed — except for the corresponding trainiteg da

Instead of MFCC as featureg;law features can be recommended for the recognition of all
examined types of speech quality. For the telephone reugsdf tracheoesophageal substitute
speech, consistent improvement of word accuracy was aghid¥owever, the amount of avail-
able data was not large enough to determine whether the yprent was significant. Since it
is desired to allow the patient to do a speech evaluation@es®m his or her home, future ex-
periments on larger data sets will answer this questionhérekperiments with the EMBASSI
and VERBMOBIL corpus, significancy was confirmed (see Chapter 6.2). Thansthafu-law
features should be applied when the speech data are redoydedistant-talking microphone
which is a step towards therapy sessions that are more ctablerfor the patients. Then the
speech recognizer should also be trained with close-@kpeech and artificially reverberated
signals. When even a microphone array is available, beannfigras a preprocessing step will
be beneficial (see Chapter 6.3 and 7.5).

For clinical practice, the developed methods have the ddgarthat they are objective and in-
dependent from single experts, and the measures can setkie fitescription of therapy progress
because they are always based on the same algorithms and darya their way of judging
over time as a human being would do.

The next chapter will compare the findings of this thesis ts#hof other researchers.
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Chapter 8

Discussion

The topic of this thesis is the automatic analysis of sulitgtioices where the focus is on speech-
related criteria since current methods regard sustaineelgmnly.

Usually, automatic evaluation performs analysis of sust@ivowels (see e.g. [GSO6,
FMSKOO] or Chapter 2.5). However, in everyday life it is inmfamt for the patient to speak
fluently and intelligible. These properties cannot be eatdd on a single vowel recording.
For this reason, speech recognition methods were appliedder to analyze a read-out stan-
dard text. The number of correctly recognized words alomsydver, is not sufficient. It is
also important to know how fast the patients speak, whetier have to breathe within a sen-
tence, or if the speaking effort is high. In order to obtaimrmation on these criteria, automatic
prosodic analysis was performed on the same text recordMigsio and Niimi used the alter-
nating motion rate (AMR) and the sequential motion rate (MR measures for articulation
abilities [NNO6]. AMR involves the fast repetition of a siegsyllable, e.g. /pa/, while SMR is
measured on repeated syllable sequences, e.g. /patakéthidihesis, these measures were not
computed because the articulation rate is inherent in thd wod pause duration features which
are provided by the prosody module.

Still, a standard text does not represent a real commuaicatiuation. Read and spontaneous
speech are significantly different. While the articulatrate of read speech is lower, it shows
more pitch variation and less vowel reduction than sportasspeech [BJKN92, Bla95, Laa97].
Nevertheless, a text is a much closer approximation of fligrntaneous speech than a single,
sustained vowel. For the hoarseness criterion, Halberkiand that acoustic parameters from
connected speech are more reliable than from sustaineds/@Mad04]. The study did not in-
volve substitute voices, but it is likely that it also holds them. A standard text is a necessary
compromise because the evaluation of completely free Bpgeald require much more effort
in all components of the analysis framework. For instandeemdifferent speakers use words
of different length or with a different percentage of vowelseir results of the word duration
analysis or voiced-voiceless decisions will become incarable to other subjects. Furthermore,
spoken words that are not in the vocabulary list of the speecbgnizer will cause recogni-
tion errors. A bad intelligibility rating for the reader niigbe the result even when his or her
voice sounds very natural. In order to avoid this, recorslinfjfree speech would have to be
transliterated by hand for each speaker.

Concerning the human evaluation reference of the recosdthg use of a standard text may
mainly affect the intelligibility criterion. When the sanext is used for every reader and it is too
short, then the rater will know it by heart very quickly whiotight lead to better intelligibility

137
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scores than the speaker actually deserves. However, wilsfreech the raters’ vocabulary must
be a superset of the patients’ vocabulary; otherwise it nagphn that a speaker gets worse
intelligibility scores when the listener does not know sashéhe words.

A study which was close to the approach used in this thesigpedermed by the research
group of Moerman et al. ((MPNMO04], see also Chapter 5.5). Among other pathologic speak-
ers, 53 TE speakers were rated by semi-professional listelmeagreement with the findings in
Chapter 4.4.4, the criteria of “intelligibility” and the &meral impression” correlated highly with
each other{=0.89) when the files were evaluated by 10 speech pathologiists. However,
correlations to automatically computed measures were Th&. best measure was the averaged
voicing evidence (AVE) which denotes the degree of peritglaf the signal. For sustained vow-
els, it reached =0.44; for the syllables /apa/, /ipi/, and /upu/, it was Istig higher ¢ =0.49).
On the voiced frames of a Dutch 18-word phrase, it droppedt0.38. The best measure on the
short text was the percentage of voiced frames({.46). On thdaryng4ldata (Chapter 4.4.2)
where the text “The North Wind and the Sun” was read, the saatefe reached a correlation of
—0.24 on theNW-base-monctecognizer only. However, in Chapter 7.3 there are seveoalqalic
features based upon pause durations and voice onset ar pdfsiéons that reach a correlation
of about|r| =0.7. Hence, the number of voiced sections alone is not grifiéor evaluation,
and a more detailed prosodic analysis, like introduced iap@dr 5.5, should be a basic part of
automatic evaluation for pathologic voices.

Moerman et al. also report difficulties in finding the fundantaé frequency. Their pitch
extractors often detected the first harmonié{Ror subharmonic (1/&) instead of the reaky.
They state that the classical acoustic methods of objeatie evaluation on the means of jitter,
shimmer and harmonics-to-noise ratio are not suitable dibsttute voices. These problems
were confirmed in Chapter 7.3.3.

This thesis concentrated on the analysis of speech prepe#ther than on acoustic prop-
erties since the latter have been examined for several ygaaslarge number of researchers.
Although there are problems in finding periodic signals inspieech, the frequency-based fea-
tures should not be neglected completely in a future cli@ealuation method. They can, in case
of less severe voices, give additional information and #ilesv a more differentiated analysis.
A speech recognizer and a prosody module are the other edsemponents of such a product.

In general, studies about voice quality can hardly be coathadften, the number of patients
is so small that the results are not reliable (see Table 266ad 2.7). Further problems are
caused by the different experience of the human raters. gk laariability in intra- and inter-
rater reliability in different studies was subsumed fotamge in [KGK93].

When good results for automatic voice classification or watn methods are presented
in the literature, then there are often strong restrictiomscerning the data or the reference.
Moran et al. examined 58 normal and 573 pathologic recosdafigustained /a/ that were trans-
mitted by telephone. The automatic classification into tine ¢lasses “normal” or “pathologic”
worked with an accuracy of 74.2% while it was 89.1% on cleaesp that was not deteriorated
by a telephone channel [MRCL0O6, RMLO04]. Different pitch ardplitude perturbation features
were used for the classification. The results are intergsiimce they give an impression about
the influence of the telephone line which is important fotddike the Post-Laryngectomy Tele-
phone Test (PLTT, Chapter 7.4), but no substitute voice®w&amined, and the speech data
consisted of a sustained vowel per speaker only. The mosiriant aspect is, however, that the
algorithm only distinguished between two classes. Theatsis no detailed human reference to
which the automatic result could be compared.
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In Chapter 5.3 and 7.2, the adaptation of speech recogrizdis speakers was described.
The achieved recognition rates were higher than for thelinasgystem that was trained with
normal speech only, but the correlation to the human rativege not improved. An assessment
system for dysphonic voices based upon speaker recogmstead of speech recognition tech-
nigues was proposed by Fredouille et al. [FPB]. They used 2 minutes of speech per speaker to
train a Gaussian mixture model from which pathologic classlefs were derived by maximum
a posteriori (MAP) adaptation. With 32 MFCC and the respedtierivatives, they achieved 85%
of success rate on the two-class problem “normal” vs. “dgsiti. When the pathologic voices
were classified into four categories according to the G patan{grade of abnormality) of the
GRBAS scale ([Hir81], see Chapter 2.4.2), the classificatade was 69%. In contrast to this
thesis, 3 human raters did not evaluate the speech datatspabut they decided together for
the human reference score. This eliminated the problemetnater discrepancy already before
the comparison of human and automatic results. Criteraihkelligibility, match of breath and
sense units, etc., were not evaluated.

The analysis methods used in this thesis were also applieglephone speech (Chapter 7.4).
The evaluation of PLTT recordings was automated, the “dljetand time-consuming evalu-
ation of intelligibility by a human listener was replaced dgterministic speech recognition
methods. Morales et al. showed how it is possible to use agreper trained with data that
was sampled with 16 kHz, i.e. which has a spectrum range fréan8kHz, and to apply it on
band-limited data [MHTO5]. They achieved this by introchgcorrector terms in the Mel spec-
trum gained from the comparison of filtered and unfilteredeshematerial. Digit recognition for
telephone band speech could be improved from 23.2% wordacgto 73.0% which was very
close to the result of the unfiltered speech data (75.3%). edevy no pathologic voices were
examined. In this thesis, the recognition rates and thestadion between automatic and hu-
man recognition do not substantially change when telepbprech is processed (Chapter 7.4).
For this reason, this kind of preprocessing is not neceskharfprtunately, many studies that ex-
amine new features for speech recognition or preprocessapg perform digit recognition only,
and it cannot be predicted how the algorithms behave on d#taavnuch larger vocabulary.

Wilpon et al., who examined automatic recognition of elgaspeakers via telephone, relied
also on (Danish) digit recognition only [WJ96]. They fournt the error rate rises for elderly
speakers even if the recognizer is trained with speech fniggtoup only, but they also state that
for speakers up to 70 years there is no need for “special ptieca”. In Chapter 7.1, however,
the word accuracy for the elderkom18group was 67.3% while for the yourigas16group
it was 83.3% for the polyphone-basillV-base-polyecognizer. With a smaller vocabulary, this
difference would have probably been less severe and regjasdeon-significant.

One of the goals in speech therapy is to provide a situatiothi® affected persons where
they can act and speak freely. Until now, the patients weaaal$et during recording because
otherwise the signal quality might not be sufficient. Wheatiicrophone is supposed to be fur-
ther away from the speaker, many distortions deterioraedtldio file. The most important one
is reverberation. For this reason, speech recognitiorverberated environment was examined
in this thesis. Itis very difficult to compare different steslin the literature on this topic. The au-
dio data differ not only in the number of speakers but alstiédcoustic conditions in which the
data were collected. The room impulse response is depeaddné size and configuration of the
room and also on the angle and position of the speaker relatithe microphone (Chapter 4.1
and 5.2). For instance, the reverberation time in the erpants of Stahl et al. (440 ms, [SFB01])
was comparable to the 400 ms in the virtual recording roommddffor this thesis. Their “far”
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microphone (2.5 m distance) corresponds to the microphoag s the EMBASSI corpus and
to the 2.4 m distance for measuring the room impulse resgonskee virtual recording room (see
Chapter 4.1). However, instead of a headset for synchramaosding they used a “near” micro-
phone at a distance of 0.4 m and added also a stationary ngiee. SThe vocabulary was rather
small since the speech data consisted of spoken numbefstdehousand and three”, so there
were only 32 different words. Their second corpus consisteshort commands for consumer
electronics, like in the EMBASSI corpus, but there were dsdydifferent words in contrast to
473 words in the EMBASSI sentences. TheRBMOBIL-based recognizers (Chapter 4.3) even
had a vocabulary size of 6445 words, and the Fatigue datgp(@hd.2) contain 865 different
words. On the portion of the Fatigue corpus that was recowdddl m microphone distance,
the word accuracy was about 70% (Chapter 6) when a 4-gramaaegmnodel was used. With a
0-gram model, only approx. 30% word accuracy were achieSthl et al. observed the highest
recognition rates of approx. 86% when training was perfarmih recordings,,, obtained by

Yp = Tpx btk by (8.1)

wherez,, denotes the signal of the near microphohg! is the inverse transfer function from
the speaker to the near microphone, @nds the transfer function from the speaker to the far
microphone. The added stationary noise signahad the same power spectrum as the signal
from the far microphone. In this thesis, the focus is on thristness of speech features against
reverberation, therefore the noisewas assumed to be non-existent in the available closaitalki
signals, and:,, was assumed to be the identity.

The simulated reverberation time ©f, = 1.09 s in the study of Couvreur et al. [CC00] was
much higher than the 250 and 400 ms used in this thesis whi&esthe recognition task much
more difficult in the first place. A word accuracy of approx%®38vord accuracy was reached
when the training data were reverberated with many room Isgesponses, like in thév-12
or VM-2recognizer (Chapter 4.3). However, the test data of Coueeal. were taken from the
same corpus as the training data and artificially reverbdrafter selection. Furthermore, the
vocabulary was very small since again only digit recognitias performed.

The conclusion from these experiments is that for the reitiognof distant-talking speech
from unknown environment at least a certain portion of theing data should be reverberated.
It is not necessary to match the acoustic properties of ttedtta exactly when there are sim-
ilar environments in the training data. The recognitioroerate can be reduced slightly once
more by using appropriate features, like flxdaw features based upon MFCC (Chapter 5.2),
or beamforming as a preprocessing step (Chapter 6.3).

The overall outcome of this thesis is that the human speealua&ion which is affected by
many possible sources of error or variation, like the raexperience, can be supported by de-
terministic methods that enable to document a patientgness during therapy and serve as ob-
jective means of description of pathologic voice. An autbovaluation system should consist
of a polyphone-based speech recognizer and a module favgicosvaluation. For the determi-
nation of the agreement between the human rater and the meadurrelation coefficients are
recommended when the numerical range of both evaluatiatifesent. Otherwise, introduced
chance-corrected measures for rater agreement, like &mgbgrff's o, should be preferred.

The following chapter will give a short outlook on how thesethods will be extended in
future work.



Chapter 9

Outlook

Speech analysis, especially evaluation of pathologica@pés clinical purposes, is a very com-
plex task. Despite the good results achieved in this théese are some aspects that will have
to be addressed in the future.

The problem of out-of-vocabulary (OOV) words was not exasdigiet because the number of
reading errors was very small in the recordings of the laggtgmees (see Chapter 4.4.2). For a
future clinical application, however, the two types of erdoy reading and by recognition — must
be separated. Otherwise a patient with a high-quality visight get bad evaluation results due
to misread words. By the application of confidence meastinessections with reading errors
could be detected in the recording [Ste01]. Then the remgiparts of the file are used for the
computation of the voice quality only. Boros et al. suggeéshes distinction of OOV an@®@OT
(out-of-text\words [BAG"97]. The latter are words that are likely to occur during iegarrors
when the patients read a text, for example in phrases likeei@&llid | stop?” In a category-
based recognition system [GNN96], they could be includgtiéwvocabulary list in advance and
become a category of their own. In this way, they could beesinoved from the signal to be
analyzed. In order to find words that are still not in the vadaty list, it might also be helpful for
distorted speech to introduce a language model which isasedupon words but upon smaller
lexical units [Gal03].

A related problem are speech repairs, i.e. correctionsra@éeling errors. The types of repairs
that are relevant for a reading situation aravord repairswhere the reader corrects a part of a
word, andmodification repairavhere a part of the whole sentence is repeated [SBNO1]. The au
tomatic evaluation of such events was examined with serdespeech [NNF00]. However,
the created repetition models are very complex and needeptunal revisions for the applica-
tion with TE speech because the search trees become toddatlge/-quality voices during the
decoding phase.

Although the correlation between human and automatic atialn results is not enhanced
when the speech recognizer is adapted to substitute v@itegper 7.2), there are some scenarios
that make a better recognition of pathologic speech ddsiraln example are patients where
the quality of the substitute voice will permanently stayywkad due to anatomical or surgical
reasons. These persons have severe problems in commanicaince TE speakers are elderly
people in most of the cases, this will also have an impact enlifteners because they are
usually elderly people, too, and their listening comprei@mis often restricted [EBO1]. For this
reason, several research groups try to enhance the quiapstimlogic voices not at its source
but between speaker and listener. For instance, lineargbi@danalysis and a synthetic source
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for resynthesis were applied to enhance recorded samplesophageal speech [MHKHO2].
Reduction of breathiness in disordered speech is also aorieng topic. However, it cannot be
reduced by usual noise reduction algorithms which assuatesitpnal and noise are independent
of each other because breathiness is highly correlatedttkioice [HK04, MM02, MDBO1].

This method cannot only help to improve the intelligibility human-to-human conversa-
tion, but it may also enhance the automatic recognition opfewith voice disorders, e.g. in
dialogue systems. When these applications are supposedsiaited for the disabled, they will
have to deal with many kinds of voice and speech disorders SEHmmon transform (Chapter 5.4
and 7.6) can support this. The idea is a pool of robust prp®tgcognizers trained on speech
with different disorders. When confronted with a new spealtee system would project the
speaker into a cosmos of the prototype recognizers, deterthe disorder and select the “clos-
est” recognizer or combine a set of several close recogniperfurther processing. Regarding
the distribution of age in the population, a special focuslerly speakers [BYY01] might
also be advantageous.

For the application in dialogue systems and also for the comeation among humans via
telephone, the influence of different communication ch&njden97] has to be further examined.
Not only the speech effort but also the listening effort nigé rated [HK04], and the evaluation
attributes recommended for telephone transmission guaglithe International Telecommunica-
tion Union [ITU96] should be taken into account.

Similarly, when distant-talking speech samples of TE spesakvill be available, then the
distortions by the acoustical environment will have to bgarded during the recognition phase.
This does not only concern reverberation. There are malsipurces for sound that is not wanted
in the recording, like noise from the street, a running cotapuhe present persons touching
the text sheet or the furniture, etc. Short noise events infigleliminated by monitoring the
spectrum of the signal and removing small sections with uauphenomena. When longer
parts of the therapy sessions are recorded, then also tieafsatind the therapist's voice have
to be separated by speaker recognition methods; only tihegactomee should be analyzed.
Nevertheless, reverberation will stay one of the main ois. A very successful solution might
be the creation of an adaptive reverberation model at rntiFhis model can be integrated into
the decoding phase [SZK06, Zel06].

The evaluation experiments presented in this thesis aremgterm study. It is not easy
to acquire speech data from one speaker group and the condisag human evaluation data
from one rater group over a longer time. However, this cowaldficm the assumption that the
long-term evaluation of voice rehabilitation can be doneeneliable by automatic methods
than by humans. Additionally, a group of naive raters sthtvel involved because they represent
the listeners the patients meet in everyday life (cf. [B8H]). But not only listeners should
judge a patient’s voice, also the patients themselves dhamlthis. There are self-evaluation
scales (Chapter 2.4.3) that are used by the therapistsamdimw handicapped the patients feel
by their impairment. This is an important aspect in modeerdpy which should be regarded
when the automatic evaluation methods are improved. Howéws not clear until now how
these aspects can be modeled since the correlation betwHervaluation and evaluation by
speech experts is low [SLHA4].

The evaluation methods described in this thesis may notlomlyeneficial for patients after
total laryngectomy. They will be revised and improved in avrmesearch project about the
evaluation of voice after partial laryngectomy which isdied by the German Cancer Aid from
August 2007 on.



Chapter 10

Summary

In 20 to 40 percent of all cases of laryngeal cancer, totghigectomy has to be performed,
i.e. the removal of the entire larynx. After the procedules trachea and the esophagus stay
separated. For the affected persons, this means the Idssmditural voice and thus the loss of the
main means of communication. Modern surgery allows to éstab substitute voice which has
to be evaluated from time to time by the therapist for the psepof reporting therapy progress.
This evaluation is subjective; it is therefore dependenthenparticular expert’s experience and
other factors. In this thesis, it was examined how autonragthods can be used in order to
provide an objective means of the evaluation of substitaiees.

There are many methods of voice restoration. In the esophagéstitute voice, a part of
the esophagus serves as pseudoglottis, and the stomacé aaedas an air reservoir. However,
it takes several months or even years until laryngectomeesantrol this kind of voice. Several
different surgical methods tried to allow the redirectidregpiratory air from the trachea into
the pharynx by means of fistulae or similar ways. Howevera@ration rate was very high,
so most of these approaches are not used any more. The vhiaictipn of the larynx can also
be replaced by a sound generator. In most cases, it is ekdbtroperated and is therefore called
electrolarynx. The device is either held to the outside ef leck, to the floor of the mouth,
or placed intraorally. The quality of these voices is ofteowever, not satisfactory as it sounds
very “robot-like” and monotone.

A popular method of voice restoration involves a shunt vgfveice prosthesis”) between
trachea and pharyngoesophageal (PE) segment which shk&blihe tracheoesophageal (TE)
substitute voice. The valve allows redirection of expirgtair into the PE segment for voicing.
The source of the voice is the same as in the esophageal \mit&e shunt valve allows the
affected persons to use the entire lung volume for voicingirag Furthermore, the time for
learning to speak with a TE voice is much shorter. For over 80Pdryngectomized persons, the
shunt valve means an immediate restoration of their voitumgtion, and 65% of the patients
keep on using the TE voice permanently. All patients exathiioe this thesis were provided
with a Provo® shunt valve which was developed at the Netherlands Cansgtulie in 1988.

There are several established subjective analysis mettioiiiee quality of pathologic voices.
However, different therapists might evaluate a given vaiiferently according to their experi-
ence (inter-rater discrepancy), and also one single raggrtrnave a different opinion if he or she
listens to a voice recording some time later again (inttarrdiscrepancy). This is avoided by au-
tomatic methods. They are deterministic and objectiver tiesult will not change on the same
data, and they can serve as a reference independent frontieujgarhuman expert's career.
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Established methods for objective evaluation, howevea)yae only recordings of sustained
vowels in order to find irregularities in the voice. This does reflect a real communication
situation. The examination of speech is more importantiferdatient’s daily life. Since the au-
tomatic processing of completely free speech is very ditfiéor this thesis the test persons read
out a standard text. This text was then analyzed by methoalstomatic speech recognition.

When an automatic method and the human evaluation have torbpaced, then the degree
of agreement among the human raters and between human amdagically computed results
has to be determined. Besides Pearson’s correlation deetfic other measures used in medical
and social sciences were applied. Two sources of agreeraeetth be differentiated. The first
one is the agreement that occurs by competence, i.e. theragne that arises from the experi-
ence of the raters with the patients and their (speech) @atother portion is a certain amount
of equal ratings possible already by chance which is callecekpected agreement. Therefore,
an agreement measure is needed which allows to see the poopmragreement by competence
alone, and a kind of “chance correction” has to be done. Eibes of Cohen’'s:, like xpr by
Davies and Fleiss, can do this for an arbitrary number ofsadad rating categories. Krippen-
dorff's « is even able to cope with the problem of missing ratings inda&. Both measures
were used for the comparison of human and machine ratings.

The speech data for the experiments in this thesis were takenseveral speech corpora.
In a speech therapy session, a patient should not be awdre fdording situation which might
make him or her feel controlled. For this reason, one of tl@gyeas the improvement of speech
recognition results in reverberated environment. The exynts were not made with samples
of pathologic speech because there were no speech corolabée that were large enough and
recorded by distant-talking microphones. The EMBASSI asrwas used for preliminary tests
on this topic. If a recognizer is supposed to work sufficigirtimany environments, the training
data should provide recordings that were made in a lot o&udfit places. By reverberating
close-talking speech artificially with pre-defined room uige responses, this problem can be
avoided. Selected results were verified using the Fatigyeusocand the ¥RBMOBIL corpus.
For the recognizer training, the original close-talkingreils were partially or entirely replaced
by their artificially reverberated versions. The&eRBMOBIL recognizers were evaluated on the
original and the artificially reverberatedeE®#BMOBIL test set, the Fatigue close-talking set, and
the Fatigue distant recordings.

The VERBMOBIL corpus was also the recognizer training base for the asabysubstitute
voices. The test data for these experiments were recordiiSTE speakers and also 18 elderly
and 16 younger normal speakers as control groups. Eachetrsstirpread out the German version
of “The North Wind and the Sun” which is a standard text thafudes all phonemes of the
German language. It consists of 108 words and is used in Bggeerapy. A human evaluation
reference for the TE speech data was obtained from 5 spedicbl@pgy experts. 11 criteria,
like e.g. “intelligibility”, “hoarseness”, and “speechfeft” were rated on 5-point Likert scales,
i.e. one out of 5 named alternatives had to be chosen. Thalbyeality was rated on a visual
analog scale with values between 0.0 and 10.0. Between s @iteria, high agreement was
observed, e.qg. for intelligibility and the overall qual{ty=+0.96). This indicates the importance
of intelligibility for the overall perceptive impressiori ®E speech. Vocal tone-E +0.96) and
ability for prosody ¢ =+0.88) seem to be further important aspects for humamksse

Different methods were tested in order to enhance the ratogmnesults of reverberated test
data. The first one was the application of artificially reegdted training data. It was assumed
that the test environment is not known at training time. k@ teason, 12 different room impulse
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responses were used to reverberate the close-talkingngadata of the baseline speech recog-
nizer. The results showed that it is possible to process tlose-talking and reverberated test
data sufficiently when the training set is composed fromecliadking recordings and artificially
reverberated signals. On the Fatigue test set, the averagkeagcuracy on clean and naturally
reverberated signals rose from 68.2% on the close-tallénggnizer to 76.8% on a recognizer
where one half of the training set consisted of artificialyerberated material. All recognizers
were HMM-based.

The second kind of changes to the baseline system concdradegture extraction. The ba-
sic features for speech recognition were Mel-Frequencysttem Coefficients (MFCC). How-
ever, the logarithmic compression of the filterbank coedfitcs may be disadvantageous on noisy
data. Therefore, alternative features were tested. Thecegstrum replaces the logarithm by
a root function, and theyi-law features” use a companding function instead whichesalew
values and compresses high values. The root cepstrum ditllparform as good as the stan-
dard MFCC, but some improvements @tlaw features were significant on the EMBASSI data.
On the Fatigue test set, the average word accuracy on clehnadarally reverberated signals
reached 77.2%. Although this is just slightly better thathilFCC, theu-law features can be
recommended for the recognition of distant-talking speech

Normalizing the features to a Gaussian distribution waefeial for some of the root cep-
strum features, but in general the gain in word accuracy roedunot consistently enough in
order to regard the procedure as reliable for other data.

The third approach did not change the recognizer but thelé¢at Since several synchronous
recordings of the EMBASSI and Fatigue data were availabhlesd signals were combined by
delay-and-sum beamforming in order to create a new signdl Mss noise. Indeed, for the
VERBMOBIL baseline recognizer (MFCC features), the word accuracyhemeverberated part
of the Fatigue test set rose from 47.8% to 63.1%. Again, aficaatly reverberated training set
and u-law features had a positive effect on the results. The bestl\@ccuracy achieved was
77.4% when all the training data were reverberated.

Taking all results into account, the following conclusismrawn: For a recording scenario in
a room with distributed microphones where the test envireminis not known at training time,
a recognizer should be trained with close-talking speechaatificially reverberated signals.
It should apply beamforming as a preprocessing stepualagh features instead of MFCC.

The speech recognizers for the experiments with TE spealaesderived from the baseline
VERBMOBIL recognizer. They were trained with young, normal-speakgrgons because there
were not enough training data from elderly or laryngect@digpeakers. It was also important
that the system simulates a naive listener, i.e. a humang leat never heard TE speech before
because this is the situation that the patients face in taly life. For the recordings of the
TE speakers, the average word accuracy on a polyphone-tes®ghizer was 36.9%. The more
robust training of monophone models was supposed to havsiivpaeffect on the recognition
of substitute voices. However, this could not be observdthotigh the automatic recognition
yielded so bad results, the correlation to the human rativeys high. The reason is that the
crucial measure is not the average of the recognition ratetbuange. Intelligibility, vocal
tone, quality and use of prosody during speaking showed itfieebt correlation to the word
accuracy [r| > 0.7). This confirms also the findings that these criteriaetate highly with each
other in the human evaluation results. The correlation betwthe average rater and the word
accuracy of the polyphone-based recognizer for the igibllity criterion was|r|=0.88.

For the improvement of the recognition, the acoustic modetee VERBMOBIL-based rec-
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ognizer were also interpolated with TE speech recordingsvev¥er, no positive impact on the
correlation between word accuracy and human ratings caalldbiserved. For this reason, the
time-consuming adaptation can be omitted.

The word accuracy is a very good measure for intelligihilitiiere are, however, evaluation
criteria that cannot be expressed by the number of correcttierstood or recognized words.
In order to find appropriate automatic counterparts for tharprosody module was applied.
Prosodic features are obtained by analyzing silent pafiBed,pauses, the signal energy, word
and syllable durations, and the fundamental frequeficy The analysis of prosodic features
revealed measures that showed a high correlation to hurtiag witeria. TE speech is usually
slower than normal speech, and the amount of voiced seas@tsongly reduced. This affects
many features measuring voice onset and offset, and alsd ama pause durations. These
features show correlations of up|(td =0.76 to criteria like intelligibility, overall quality,[geech
effort, or the match of breath and sense units. The criténonal tone” is reflected by energy
measures. Due to the high irregularity of substitute vqittes not easy to detect correct values
of Fy. This might be the reason whi}, features do not match the rating criteria very well.

When the word accuracy of the speech recognizers and thedicoteatures were pro-
cessed together by leave-one-speaker-out multi-cowwelaegression analysis, the word accu-
racy was again determined as the measure that represegitgiiniity best. However, in the
Post-Laryngectomy Telephone Test (PLTT) which was deexlap order to represent the com-
munication situation via telephone, the correlation toltbhenan PLTT result was better for the
word recognition rater{(=~ 0.9, polyphone-based recognizer).

Since no distant-talking data from laryngectomees weréadla, the root cepstrum and the
u-law features were tested on artificially reverberated Téesp signals in order to simulate
a therapy session where no headset is used. yFlasv features achieved consistently better
recognition results and thus proofed to be an alternatitedéalassic MFCC approach also for
pathologic speech.

For speech therapists, it might be very helpful to get a gcgblvisualization of pathologic
speech. The Sammon mapping performs a topology-presergahgtion of data dimension.
It minimizes a “stress function” between the topology of tbe/-dimensional Sammon map
and the high-dimensional original data. The latter toppleydefined by a distance measure
between utterances or speakers. In a Sammon map of TE speaicthe normal-speaking
control groups, all speaker groups were separated from @den. In a Sammon map of the
TE speakers alone, the positions of the single speakerbgdamrrelations of up to=0.74 to
the word accuracy ang|~ 0.7 for rating criteria like intelligibility and vocal tone

Despite the good results achieved in this thesis, there aree aspects that will have to
be addressed in the future. A standard text does not reprageal communication situation,
but it is a much closer approximation of fluent, spontaneqesesh than a single, sustained
vowel. It is a necessary compromise because the evaluatioonapletely free speech would
require substantial changes in all components of the aisdhgsnework. The problem of out-of-
vocabulary (OOV) words was not examined yet because the euoflyeading errors was very
small in the available recordings. For a future clinical laggtion, however, the two types of
error — by reading and by recognition — must be separateditidddlly, the evaluation results
should be confirmed by a long-term study. The methods destiibthis thesis may not only
be beneficial for patients after total laryngectomy. Thely e revised and improved in a new
research project about the evaluation of voice after gdatigngectomy.
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Appendix A

Reading Material

A.1 The Text “The North Wind and the Sun”

The following text is the German “The North Wind and the SueXttwhich was read by the
test persons for this thesis. The wording equals the vatiaitis used in the Department of
Phoniatrics and Pedaudiology at the University of Erlanjememberg. The version used for
the basl6group (Chapter 4.5) of laryngeal speakers by the Bavariami®e for Speech Sig-

nals [BAS] was slightly different as remarked in the fooast

Einst stritten sich Nordwind und Sonne, wer von ihnen beialehl der Starkere
ware, als ein Wanderer, der in einen warmen Mantel gehidit des Weges daher
kam?! Sie wurden einig, da3 derjenige fiir den Starkeren getibtesder den Wan-
derer zwingen wiirde, seinen Mantel auszuziehdder Nordwind blies mit aller
Macht, aber je mehr er blies, desto fester hiillte sich derdéeer in seinen Mantel
ein. Endlich gab der Nordwind den Kampf auf. Nun warhtd& Sonne die Luft mit
ihren freundlichen Strahlen, und schon nach wenigen Augswn zog der Wan-
derer seinen Mantel aus. Da muf3te der Nordwind zugeben,id&bdne von ihnen
beiden der Starkere war.

The same text in machine-readable notation (words as irettegnizer dictionary) with segmen-
tal markers as defined in Table 7.16:

einst stritten sich I C2 Nordw nd und Sonne SM2 wer von ihnen bei

den I C2 wohl der St"arkere w'are SC2 als ein Wanderer SC2 der in einen
war men Mantel geh"ullt war SC2 des Weges daherkam SMB sie wurden einig
SM2 da"s derjenige 1C2 f"ur den St"arkeren gelten sollte SC2 der den
Wanderer | C2 zwi ngen w'urde SC2 sei nen Mantel auszuzi ehen SM3 der
Nordwind IC2 blies mt aller Macht SM3 aber je nmehr er blies SM2 desto
fester 1C2 h"ullte sich der Wanderer 1 C2 in seinen Mantel ein SM3
endlich I C2 gab der Nordw nd | C2 den Kanpf auf SM3 nun w'arnte die
Sonne IC2 die Luft 1C2 nit ihren freundlichen Strahlen SMB und schon

| C2 nach weni gen Augenblicken | C2 zog der Wanderer | C2 seinen Mnt el
aus SM3 da nmu"ste der Nordw nd zugeben SM2 da"s die Sonne | C2 von

i hnen beiden | C2 der St"arkere war

1BAS version: “daherkam”
2BAS version: “abzunehmen”
3BAS version: “erwarmte”
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A.2 The Reading Sheets for the PLTT

Figure A.1 and A.2 show a PLTT sheet to be read at the telepf@mapter 7.4). As this version
appeared to be impractical for the patients, a new versitnbigger lettering was designed (Fig-
ure A.3). The text “The North Wind and the Sun” was read fromreasate sheet then.

[Therapeut(in): Fir das automatische Telefonsystem bitte UNBEDINGT die Bagemmer um die
5-stelligePatientennummer — mitéihrenden Nullen — erginzen! Bogen mit Name und Alter ausgift
bitte zurlick an eeeeeeseeeeeseseeee] sogen erzeu: 25 Okiober 2005 10:44

Name: Alter (Jahre, Monate):
Bogennummer: 001

Sehr geehrte Patientin, sehr geehrter Patient,

bitte lesen Sie sich den folgenden Text einmal durch, beecar8ufen, damit
Sie mit dem Ablauf vertraut sindilRren Sie dann die Anweisungen bitte genau
aus. Vielen Dankiir Ihre Mitarbeit.

Ihre Abteilung &ir Phoniatrie und Rdaudiologie des Universitsklinikums Erlangen

1. Rufen Sie bitte die Telefonnummer 0913k ¢ eee oo an.

2. Sie toren dann die Stimme des automatischen Aufnahmeprograiren
Sie dieser Stimme bitte einfach zu. Wenn Sie dazu aufgefareielen, ge-
ben Sie bittaiber die Tasten Ihres Telefons die Bogennummer, die oben auf
diesem Blatt zu finden ist, ein. Die Nummer wird dann noch &iirmuato-
matisch vorgelesen. Wenn die Nummer falsch ist, kann skemeds einge-
geben werden. Wenn sie richtig istidken Sie bitte di#-Taste { Raute-
taste") an lhrem Telefon.

3. Nun beginnt die Aufnahme. Wenn Sie dazu aufgefordert wesdgen Sie
bitte etwa zwei bis drei Sekunden lang
»aaah"

4. Warten Sie die &ichste Ansage allesen Sie danach folgenden Text vor:

Einst stritten sich Nordwind und Sonne, wer von ihnen beiderwohl der
Starkere ware, als ein Wanderer, der in einen warmen Mantel gehdillt
war, des Weges daherkam. Sie wurden einig, daf3 derjenige ffiden
Starkeren gelten sollte, der den Wanderer zwingen wiirde, seenMan-
tel auszuziehen. Der Nordwind blies mit aller Macht, aber jemehr
er blies, desto fester hiillte sich der Wanderer in seinen Matel ein.
Endlich gab der Nordwind den Kampf auf. Nun warmte die Sonne die
Luft mit ihren freundlichen Strahlen, und schon nach wenigen Augen-
blicken zog der Wanderer seinen Mantel aus. Da muf3te der Nonind
zugeben, dald die Sonne von ihnen beiden der&kere war.

5. Driicken Sie bitte di#-Taste ( Rautetaste") an Ihrem Telefon. =

1

Figure A.1: Original reading sheet for the PLTT (front side)
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6. Lesen Sie nach dei@ehsten Ansage bitte folgendeéér und &itze vor:

Haar, Scherz, Bild, Mord, Dolch, Nuf3,
Wuchs, Glied, Zeit, Rost, Bahn, Bart,
Garn, Maus, Kreis, Wert, Blech, Stol3,
Schweil3, Reif, Fink, Wahl.

Doris will drauBen Schnee fegen.
Offnet doch gleich beide Turen!

Erste Stunde Deutsch, dann Englisch.
Darf ich Deine Schleife binden?
Vor'm Essen Deine Hinde waschen!
Sonntags trinken viele Manner Bier.

7. Driicken Sie bitte dié-Taste (Rautetaste") an Ihrem Telefon. Das Auf-
nahmeprogramm verabschiedet sich von Ihnen, démmé&n Sie auflegen.

Figure A.2: Original reading sheet for the PLTT (back side)
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[Therapeut(in): Fir das automatische Telefonsystem (0913ae6 eee ee) bitte UNBEDINGT die
Bogennummer um die 5-stelligPatientennummer — mit@ihrenden Nullen — erginzen!
Vor den Listen auf diesem Bogen gehaltenen Vokallaaaa*) und Nordwind-Text lesen lassen!

Bogen ausgsillt bitte zurtick an ] Bogen erzeugt: 3. November 2005 10:12
Name, Vorname: Bogennummer:____ _ 119
Geburtsdatum: Aufnahmedatum:

Star, Tee, Dienst, Fink, Sekt, Schild,
Zelt, Wahl, Rang, Lohn, Stier, Haar,

Schaf, Blick, Busch, Pfeil, Lust, Floh,
Boot, Axt, Fall, Schreck.

Diese zarten Blumen welken rasch.
Diese Wohnung liegt zu hoch.

Nervose Menschen brauchen viel Ruhe.
Diese Durchsage ist ohne Gear.

Mein Dackel pariert auf’s Wort.

Wer weild dort genau Bescheid?

Figure A.3: Second version of the reading sheet for the PtA&text “The North Wind and the
Sun” (“Nordwind und Sonne”) was now read from a separatetshee



Appendix B

Human Evaluation Results

This appendix contains the human evaluation results fotatygg41data (see Chapter 4.4.3).
For the abbreviations of the rating criteria, see Table 4.12
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Table B.2: Evaluation results by 5 experts for tag/ng41speaker group (continued)
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Table B.3: Evaluation results by 5 experts for tag/ng41speaker group (continued)



intell overall
file KILIR|S|U[ K] L |R[]S]U
n000011s01 2|2[3]4]4]44]30]|48]|80]6.2
n000012s01 3/4[4]5]5]61]80]|67]94]|8.0
n000013s01 2|2[2]3]3]32]36|27|55]|53
n000014s01 414]14|5|/4(80] 78|76[96[7.9
n000017s01 413]2|5|4]72]85]|74[/95[58
n000018s01 3/3/4|5|5]75]85]|77[80][82
n000019s01 2|1]2|1]2]22] 05]|16]/05[18
n000052s01 2|2[1]2]3]28]23]|15[31]|23
n000054s01 2|2[2]2]3]25[31]|25][46]54
n000055s01 3/3[4]4]3]79]66]|65/86|58
n000057s01 3/3[2[3][3]53]70]|38]|61]|57
n000058s01 1/1]2]2][3]18] 05][28]26]4.8
n000059s01 3/4/4|5|/4(65]/100]/75][96]82
n000060s01 2|2]2|1]2]49] 27 ]25][18][57
n000061s01 2|2]1]2[2]35]15]32[29][50
n000062s01 1]1]1]1]2]11]11]19][00]34
n000063s01 2|2[1]2]3]49]30]40]/28]|48
n000064s01 2|1[2]1]3]42]19]|31]17]|6.1
n000067s01 1]2]1]1]2]19] 25[29[25]5.0
n000069s01 3/3[3[3]4]64] 68]|55|6.2|84
n000073s01 3|/3]2|4]4]66]70]56[82[85
n000074s01 2[1]1]1]2]33]11]11][16]|34
n000304s01 3|/3[2|4|4]|56]66[42[/79[77
n000305s01 413]4|2|3]71]75]66]/50[6.3
n000306s01 2|2]1]1]2]39]28]|16]16][32
n000307s01 2|2[1]2]2]40] 26 |21[34]|55
n000329s01 2|3[2[3]3]|50]52]|36/50]45
n000437s01 3/4[4]5]4]69]86]|75/85]|6.0
n000467s01 2|2[2]2]2]40][32]70][30]33
n000500s01 2[3]1]2[2]50]69]|10[48]54
n000504s01 1[1]1]2][2]15]12]23[28]25
n000506s01 5/5/4|5|5]85] 98]66[/95[81
n000507s01 1]2]1]2]2]15]19]|25[52]51
001257.nwnah.01 | 2|2[2]2| 2] 21] 41[20]26]4.2
001264.nw-nah. 02| 22| 1]3]2]50] 38[18][55]37
001265.nw-nah.01 || 3[2]2[3|4[55] 41[7.0[6.6]7.0
001266.nwnah. 02| 3[4 [3[4[2]71] 73 [53[94][64
001274.nwnah. 01| 2[2]2]1]3]45] 09]12[10]35
001275.nwnah. 01 | 1 [2[2]2|3 [ 14[ 27 [29]19]57
001279.nwnah.01 | 2 [3[2[3|3 || 53] 6.8[35[/47]|55
001280.nwnah.02 [ 1 [1[1]1]1]08[ 1.0[03]01]22
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Table B.4: Evaluation results by 5 experts for tag/ng41speaker group (continued)
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Appendix C

Recognition Results for Gaussianized
Features

This appendix contains the detailed recognition resultsie EMBASSI-based recognizers
with gaussianized features derived from MFCC. The desonpf the experiments and the re-
sults for MFCC can be found in Chapter 6.2.5.

Table C.1, C.2 and C.3 contain the recognition results ferghussianized Root Cepstrum
Coefficients. Table C.4, C.5 and C.6 give an overview aboairéisults on gaussianizedlaw
features vs. gaussianized MFCC.
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\ EMB-baseroot cepstrum features (gaussianized) \
| mic. dist. | lang. model| n=4|[ n=5|n=6|n=7|n=8| n=9| MFCC |
close-talk| 4-gram 89.1191.9|93.9|940| 945| 94.2|| 94.3
close-talk| 0O-gram 44,2 | 55.3| 63.4| 66.6 | 66.3 | 64.7 | 66.8
1m 4-gram 73.9| 85.6| 89.6| 89.4| 89.0| 87.1| 90.1
1m 0-gram 23.3| 36.9| 46.9| 483 | 47.0| 45.1|| 494
25m 4-gram 62.3| 72.8| 78.6| 78.1| 78.7| 79.4|| 83.4
25m 0-gram 17.8| 215| 295| 27.3| 31.1| 325 | 36.3

Table C.1: Word accuracy f&MB-basaecognizers (root cepstrum features, gaussianized) with
different root parameters on test data with different microphone distances; the kesilts in
each line are printed in boldface.

| EMB-12 root cepstrum features (gaussianized) |
‘ mic. dist. ‘ lang. modeIH n=4 ‘ n=5 ‘ n=6 ‘ n=7 ‘ n=8 ‘ n=9 H MFCC ‘
close-talk| 4-gram 87.4190.8|91.3|91.1|90.2| 90.3| 91.4
close-talk| 0-gram 429 | 48.2| 51.2| 53.7| 53.5| 54.5| 56.0
Im 4-gram 80.5|87.2|190.7| 91.2| 91.7| 90.5| 93.5
Im O-gram 36.9| 47.5| 52.6| 55.2| 55.3| 56.8| 57.6

2.5m 4-gram 73.8| 83.3|87.1| 87.1| 85.6| 86.5| 88.3
2.5m O-gram 28.6| 39.1| 43.8| 47.8| 48.7| 49.9| 490

Table C.2: Word accuracy fa&EMB-12recognizers (root cepstrum features, gaussianized) with
different root parameters on test data with different microphone distances; the kesitlts in
each line are printed in boldface.

\ EMB-2, root cepstrum features (gaussianized) \
‘ mic. dist. ‘ lang. modeIH n=4 ‘ n=5 ‘ n=6 ‘ n=7 ‘ n=8 ‘ n=9 H MFCC ‘
close-talk| 4-gram 89.2193.9|93.9| 947|942 93.6|| 945
close-talk| 0-gram 46.6 | 64.2 | 65.8| 67.1 | 66.9| 65.2 | 69.1
1m 4-gram 78.9| 87.7]92.7|93.1|94.1| 926| 93.8
1m 0-gram 32.7| 50.6 | 57.6 | 57.3| 59.1| 56.3 || 58.8
25m 4-gram 716| 83.7| 86.3| 87.4| 86.9| 86.7| 87.9
2.5m O-gram 2501 395|446 | 473 | 47.7| 47.7| 504

Table C.3: Word accuracy fdEMB-2 recognizers (root cepstrum features, gaussianized) with
different root parameters on test data with different microphone distances; the kesitlts in
each line are printed in boldface.
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\ EMB-base u-law features (gaussianized) \
| mic.dist. | lang. model|| 4=10* [ =10 | p=10° | y=10" | p=10° | p=10° | MFCC |
close-talk| 4-gram 94.0 94.2 93.8 94.0 93.9 94.3 94.3
close-talk| 0O-gram 68.2 68.1 67.3 68.2 66.9 67.1 66.8
1m 4-gram 89.7 89.0 90.5 90.7 90.9 90.9 90.1
Im O-gram 51.8 49.5 50.8 49.9 50.5 50.9 49.4
25m 4-gram 84.2 83.3 84.0 84.2 85.7 86.3 83.4
25m 0-gram 37.4 36.9 36.1 35.2 37.8 38.0 36.3

Table C.4: Word accuracy f&MB-baserecognizers-law features, gaussianized) with differ-
ent values foy: on test data with different microphone distances; the lessilts in each line are
printed in boldface.

| EMB-12 u-law features (gaussianized) |
| mic.dist. | lang. model|| =10 [ =10 | p=10C° | 4=10" | p=10° | p=10° | MFCC |
close-talk| 4-gram 91.4 91.6 90.9 91.1 91.2 91.3 91.4
close-talk| 0-gram 53.8 55.4 54.3 54.4 55.0 54.3 56.0
Im 4-gram 93.3 92.6 92.9 92.7 92.5 93.5 93.5
Im O-gram 57.4 56.8 56.2 56.8 56.7 56.0 57.6
2.5m 4-gram 86.5 87.7 86.5 87.2 86.3 85.8 88.3
2.5m O-gram 47.7 49.9 48.6 49.0 49.0 48.7 49.0

Table C.5: Word accuracy f@&MB-12recognizers(-law features, gaussianized) with different
values forp on test data with different microphone distances; the esilts in each line are
printed in boldface.

\ EMB-2, u-law features (gaussianized) \
| mic.dist. | lang. model|| 4=10* [ =10 | p=10C° | 4=10" | p=10° | p =10 | MFCC |
close-talk| 4-gram 94.8 94.5 94.5 94.3 94.4 95.1 94.5
close-talk| 0-gram 67.5 68.1 68.3 68.1 68.3 69.2 69.1
1m 4-gram 94.0 93.8 93.7 93.3 93.4 93.3 93.8
1m 0-gram 57.6 58.0 59.4 59.7 59.8 59.6 58.8
25m 4-gram 87.0 87.7 87.4 88.3 86.9 87.0 87.9
2.5m 0-gram 49.2 50.3 49.1 50.0 49.9 50.0 50.4

Table C.6: Word accuracy fa&EMB-2recognizers j-law features, gaussianized) with different
values forp on test data with different microphone distances; the eEsilts in each line are
printed in boldface.
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Appendix D

Evaluation Environment for Voice Analysis

This chapter describes how to perform automatic speecliaiah with the programs written
for this thesis. The recognition and evaluation environmeimstalled in a root directory with

an arbitrary name. The full path of this root directory habécannounced to the Linux shell by
assigning it to the environment varial®ISPBASE.! A tcshshell is recommended for working.
The $SMSPBASE directory contains the following subdirectories:

Evaluation: The programs for the statistical evaluation are located {g=e Appendix D.3).

Perl5lib: It contains the Perl library for the Perl scripts. The sivaltiable SPERL5LIB
might have to be set to this directory.

Projects: The data to be evaluated have to be stored here (see Ap{deridigr details).

Recognizers: The speech recognizers for the automatic recognition tared here (see
Appendix D.2).

D.1 The Projects Directory

First, the data to be analyzed must be provided. For eaclpgroiecordings, a different project
name<project> can be assigned. The following steps have to be performeleoyger then:

1. Create a new directo§MSPBASE/Projects/<project>.

2. Copy the audio files in raw format (no headers) to the dorgct
$MSPBASE/Projects/<project>/DATA/SSGI.
TheDATA directory will later contain the feature files computed by #peech recognizers
in a subdirectory calledFV (see Appendix D.3.1).

3. Provide a file called<project>.list containing the file names of the audio files without
path. Store this file in the project directory.

4. Afile <project>.textref must contain the text reference for the audio files, i.e. éxethe
readers should read. The format of the file must be like theslitarations (see below) for

“MSP” stands for “Medical Speech Processing”.

193



194 APPENDIX D. EVALUATION ENVIRONMENT FOR VOICE ANALYSIS

the recognition system of the Chair of Pattern Recognitttgngen. This means that for
each recording one single line must be given containing teeéime, a tabulator sign as
delimiter, and the text terminated by a semicolon. Be awsatthe words of the text have
to be written exactly as in the vocabulary list of the patacwecognizer. Otherwise too
many “recognition errors” will occur. Punctuation in thetes not permitted.

5. Another essential file is the transliteration of the audes, i.e the text the readers really
uttered. It can differ from the text reference they actushguld read (see above). This file
is called<project>.trl.

These files allow recognition experiments already (see &h&pl). For the computation of the
human-machine correlation, some more files are needed. Wheudio files were evaluated by
a group of raters, a rater group nargaters> can be defined.

¢ In the file <project>.<raters>.scores, the evaluation of the sound files by the raters is
stored. For each evaluation of one file by one rater, one $ispécified. The first entry of
this line must be the rater ID and the second the file namer &ft an arbitrary number
of numerical scores may follow. Two entries are usually s&jeal by a comma. Spaces as
delimiters may also be tolerated by many evaluation scriptsit is recommended to use
commas.

e The optional file<project-.<raters>.crits contains descriptions for the entries of the
score file. These might be the names of the rating criteriainftance. Each criterion
name gets one line in the criteria file. Remember that thetfusentries in the scores file
are the rater ID and the name of the audio file.

Additional files may be provided in the project directory thiferent purposes:

e <project>.segments contains segmental information of the read texts followtimeg defi-
nitions in [BKK* 98] (see also Chapter 7.3.4).

e Forthe prosodic analysis, a configuration file with an aapjtname, e.gorosconfig95+G,
can be located in this directory. It contains the paramdta@rsompute_merkmale which
is called byprosfeat.pl (see Appendix D.3.5).

D.2 The Recognizers Directory

The evaluation scripts search for the speech recognizéing Recognizers directory. Like each
“project”, each recognizer gets a nameecognizer- for its identification. The recognizer it-
self is then stored in the directo®MSPBASE/Recognizers/<recognizer-/. The essential files
there are defined by the local configuration fitéle.<lang.mod>.ufv where <lang.mod> is

a code for the language model of the recognizer, eugi’‘for a unigram model. This code
can be arbitrarily chosen. Theufv” suffix denotes that UFV feature files are used for recog-
nition. The “rcfile” defines the names of 5 files that must beilaisée in the recognizer di-
rectory by the parametele_Sprachmodell, File_HMM-Parameter, File_Orthographie_Lexikon,
File_Gausseq_parameter, File_Polygramm. Further essential files in this directory are:
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e fex4param: It must contain the parameters of tlee4 call which was also used for feature
extraction during the recognizer training. These pararaetdl be used byrecog.pl (see
Appendix D.3.1) for the feature extraction of the test data.

e mean.start: It contains a pre-computed average feature vector thaaist be used during
feature extraction of the test data.

Essential subdirectories (or links to similar directoyiesthis directory are:

e Perlslib: It is usually a symbolic link to the Perl library in therojects directory (see
Appendix D.1).

e bin: Here are the programs that are necessary for recognition.

D.3 The Evaluation Directory

The Evaluation directory is the location of the scripts for the speech redomn and statistical
evaluation of the results. They can be found in$kepts subdirectory. In th@rosody subdirec-
tory, the configuration files and programs of the prosody nefppendix D.3.5) are stored.

The evaluation of some test data (when prepared followingeiplix D.1) is described in the
following sections. Note that all script calls were testdulle/the Evaluation directory was the
working directory. They should work, however, anywhereelgthout any difference. For more
details concerning the usage, see the synopsis of the tespsaripts.

D.3.1 Automatic Speech Recognition

The speech recognition on the test audio files is the firstadtdpe evaluation of human-machine
correlation. It is done by

recog.pl <project> <recognizer- <lang.mod>

and evaluates the results versus a transliteration (TRd paext reference file (Appendix D.1).

All files are searched for in the file tree defined by #nMSPBASE shell variable. The script

computes the features of the audio files for the given re@egm@ind writes them to
$MSPBASE/Projects/< project>/DATA/UFV/<recognizer-/ ,

further on called “results directory”. The recognitionuls are written to
$MSPBASE/Projects/< project>/Results/.

The following files are created there:

e <project>.<recognizer.<lang.mod>.result:
recognized word sequence for all audio files of ¢#h@oject>

e <project>.<recognizer-.<lang.mod> listresult:
file ID and recognized word sequence for all audio files of<tipeoject>

e <project>.<recognizer-.<lang.mod>.prot:
protocol of the recognizer run
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e <project>.ref:
it is equal to the transliteration filezproject>.trl in the <project> directory, without
file IDs, however

e <project>.<recognizer-.<lang.mod:.evalseg:
the total word accuracy (WA) for theproject>, evaluated by the givearecognizer-

e <project-.<recognizer-.<lang.mod>.result.wa:
single word accuracies for each file @project>, evaluated by the givearecognizer-

e <project>.<recognizer-.<lang.mod>.result.listwa:
the file IDs and single word accuracies (WA) for each file<giroject>, evaluated by the
given<recognizer-

If the files concerning the word accuracy have the infexttef’, then they were computed against
the text reference, not against the transliteration of gemeh data. Both result files are created
automatically at the same time.

D.3.2 Correlation between a Recognizer and Human Raters

The correlation for acproject> between the word accuracy of a giverecognizer- and a group
of <raters> is computed in this way:

doc-rec_all.pl <project> <recognizer- <lang.mod> <raters> <rater_list>
<integerboundaries- <maxcateg>

The <raters> define the file with the human ratings, i.e. this is the part dleaname (see
Appendix D.1) in the<project> directory. The<rater_list> is a list of rater IDs in that file.
In this way, it is possible to compute the correlation for airggle rater only or for the average
of more than one rater. Thalf” in the script name means that the computation is made for all
rating criteria. The results are stored in the results thrgan the file

<project>.<recognizer-.<lang.mod>.<raters>.<rater.list>.corr
where the single raters efrater_list> are separated by dashes. The file contains the correlation
between the word accuracy aadater_list>’s score for the current criterion, the weighted multi-
rater x by Davies and Fleiss (see Chapter 3.2.3) and optionallygenporff’'s o« (switch -a;
see Chapter 3.3). Theintegerboundaries- are a list of numbers denoting which interval of
the float-range word accuracy is converted to which integeres The highest integer number
occurring in the study has to be specifiedanax categ-.

The result file gets the infixtéxtref” when the word accuracy was computed with the text

reference instead of the transliteration. Both files aratexeautomatically at the same time.

D.3.3 Correlation among Human Raters

The correlation within a rater group can be computed liks:thi
doc-doc_run.pl <project> <raters> <rater_list> <maxcateg>

Like in the previous section, theraters> define the file where the human ratings are stored,
i.e. this is the part of a file name. Theater_list> is a list of rater IDs in that file. Thus it is pos-
sible to compute the inter-rater correlation for a selegr@tip of raters from the rating file. This
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particular script computes the inter-rater correlatiod awalues for rater pairs ircrater_list>,
for one rater vs. all the others, ardor the entire<rater_list>. It does this for all rating criteria.
The results are stored in the results directory in the files

<project>.<raters>.<rater list_15' part>-<rater_list_2"_part>.corr
where the single raters of the parts-ofater_list> are separated by underscores. The respec-
tive file contains the correlation between the mentionedspair <rater_list> for the current
criterion, the weighted multi-rater by Davies and Fleiss (see Chapter 3.2.3) and optionally
Krippendorff’'sa (switch-a; see Chapter 3.3). The highest integer score number osgurrihe
study has to be specified asnaxcateg>.

D.3.4 Computing “Word Hypotheses Graphs” (WHGS)

The “word hypotheses graphs” (WHGs, see Chapter 5.5.2ao0#Atin contrast to the usual rec-
ognizer output — also the time information at which timegtamhich word was assumed to occur
in the speech file. They are created by forced time alignmenthe word sequence is a priori
known and has to be mapped to the speech file. The WHGs aresaegés the computation of
prosodic features (Appendix D.3.5) and time statisticspéix D.3.6).

alignist.pl <project> <recognizer- <apnfile> <cchfile> <meanfile>

does the WHG computation by using the acoustic-phonetielork (<apnfile>) and code-
book (<cchfile>) of a given<recognizer-. Both files are expected to be located in the directory
of the<recognizer-. A <meanfile> with a mean feature vector for initialization is also needed
The relative path fronsMSPBASE on has to be specified for this file; usually it will be

Recognizers/<recognizer-/mean.start .
The WHGs are written to

$MSPBASE/Projects/<project>/Results/WHG/<recognizer-/
for the case of alignment with the transliteration of theiadies and to

$MSPBASE/Projects/< project>/Results/WHG/<recognizer-.textref/
for the case of alignment with the text reference. They hheesame file name as the original
audio files.

Note: Words in the text reference or transliteration that are m¢he recognizer’s vocabulary

will cause errors!

D.3.5 Computing Prosodic Features

The prosodic features are computed in two steps. First thie beatures are created:
prosbase.pl <project>

This has to be repeated in order to get also period-basetimes instead ofj, values:
prosbase.pl -p <project>

In the results directory ofproject>, another subdirectory callétosody is created. All proso-
dic features are stored there. The second step is the credtibe final features:

prosfeat.pl <project> <recognizer- <configfile>

They are written to
$MSPBASE/Projects/< project>/Results/Prosody/Prosfeat/<recognizer-/<configfile>/ .
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English name

German name

|| English name

| German name

Pause—beforeWord PausensStilleVorWort EnMaxWord EnergieMaxWort
Pause—afterWord PausenStilleNachWort EnMeanWord EnergieMittelWort
PauseFill-beforeWord | PausenGefuellteVorWort || FORegCoeffWord | FORegKoeffWort
PauseFill-afterWord | PausenGefuellteNachWort || FOMseRegWord | FOMseRegWort
DurNormWord DauerLenNormWort FOMaxWord FOMaxWort
DurAbsWord DauerLenAbsWort FOMinWord FOMinWort
DurAbsSylWord DauerLenAbsSilbeWort FOMeanWord FOMittelWort
DurTauLocWord DauerTaulLenLokalWort FOOnWord FOOnsetWort
EnRegCoeffWord EnergieRegKoeffWort FOOffWord FOOffsetWort
EnMseRegWord EnergieMseRegWort FOOnPosWord FOOnsetPosWort
EnTauLocWord EnergieTauEneLokalWort || FOOffPosWord FOOffsetPosWort
EnNormWord EnergieEneNormWort FOMinPosWord | FOMinPosWort
EnAbsWord EnergieEneAbsWort FOMaxPosWord | FOMaxPosWort
EnMaxPosWord EnergieMaxPosWort FOMeanGWord | FOMittelGlobalWort

Table D.1: List of all local prosodic features in English &erman (original name in the prosody
module)

The <configfile> is expected to be in the home directory of the project (seeeAdpx D.1).
The scriptprosfeat.pl uses the text reference of the audio files only. The use ofémsliteration
can be forced by the optioh

Note: In both cases the features will be written to the same dirgci®@. a new call will
overwrite older results!

Table D.1 and Table D.2 show the feature names used in thessthrd the original German
names from the prosody module for local and global prosashituires, respectively.

D.3.6 Further Evaluation Scripts

The following scripts are available BMSPBASE/Evaluation/Scripts/, but they are not fully in-
tegrated in the evaluation environment. This means thdtttigar command line parameters
are not simply a<project> or <recognizer- name, but a full path to the respective files or di-
rectories. On the other hand, this allows their use for cdatmns outside the environment.
For more details, see the synopsis of the respective s¢spisetimes optiorh is necessary to
display it). Table D.3 contains the number codes and abdiews for the rating criteria that
were used during the experiments for Chapter 7. The codaseaded as parameters for some
of the scripts.

For word and pause statistics:

e pausstat.pl: counts non-verbals and pauses in recognizer output cslieration (TRL)

e segxtrct.pl: takes a list of files created hwhgvsseg.pl and computes new statistical time
measures from these files

e whgvsseg.pl: compares pauses in WHG to reference text segmentation psitsodic
markers
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| English name | German name
MeanJitter Mittelwert jitter
StandDevlJitter Streuungjitter
MeanShimmer Mittelwert_shimmer
StandDevShimmer | Streuung_shimmer
#+Voiced Anzahl_SH_Bereiche
#-Voiced Anzahl_SL Bereiche
Dur+Voiced Laenge_SH Bereiche
Dur—Voiced Laenge_SL Bereiche
DurMax+Voiced Max_Laenge_SH_Bereich

DurMax—Voiced Max_Laenge_SL Bereich
RelNum+/—Voiced | Verhaeltnis Anz_SH_SL Bereiche
RelDur+/-Voiced Verhaeltnis_Laenge_SH_SL
RelDur+Voiced/Sig | Verhaeltnis_Laenge _SH_Laenge_Signal
RelDur—Voiced/Sig | Verhaeltnis_Laenge_SL_Laenge_Signal
StandDevFO Standartabweichung_FO

Table D.2: List of all global prosodic features in Engliskda@erman (original name in the
prosody module; the ‘t’ in “Standartabweichung” is a higtal spelling error)

e whgvsseg_all.pl: computes the number and duration of wanted and unwantespauthe
WHGs for a given file list
e wordpaus.pl: pause and word statistics from WHG files

e wordSyllPm.pl: syllable and word statistics for audio files

For prosodic analysis:
e pros-crit_all.pl: correlation between human rating and prosodic features

e prosname.pl: adds prosodic feature names to “anonymous” files with tatioa values

Statistic measures:
e alphkrip.pl: front-end for Krippendorff’s alpha computation (see Ciea3.3)
e kappflei.pl: computes multi-ratex according to Davies and Fleiss (see Chapter 3.2.4)

e makeFeatStat.pl: computes histograms

Tools for basic data manipulation and evaluation:

e doc-crit.pl: computes the correlation between the integer scores flereint criteria from
a group of<raters>
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| no. || criterion | abbreviation| German abbrey,
2 | quality of the substitute voice quality 1
3 | hoarseness hoarse Rau
4 || speech effort effort Anstr
5 || voice penetration penetr Durchdr
6 || prosody proso Proso
7 | match of breath and sense units brsense Atemsinn
8 || distortions by insufficient occlusion of tracheostomaoise Stor
9 | vocal tone tone Klang
10 | change of voice quality during reading change Anderung
11 | overall intelligibility intell Verst
| 12| overall quality score | overall | Gesamt |

Table D.3: Rating criteria for tracheoesophageal voicelstheir abbreviations in the text and in
the original clinics data,; the first column contains therné numbers assigned to the criteria in
the program environment (0O and 1 are reserved for rater anddiine, respectively).

doc-doc.pl: combines two files with raters’ judgments for later anaya intra- or inter-
rater correlation;

Note: It extractsall entries that were evaluated by both specified raters or gaterps,
i.e. it should be applied with care to judgment files that aonimore than the desired
speaker group.

doc-doc_all.pl: takes two files with raters’ judgments and computes caicglaweighted:,
and Krippendorff'sy for corresponding criteria between two lists of raters

doc-rec.pl: combines raters’ judgments and word accuracies for lateputation of cor-
relation, etc.

docxtret.pl: extracts given criteria for given files from a file with ratgjudgments

rank.pl: takes a file with two numerical columns and converts theento their respective
rank within the column (needed for Spearmas’'see Chapter 3.1)

wa2score.pl: converts word accuracies (or similar values) to integeres according to
given conversion intervals

whgvsf0.pl: computes wordwisé) values from framewiséj, values

whgvsf0_all.pl: computes wordwiséy values from framewisé| values for a list of files



Appendix E

German Translation of Introduction and
Summary

E.1 Titel

Automatische Bewertung tracheodsophagealer Ersatzs&im

E.2 Inhaltsverzeichnis

Abbildungsverzeichnis

Tabellenverzeichnis

1

Einleitung
1.1 Die Notwendigkeit objektiver Evaluierung . . . . . . . . . .. .. ... ...

1.2 Aufdas Screening ignaturlichen* Situationen gerichtet . . . . . . . ... ..

1.3 Beitrag dieser Arbeit zur Forschung . . . . . . . ... .. .. ... ...

1.4 Ubersicht . . . . . . .

Tracheadsophageale Ersatzstimmen

2.1 Laryngektomie . . . . . . . ..

2.2 Geschichte der Ersatzstimmen . . . . . . .. .. ... ... ... ..
2.2.1 Verschiedene Arten der Stimmrehabilitation . . . . ...... . ... ..
2.2.2 Die 0sophageale Ersatzstimme . . . . . . . ... ... ... ...
2.2.3 Elektrische Tongeneratoren . . . . ... .. ... ... ... . ..
2.2.4 Operative Methoden . . . . . ... .. ... .. ... .. ...
2.2.5 Dietracheotsophageale (TE) Ersatzstimme . . . . . ... ... ..
2.2.6 Stomafilter und Stomaventile . . . . . .. ...

2.3 Eigenschaften der Ersatzstimmen. . . . . . . .. ... ... . ... .. ..

2.3.1 DynamikdesPE-Segments. . . . . ... .. ... ... .......

2.3.2 Aerodynamische Eigenschaften . . ... ... ... ... ... ..
2.3.3 Akustische und prosodische Eigenschaften . . . . ... ... ...
2.4 Subjektive Evaluierungsmethoden . . . . . . ... ... ... L

201



202

APPENDIX E. GERMAN TRANSLATION OF INTRODUCTION AND SUMMARY

2.4.1 Subjektive Evaluierungskriterien . . . . . . .. ... oo L. 17
2.4.2 Die GRBAS-undRBH-Skalen. . . ... ... ... .......... 81
2.4.3 Selbstbewertungsskalen (VHI, V-RQOL, SF-36) . .. ...... ... . 18
24.4 Fazit. . . . . .. e 19
2.5 Objektive Evaluierungsmethoden . . . . . . . . ... ... .. . ... . 20
2.5.1 Ein Modell fur alaryngeale Stimmen . . . . . . .. ... .. ... .. 20
2.5.2 Objektive MessgroRenund Analyse . . . . ... ... ... ..... 22
2.5.3 Der Dysphonia SeverityIndex(DSI) . . . . ... ... ... ..... 29
2.5.4 Das Gottinger Heiserkeitsdiagramm . . . . . ... ... ...... ... 30
255 Zusammenfassung . . . . . . .. ... 30
3 UbereinstimmungsmaRe 33
3.1 Korrelationskoeffizienten . . . . . .. .. ... ... L oL 33
3.1.1 Pearsons Produktmoment-Korrelationskoeffiztent . . . . . .. . .. 33
3.1.2 Spearmans Rangordnungs-Korrelationskoeffigpent . . . . . . . . .. 34
3.2 Coheng und seine Erweiterungen . . . . . . . . . ..o 35
3.2.1 ZufallgegenKompetenz . . . . .. ... .. .. .. ... ... ..., 35
3.2.2 Ein Modell zur Messung vddbereinstimmung . . . . . . ... ... .. 35
3.2.3 Gewichtet&-Malle . .. .. .. . .. .. . . . 36
3.2.4 Multi-RaterUbereinstimmung mik-MaBen . . . ... ... ...... 37
3.2.5 EinschrankungendesMalRes. . . . . . ... ... ... ... ..... 38
3.3 Krippendorffsor . . . . .. 38
3.3.1 Einfuhrung . . . .. ... 38
3.3.2 Berechnung . . . . . . .. . . . ... 39
4 Sprachstichproben 43
4.1 Das EMBASSI-Korpus . . . . . . . . . 43
4.1.1 Einfluss von Hall auf die menschliche Wahrnehmung . .. .... . . .. 43
4.1.2 Ubersicht iiber das EMBASSI-KOrpUs . . . . . . ..o vvvi .. 44
4.1.3 Trainingsdaten fur die EMBASSI-Baseline-ErkenB®&tB-base . . . . 45
4.1.4 Training mit Raummikrofondaten aus EMBASSI . . ... .. ... 47
4.1.5 Kuonstliche Verhallung von Sprachdaten . . . ... .. ...... . ... 48
4.1.6 Auswahl von Raumimpulsantworten . . . . . ... 48
4.1.7 Kunstlich verhallte Trainingsdaten in EM BASSI Erinern ....... 49
4.2 Die Mudigkeitsstichprobe . . . . . . . ... . Lo o 51
4.3 Das VERBMOBIL-KOIPUS . . . . . . . o e e e e e e e 52
4.3.1 Trainingsdaten fur dieBRBMOBIL-basierten Erkenner . . . . . . . .. 54
4.3.2 Testmengen fur dieBRRBMOBIL-basierten Erkenner . . . . . . . .. .. 54
4.4 Aufnahmen von laryngektomierten Sprechern . . . . . .. ... ...... 55
4.4.1 Der Text,Der Nordwind und die Sonne* . . . .. ... ......... 56
4.4.2 Sprechergruppéaryng4lundlaryngl8 . . ... ... .. ... .... 57
4.4.3 Bewertung durch menschliche Experten . . . . . ... .. ... .. 59
4.4.4 Intra-Rater- und Inter-Rater-Korrelation . . . . . . ... .. ... .. 59
4.5 Normal sprechende Kontrollgruppen . . . . . . . . . . .. .. L 61



E.2. INHALTSVERZEICHNIS 203

5 Automatische Sprachanalyse 63
5.1 DasErkennungssystem . . . . .. ... e 63
5.1.1 Einfuhrung . . . . . . . . . 63
5.1.2 AkustischeModelle . ... ... .. ... .. .. ... .. .. ... 36
5.1.3 Merkmalsextraktion . . .. ... ... .. ... ... 65
5.1.4 Sprachmodell und Dekodierung . . . . .. .. ... ... ... ... 66
5.1.5 Ablaufdes Erkennertrainings . . . . . . ... ... aa 67
5.1.6 Spracherkenner fur die Evaluierung von TE-Sprache. . . . . . . .. 67
5.2 Modifizierte Merkmale fur verhallte Umgebung . . . . . . .. ... .. ... 68
5.2.1 Umgang mit verschiedenen akustischen Gegebeninreeainings- und
Testdaten . . . . . . . .. 69
5.2.2 DasRoot-Cepstrum. . . . . . .. . . .. e 0 7
523 p-law-Merkmale . . . . . ... 70
5.3 Erkenneradaption an TE-Stimmen . . . . . . . . ... . ... . ..o .. 71
5.3.1 Grundprinzipien . . . . . . .. 17
5.3.2 Lineare Interpolation von Hidden-Markov-Modellen. . . . . . . . .. 72
5.3.3 Schatzung der Interpolationsgewichte . . . . . ... .. ... ..... 72
5.3.4 Bestimmung der Interpolationspartner . . . . . .. .. ...... . ... 73
5.4 \Visualisierung der Erkenneradaption . . . . . . . .. ... L. 74
54.1 Einfuhrung . . . . . . .. 74
5.4.2 Ein Abstandsmal fur semikontinuiericheHMMs . . . . .. .. ... 74
5.4.3 Sammon-Abbildung . ... ... ... .. 75
5.4.4 Abbildungenvon Stimmstorungen . . . . . ... ............ 16
5.5 Prosodische Analyse . . . . . . .. . . . . ... .. 77
5,51 Ubersicht . . . . ... ... ... 77
5.,5.2 DasProsodiemodul . . . ... ... ... .. ... ... 8 7
6 Spracherkennung in verhallter Umgebung 83
6.1 Experimentelle Ergebnisse auf verhallten Trainingsda. . . . . .. ... ... 83
6.1.1 Experimente mitdem EMBASSI-Baseline-SystemMB-base. . . . . . 83
6.1.2 DerEMB-rev+Erkenner mit Raummikrofontrainingsdaten. . . . . . . . . 84
6.1.3 Kiunstlich verhallte Trainingsdaten in EMBASSI-EBnkern . . . . . .. 85
6.1.4 Experimente mit ¥RBMOBIL- und Mudigkeitsdaten . . . . . . ... .. 86
6.2 Experimentelle Ergebnisse auf modifizierten Merkmalen. . . . . . . .. .. 87
6.2.1 Root-Cepstrum-Merkmale . . . . .. .. ... ... ... ....... 87
6.2.2 p-law-Merkmale im EMBASSI-Baseline-SysteBMB-base . . . . . . 89
6.2.3 p-law-Merkmale und kiinstlich verhallte EMBASSI-Daten . . . . . 93
6.2.4 p-law-Merkmale und kunstlich verhallteBkRBMOBIL-Daten . . . . . . 93
6.2.5 Gaul3-Normierung von Merkmalkomponenten. . . . . . . ...... .. 95
6.3 Ergebnisse auf Testdaten nach Beamforming . . . . . . ... ... ... .. 96
6.3.1 Entfernung von Hall aus Audiosignalen . . . . .. .. .. ...... 97
6.3.2 Beamforming . . . . . . . . ... 97
6.3.3 Experimente mit dem EMBASSI-Baseline-SystemMB-base. . . . . . 98
6.3.4 Beamforming und kunstlich verhallte EMBASSI-Daten . . . . . . . 98
6.3.5 Ergebnisse auf denre¥BmoOBIL-basierten Erkennern. . . . . . . . . .. 100

6.3.6 ZusammenfassungundFazit . . . .. ... ... ... ....... 101



204

APPENDIX E. GERMAN TRANSLATION OF INTRODUCTION AND SUMMARY

7 Automatische Analyse trachedsophagealer Stimmen 103
7.1 Automatische Spracherkennung gegen menschlicheiErmatg . . . . . . . . . 103
7.1.1 Baseline-Erkennungsergebnisse aufiéfibaseErkennern . . . . . . . 103
7.1.2 Korrelation zwischeNW-baseErkennern und menschlicher Auswertung 104
7.2 Ergebnisse der Erkenneradaption an TE-Stimmen . . . . .. ... ... .. 105
7.2.1 Adaption an einzelne Sprecher . . . . . .. ... ... ..o 107
7.2.2 Adaption an die gesaniteyngl8Sprechergruppe . . . . . . . ... .. 108
7.2.3 Kaorrelation der bezuglich des Referenztextes hexeten Wortakkuratheit 109
7.2.4 Optimale Umrechnung der Wortakkuratheit in ganzgahNerte . . . . 112
725 Fazit. . . . . e 112
7.3 Prosodische Analyse gegen menschliche Evaluierung .. Ce .. 113
7.3.1 Prosodische Merkmale bei TE-Sprechern und IaryBgequrechern .. 113
7.3.2 Korrelation von prosodischen Merkmalen und menskbbliBewertung . 114
7.3.3 Analyse der Sprachgrundfrequenz . . . . . w118
7.3.4 Messung dddbereinstimmung von Atem- und Slnnelnhelten ...... 119
7.3.5 Zusammenfassung . . . . . . .. ... e 212
7.4 Der Postlaryngektomie-Telefontest (PLTT) . . .. ... ...........123
7.4.1 Pilotexperimente mit Telefonsprachdaten . . . ... ...... ... ..123
7.4.2 \Verstandlichkeitstests . . . . . . . ... .. L L e 123
7.4.3 UbersichtilberdenPLTT . . . . . . . . . . i 124
7.4.4 Worterund Satze imPLTT . . . .. .. .. ... .. ... . ..... 125
7.4.5 Testdaten und automatische Evaluierungsergebnisse . . . . . . .. 126
7.5 Simulierte TE-Raummikrofonaufnahmen . . .. ... .. .. ..... .. .. 128
7.5.1 TestdatenundErkenner. . . . . . ... ... ... ... .. ... .. 128
7.5.2 Ergebnisse . . ... ... 128
7.6 Grafische Darstellung der Ergebnisse . . . . . . . . . . . . ... .. 129
7.7 Auswahl einer Menge von objektiven Messgroféen. . . . ... .. ... ..133
7.8 Fazit . . . . e e 413
8 Diskussion 137
9 Ausblick 141
10 Zusammenfassung 143
Literaturverzeichnis 147
A Lesematerial 179
A.1 Der Text,Der Nordwind und die Sonne* . . . . .. .. ... .. ... ..... 179
A.2 Die LesebogenfurdenPLTT . . . . . . . . . . . . . ... ... ueu.. 180
B Menschliche Evaluierungsergebnisse 183
C Erkennungsergebnisse fur Merkmale nach Gau3-Normierug 189



E.3. EINLEITUNG 205

D Auswertungsumgebung fur die Stimmanalyse 193
D.1 Das Projektverzeichnis . . . . . . . . . . e 193
D.2 Das Erkennerverzeichnis . . . . . . . . . . . .. e 194
D.3 Das Evaluierungsverzeichnis . . . . . . . . .. .. .. ... .. 195

D.3.1 Automatische Spracherkennung . . . . . ... .. ... ... ... 195
D.3.2 Korrelation zwischen einem Erkenner und menschtiddewertern . . . 196
D.3.3 Kaorrelation innerhalb einer menschlichen Beweniggge . . . . . . . . 196
D.3.4 Berechnung vosWorthypothesengraphen* (WHGs) . . . . ... .. .. 197
D.3.5 Berechnung von prosodischen Merkmalen. . . . ... .. ... .. 197
D.3.6 Weitere Evaluierungsskripten . . . . . . . ... ... a. . 198

E DeutscheUbersetzung von Einleitung und Zusammenfassung 201
E.1 Titel . . . . e ro
E.2 Inhaltsverzeichnis . . . . . . . . . . .. ... 201
E.3 Einleitung . . . . . . . . . 205

E.3.1 Die Notwendigkeit objektiver Evaluierung . . . . . .. .. ... .. 206
E.3.2 Aufdas Screening imaturlichen® Situationen gerichtet . . . . . . . .. 207
E.3.3 Beitrag dieser Arbeit zur Forschung . . . . . ... ... . ...... .. 209
E.3.4 Ubersicht . . . . ... ... 210
E.4 Zusammenfassung . . . . . . . . . .. 211
Stichwortverzeichnis 217
E.3 Einleitung

In 20 bis 40 Prozent aller Falle von Kehlkopfkrebs muss eatale Laryngektomie, d.h. die
Entfernung des gesamten Kehlkopfes, durchgefuhrt wef@isi+01]. Fur den Patienten be-
deutet dies den Verlust der naturlichen Stimme und danub ales wichtigsten Kommunika-
tionstragers. Fur alle betroffenen Personen stellt diedierausragendes Stigma dar [DSK94].
In Abhangigkeit von der onkologischen Therapie konnersefeiedene Methoden der Stimm-
rehabilitation angewandt werden. Einige davon bediengm selten verwendeter chirurgischer
Methoden, der 6sophagealen Stimme und elektrischerrhiitisl. Neben diesen ist die Verwen-
dung sog. Shunt-Ventile, timmprothesen®) zur Anbahnung einer Ersatzstimme in dSA U
und auch in Deutschland in den letzten 25 Jahren immer hefigleworden; fur Deutschland
war dabei eine Verzégerung um etwa ein Jahrzehnt zu bet#raphS92, HAA90, Rob84].
Gegenwartig wird die Stimmrehabilitation mit Shunt-\iéem als Stand der Technik betrach-
tet [BHIBO3, Blo00]. Doch obwohl die Sprachrehabilitatignundlegend verbessert wurde,
bleiben weitere Probleme mit der Laryngektomie verbundeader Verlust der nasalen Funk-
tion (Riechen, Anfeuchtung des Luftstroms), schwacherntéhstol3, Schluckbeschwerden und
Veranderungen der Lungenfunktion. Nach dem Einsetzerstast-Ventils mussen die Patien-
ten eine Therapie durchlaufen, um wieder sprechen zu lei@anZeit zu Zeit wird die Ersatz-
stimme durch den Therapeuten evaluiert, um den Behandhmsgshritt zu dokumentieren.
Diese Arbeit stellt Methoden fur die objektive, automeltis Stimm- und Sprachevaluierung vor.
Sie basiert auf einer Kooperation des Lehrstuhls fur Meskennung der Universitat Erlangen-
Nurnberg (Technische Fakultat) mit zwei anderen ForsgBinstitutionen derselben Universitat.
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Die erste ist die Abteilung fur Phoniatrie und Padaudjtdodes Klinikums der Universitgt
die den Partner fur die Analyse von Ersatzstimmen datsteDie andere, fur das Gebiet der
Erkennung von verhallter Sprache, war der Lehrstuhl futtivhediakommunikation und Sig-
nalverarbeitung

E.3.1 Die Notwendigkeit objektiver Evaluierung

Die Evaluierung der Ersatzstimme durch den Patienten uddranPersonen erfolgt in erster
Linie subjektiv. Dies gilt auch fur den Therapeuten, da\deiigbaren technischen Mittel zur
objektiven Stimmanalyse, wie das Gottinger Heiserkatgdmm (Kap. 2.5.4), noch nicht an
Ersatzstimmen angepasst wurden. Dies bedeutet, dass dasmsehe Personal sich auf seine
Erfahrung verlassen muss. In dieser Arbeit wird die Kotrefezwischen subjektiver Bewertung
durch Menschen und objektive, automatische Bewertundsden untersucht.

Die Erfahrung der Bewerter hat sehr groRRen Einfluss aufldiereinstimmung zwischen den
Bewertern (inter-rater agreement”). Beruflicher Hintergrund und Bréang oder Wissen tiber
die Krankengeschichte konnen eine grol3e Inter-Rateer, alch Intra-Rater-Variabilitat bedin-
gen [FPB 05]. Fachpersonal wird, besonders wenn es eng zusamméagrbme wesentlich
hohereUbereinstimmung auf denselben Bewertungskriterien kemzials Halbprofessionelle,
wie z.B. Logopadenschiler oder gar naive Horer [MMIB, DRF 96]. Manchmal wird die
Inter-Rater-Variation durch eingerzwungene” Einigung der Bewerter umgangen, bevor der
Endwert weiterverarbeitet wird [PJO1]. Dies erforderigel die Einbindung mehrerer Experten,
was genau das Gegenteil der gewiinschten schnellen urehgasistigen Evaluierung darstellt.

Fur die Entwicklung automatischer Verfahren miisserazbst subjektive Auswertungsdaten
als Referenz erfasst werden. Dies gilt fur die Bewertung Sprachkriterien, wie z.B. der Ver-
wendung von Prosodie durch den Patienten, aber auch fatiskine Parameter wie die Intensitat
der Stimme oder die maximale Tonhaltedauer. Der Verglegrsohiedener friherer Studien zu
diesem Thema ist jedoch fast unmoglich, da viele Forscbumgpen aufgrund niedriger Patien-
tenzahlen nur eine sehr beschrankte Menge an Daten zuigver§ hatten. In der Literatur
finden sich viele Beitrage, die auf Sprechergruppen dliggte GroRe basieren. Viele Forscher
entwerfen ihre eigenen Bewertungskriterien fur Spractd 8timmqualitat (vgl. Kap. 2), was
es sehr schwer macht, Entsprechungen zwischen ihnen zwnfinDee Sprachdaten fur die
Auswertung sind ebenfalls sehr unterschiedlich. Um Stimwmameter zu messen, verwenden
viele Studien nur gehaltene Vokale, andere verwendena&Woder Satze. Die Analyse dieser
Daten wird noch schwieriger dadurch, dass die Forscheragitedliche Messgrol3en erfassen.
Wahrend z.B. die Tonhaltedauer ein sehr gangiges MaRigten manche Gruppen Parameter
wie die Dauer eines beliebig gewahlten Satzes oder sogairdensitat in Millimetern* einer
analogen Ausgabe vor, was sehr schwer zu reproduziererdgdgie. Um die Variabilitat in
Sprechergruppen zu reduzieren und einen Eindruck davomhalten, welche Sprachqualitat
bei Ersatzstimmen moglich ist, schlugen Bellandese wiadass eine Studie zu diesem Thema
nur Sprecher einbeziehen sollte, die als exzellent betwedelen waren [BLGO1]. Das Ergeb-
nis einer solchen Studie kann jedoch nicht auf nicht-eené Sprecher verallgemeinert werden
und wirde kaum die Suche nach wirklich objektiven Analysttraden unterstitzen.

Der Versuchsaufbau von Bewertungsstudien ist ebenfdilsigehtig fur inre Allgemeingul-
tigkeit. Zum Beispiel sollte bei Verstandlichkeitstedis Menge des den Horern prasentierten

http://www.phoniatrie.uni-erlangen.de
2http://lwww.Int.de/Ims
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Materials grof3 genug sein, um zu verhindern, dass dies&h&mn mehr als einmal vorgespielt
werden, um einen Lerneffekt bei den Zuhorern zu verhindarreiner Studie mit 50 College-
Studenten als Horer wurde die Verstandlichkeit von ndemaind tracheodsophagealen (TE)
Ersatzstimmen (Kap. 2.2.5) in verrauschter Umgebung iabrgsh [MFP-98]. Die Testpersonen
waren ein Normalsprecher und ein TE-Sprecher, die ein 8atzpus einem Standardtext vor-
lasen [Fai60]. Das Hintergrundgerausch war vielstimmig&lappern* aus dem TesBpeech
Perception in Noise" (SPIN, [KSE77]). Die Testaufnahmemdem den Horern vorgespielt, und
zwar einmal ohne Storung und danach mit eingespieltenekjnindgerausch in verschiedenen
Intensitaten. Wahrend jedes Durchlaufs sollten diegddeurteilen, wie verstandlich die Auf-
nahme war. Obwohl die Studie interessante Ergebnissdteraraurde die Auswertung wohl
hochgradig durch die Tatsache beeinflusst, dass alle Higselben beiden Satze des jeweili-
gen Sprechers immer wieder horten. Es erscheint sehr usefainlich, dass die Ergebnisse
unabhangige oder sogavbjektive” Mal3e reprasentieren.

Die angegebenen Beispiele zeigen, dass in der Tat eine lkbenpenge automatisch be-
rechenbarer, objektiver Evaluierungskriterien in de@8ptherapie benotigt wird, umsomehr als
einzelne Forscher ein@bjektive” Bewertung lediglich als den Durchschnittswaars mehreren
subjektiven Bewertungen oder die Einigung auf einen Wefingken. Bei der gro3en Zahl
von Studien auf kleinen Datenstichproben dirfte diesé&ionsistente und gultige Definition
sein. Die Vereinheitlichung der Stimmbewertung muss leereim Zeitpunkt der Datenerhebung
beginnen. Diese Prozedur ist jedoch abhangig vom Ziel geachtherapie, wie der nachste
Abschnitt zeigt.

E.3.2 Aufdas Screening in, natirlichen” Situationen gerichtet

Zum Zwecke der umfassenden Dokumentation einer Stimmei@dwopean Laryngological
Research Group (ELRG) funf grundlegende Elemente dem8ieavertung definiert [DBCO1]:

¢ Videostroboskopie

akustische Analyse

aerodynamische Messungen

perzeptive Bewertungen

Selbstbewertung, d.h. Bewertung durch den/die Patigraéitst

Die korperlich unangenehmste Erfassung fur den Patidatalie Videostroboskopie, da sie das
Einfihren eines Endoskops in den Mund und die Aufnahme detti& oder — im Falle der
Ersatzstimmen — der Pseudoglottis beinhaltet (siehe Kagi2)2

Das Ziel fur die Zukunft der Stimmdokumentation muss diégmogliche Reduktion der
Anstrengung oder gar Schmerzen fur den Patienten seirarigi@rer wichtiger Punkt ist die Ver-
minderung des psychischen Drucks auf den Patienten. In &indie Testperson idealen Situa-
tion konnte der Patient frei sprechen und hatte nicht dedrkck, beobachtet oder kontrolliert
zu werden. Fur den Fall der perzeptiven Bewertungen vatsliese Arbeit, einige Losungen
anzugeben. Im Idealfall wiirde der Patient ohne Sprecltgard.h. Kopfhorer mit Mikrofon,
sprechen. Wenn die Aufnahme mit einem Raummikrofon gemauoit ist sich die Testper-
son der laufenden Evaluierung wesentlich weniger starkussty Spracherkennung in verhallter
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Umgebung ist daher ein wichtiges Thema in dieser Arbeit.t&¥ein sollte der Proband spontan
sprechen konnen, d.h. zwischen Patient und Therapeutemrdormaler Dialog gefuhrt, der
aufgenommen wird und als Grundlage fir die spatere Aeallysnt. Vollig freies Sprechen ist
jedoch fur die automatische Evaluierung aus verschigd@mégnden nicht geeignet, wie z.B. das
Out-of-vocabulary-Problem oder schwankende Wortdaweenn verschiedene Sprecher unter-
schiedliche Worter benutzen. Aus diesem Grund wurde vanTéstsprechern ein phonetisch
reicher Standardtext mit einem festgelegten Vokabulagelesen und danach analysiert. Dies
stellt dennoch eine grol3e Verbesserung im Vergleich mitailegefihrten objektiven Verfahren
dar, welche auf die Auswertung eines gehaltenen Vokalshibéskt sind. Typische Merk-
male der objektiven Analyse werden automatisch aus deruerexj(z.B. Jitter) oder Ampli-
tude (z.B. Shimmer) von Teilen des Sprachsignals berecbdet sie werden aus zeitabhangigen
MessgrofRen gewonnen, wie etwa die Dauer von Wortern @tz oder die maximale Ton-
haltedauer [BLGO1, PFKB89, Rob84]. Die Position der FortaarfCMGO01] und die Stimm-
einschwingzeit [RCK86, SKA00, SC02] werden ebenfalls irtrBeht gezogen. Wahrend die
Berechnung der akustischen Parameter, wie Jitter, Shiratngrautomatisch ablauft, wird die
Dauer eines Textes oder einer Phrase oft immer noch durchranibestimmt.

Im Falle der Lautdauer war die grafische Darstellung desr8timder Sprachsignals auf
einem Monitor und die anschlieR3ende Messung der gewigs@duer per Hand zu Beginn der
1990er Jahre immer noch tblich. Der Personalaufwand stlichen Experimenten sehr hoch,
besonders wenn mehrere Bewerter eingesetzt werden, unewiasgs Mald an Objektivitat zu
erzielen [GW83].

Um Sprachqualitat in einer realen Kommunikationssitwabjektiv zu bewerten, ist die
Analyse ganzer Worter und Satze notig, da die Verstéhnkibit der Ersatzstimme ein wesentli-
ches Kriterium fur ihre Bewertung durch die Patientensglind durch Experten darstellt [AS92,
MFP*98, SKAO00]. Besonders ist hier die Kommunikation Uiber dakefbn betroffen [MZ96,
MMG93, ZP86], da durch die Bandbeschrankung des Telefwmalkadie Stimme noch starker
beeintrachtigt wird und es keine Moglichkeit gibt, diedmunikation durch Mimik oder Hand-
gesten zu unterstutzen.

Die Analyse von Telefonanrufen ist ein Aspekt, der die Sitwefur die Patienten erleichtern
konnte. Das Telefon ist ein wesentlicher Bestandteil degagen Lebens. Laryngektomierte sind
oft alter als 70 oder sogar 80 Jahre (siehe Kap. 4.4), unst égrisie notwendig, ein Kommu-
nikationsmittel zu besitzen, welches nicht das VerlasssnHhuses erfordert. Und wenn diese
Menschen Hilfe irgendwelcher Art benotigen, werden si@iseheinlich das Telefon benutzen,
um einen Arzt oder ihre Verwandten anzurufen. Ein andergelss der beachtet werden muss,
ist die Tatsache, dass ihre Kontaktpersonen haufig atete dlenschen sind, was zu Problemen
beim Zuhorer fuhren kann [Cla85]. Deshalb spiegelt dienBtevaluierung Uber das Telefon
eine fur den Patienten wichtige Kommunikationssituatiader. Eine objektive Bewertung der
Verstandlichkeit von Telefonsprache als Teil einer Idafien Bewertung der Stimmrehabilitation
ware fur die betroffenen Personen sehr vorteilhaft, uadvire ein Schritt hin zu einer globalen
Bewertung der Sprache nach der Laryngektomie.

Perzeptuelle Stimmevaluierung ist in erster Linie suliyekia sie von menschlichen Exper-
ten durchgefuhrt wird. Aul3erdem setzen die Experimengeindder Literatur beschrieben sind,
ein gewisses Mal3 an Horerfahrung mit Ersatzstimmen vdRD&RS98], was zunachst nicht
der Alltagssituation des Patienten entspricht. Die subjek und objektiven Verfahren zur Er-
fassung der Stimmfunktion, die derzeit in der Sprachtheraprwendet werden, entsprechen
meist nicht dem Standard der technisch moglichen Stimna- $iprachanalyse. Im Rahmen
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dieser Arbeit wurde untersucht, wie solche Methoden eigigésverden kbnnen, um ein objek-
tives Hilfsmittel zur Bewertung von Ersatzstimmen benestellen. Der nachste Abschnitt gibt
einenUberblick Uber die Ansatze, die untersucht wurden.

E.3.3 Beitrag dieser Arbeit zur Forschung

In dieser Arbeit wird der Schritt von der automatischen Amalvon Vokalaufnahmen zu Text-
aufnahmen vollzogen. Die neuen Verfahren erfordern ledigdinen Standardrechner und ein
Mikrofon. Sie sind auch fur die internetbasierte Verateg entworfen. Es wurde untersucht,

e 0b automatische MalRe gewonnen werden konnen, die trasbpbageale Ersatzstimmen
objektiv beschreiben und evaluieren konnen,

e 0b die objektiven Parameter gut mit den Bewertungskribemenschlicher Bewerter kor-
relieren

¢ und ob die objektive Auswertung auch tber das Telefon odievdrwendung eines Raum-
mikrofons moglich ist.

Die Spracherkenner fur die Experimente mit TE-Sprecheanden mit Normalsprechern
trainiert, da es fur die Auswertung wichtig war, dass dast&y einen naiven Horer simuliert,
also eine Person, die nie zuvor TE-Sprache gehort hat. @itspricht der Situation, mit der
die Patienten im taglichen Leben konfrontiert werden. mam wurde die Interpolation der
akustischen Modelle mit TE-Sprache untersucht.

Menschliche Bewertungskriterien in der Sprachtherame siblicherweise unter anderem
Verstandlichkeit, Stimmklang, Stimmqualitat und Prdigdahigkeit. Die Korrelation zwischen
derartigen menschlicherNoten* und der Wortakkuratheit des Spracherkenners wirdeihe
Stichprobe von TE-Sprachaufnahmen bestimmt. Sie wurdefim@utomatisch generierte, pro-
sodische Merkmale berechnet, die z.B. die Stimmeinscheeib@der Wort- und Pausendauern
reprasentieren.

Fur einige Experimente wurde besonders die Verstarkiitsbewertung betrachtet, da sie
das wichtigste Kriterium der Stimmbewertung durch merisbklHorer darstellt. Eine automa-
tisierte Version des Postlaryngektomie-TelefontestsIBLlwird vorgestellt. Der Test wurde
ursprunglich fur menschliche Horer entwickelt, um diermunikationssituation am Telefon
darzustellen. Zusatzlich wurden die Wortakkuratheit il prosodischen Merkmale mittels
der sog. Leave-one-speaker-out-Multikorrelations-feggionsanalyse verarbeitet, um diejeni-
gen Mal3e zu bestimmen, die das Verstandlichkeitskriteam besten reprasentieren.

Fur Sprachtherapeuten kann eine grafische Darstellurilpgischer Sprache sehr hilf-
reich sein. Die Sammon-Transformation fuhrt eine topmedhaltende Dimensionsreduktion
auf den Eingabedaten durch. Sie minimiert gi§@annungsfunktion“ zwischen der Topologie
der niederdimensionalen Sammon-Karte und den hochdimmasin originalen Sprachdaten.
In dieser Arbeit wird die Fahigkeit der Sammon-Karten, seniche Bewertungskriterien dar-
zustellen, untersucht.

Fur die Spracherkennung in verhallter Umgebung kamen ¢étarpormaler Sprache zum
Einsatz, welche synchron aufgenommene Nahbesprechumgj®aummikrofonaufnahmen ent-
halten. Verschiedene Ansatze wurden getestet, um dienBukgysergebnisse von verhallten
Testdaten zu verbessern. Im Gegensatz zu den meisten asiedten wurde die Testumgebung
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wahrend der Trainingsphase als nicht bekannt angenomaiiendlie Testdaten waren in einer
anderen Umgebung aufgenommen als alle Trainingsdaten.itném,@iniversellen* Erkenner fur
Nahbesprechungs- und verhallte Testdaten zu erhaltemlewutie Trainingsmengen teilweise
oder ganz unter Zuhilfenahme vieler verschiedener Rauraktaistiken kiinstlich verhallt.

Mel-Frequenz-Cepstrum-Koeffizienten (MFCC) kamen in dasdline-Erkennern als Merk-
male zum Einsatz. Allerdings kann die logarithmische Koamperung der Filterbankkoeffizien-
ten bei verrauschten Daten nachteilig sein. Aus diesem dGwurden alternative Merkmale
getestet. Das Root-Cepstrum und dielaw-Merkmale“, die auf einem Komprimierungsver-
fahren aus dem Bereich der Telekommunikation basiereatzens den Logarithmus durch an-
dere Funktionen, die diese Probleme umgehen sollen.

Da keine Raummikrofonaufnahmen von Laryngektomiertefirgdar waren, wurden Root-
Cepstrum undu-law-Merkmale auf kinstlich verhallter TE-Sprache getesum eine Thera-
piesitzung zu simulieren, in der keine Sprechgarnitur (lde8) verwendet wird. Diese Merk-
male wurden auch auf simulierten Telefondaten getestet.

Synchrone Aufnahmen der Testdaten wurden durch DelaysandBeamforming als Vor-
verarbeitungsschritt kombiniert, um ein neues Signal miingerem Rauschanteil zu erzeugen.
Diese Testmenge wurde mit Spracherkennern verarbeitgetyidderum unterschiedliche Merk-
male und kunstlich verhallte Trainingsdaten verwenden.

E.3.4 Ubersicht

Diese Arbeit ist wie folgt aufgeteilt:

Kapitel 2 fuhrt verschiedene Moglichkeiten zur Anbahguginer Ersatzstimme ein, wie
z.B. operative Methoden oder die dsophageale Stimme. Dew&punkt liegt auf tracheo-
0sophagealen (TE) Stimmen. Die Eigenschaften einigemrStehabilitationsmethoden werden
verglichen, und subjektive Evaluierungsverfahren, diden Sprachtherapie zum Einsatz kom-
men, werden vorgestellt. Objektive Messgrol3en fur dism®igualitat werden zusammen mit
kommerziellen Anwendungen im Detail diskutiert.

Kapitel 3 beschreibt MaRRe, die benutzt werden, umibereinstimmung zwischen mensch-
lichen Bewertern oder zwischen einem Bewerter und der nirasltdn Evaluierung eines Sprach-
signals zu bestimmen. Konkret werden die Korrelationdkaehten von Pearson und Spearman
mit Cohensk und dessen Erweiterungen verglichen, und Krippenderfigird als machtige
Alternative vorgestellt.

Informationen Uber die Sprachkorpora, die fur die Expente in dieser Arbeit verwendet
wurden, sind in Kapitel 4 zu finden. Das EMBASSI-Korpus und tMudigkeitsstichprobe
sind in verschiedenen Signalqualitaten verfugbar unciem deshalb fur die Verbesserung der
Spracherkennung in verhallter Umgebung eingesetzt. esevERBMOBIL-Korpus dienten als
Trainingsdaten fur alle Spracherkenner. Fur die Erkegraer laryngektomierten Testsprecher
wurden auch menschliche Bewertungen als Referenz furudoeraatische Auswertung erhoben.
Die entsprechenden Details sind ebenfalls in diesem Kagifgefihrt.

Ein wichtiger Aspekt bei der Arbeit am Spracherkennungssgsvar die Suche nach Merk-
malen, die robuster gegen Hall sind als Mel-Frequenz-@apsKoeffizienten, um die automa-
tische Erkennung von Raummikrofonaufnahmen zu verbessBier Adaption von Hidden-
Markov-Modellen an TE-Sprache wurde durchgefiihrt, um Elikennungsergebnisse fur Er-
satzstimmen zu verbessern. Die grafische Darstellung voacBgaten, basierend auf der Laut-
modellanpassung, und die prosodische Analyse waren waitarerzichtbare Aspekte fur die
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Evaluierung. Die theoretischen Grundlagen dieser Veefalsind in Kapitel 5 zu finden.

In Kapitel 6 sind die Ergebnisse der Spracherkennung inaleh Umgebung zusammen-
gestellt. Dies beinhaltet Experimente mit kiinstlich \aitlen Trainingsdaten, um so viele un-
bekannte Testumgebungen wie moglich abzudecken. Diee¥sdoung der Ergebnisse durch
modifizierte MFCC als Merkmale wird ebenso beschrieben waekembination von Signalen
von mehr als einem Mikrofon (Beamforming), um Storgecdngsin den entsprechenden Testsig-
nalen zu eliminieren.

Die Experimente zur automatischen Bewertung von Ersateséin werden in Kapitel 7
beschrieben. DidJbereinstimmung zwischen menschlicher Bewertung und deonzatisch
erhobenen Messgrofien wird im Detail fur das Verstah#teaskriterium dargestellt, welches
am besten durch die Wortakkuratheit des Spracherkenna@sentiert wird, und fur die proso-
dische Analyse von TE-Sprachdaten. Die VerstandlichdeitTelefon wird mithilfe der auto-
matischen Version des Postlaryngektomie-Telefontestgtett. Die Auswirkungen von Hall in
den Testsignalen und von der Erkenneradaption auf die Bukegsergebnisse werden ebenso
erlautert. Abschlie3end wird die grafische Darstellung #psatzstimmen durch die Sammon-
Transformation prasentiert.

Wesentliche Erkenntnisse anderer Forschungsgruppenhuoad/ergleichbarkeit mit dieser
Arbeit werden in Kapitel 8 zusammengefasst und diskuti&rkiinftige Experimente und mog-
liche Erweiterungen der Evaluierungsverfahren werdenapit€l 9 angesprochen. Kapitel 10
fasst die gesamte Arbeit zusammen.

E.4 Zusammenfassung

In 20 bis 40 Prozent aller Falle von Kehlkopfkrebs muss éotale Laryngektomie, d.h. die
Entfernung des gesamten Kehlkopfes, durchgefuhrt werddach der Operation bleiben die
Luftrohre (Trachea) und die Speiserdhé@spphagus) voneinander getrennt. Fiir den Patienten
bedeutet dies den Verlust der naturlichen Stimme und dancih des wichtigsten Kommunika-
tionstragers. Die moderne Chirurgie erlaubt die Anbalgreiner Ersatzstimme, die von Zeit zu
Zeit durch den Therapeuten zum Zwecke der Dokumentatiom desapiefortschritts evaluiert
werden muss. Diese Evaluierung ist subjektiv. Sie ist desilzhangig von der Erfahrung des
jeweiligen Experten und von anderen Faktoren. In dieseeisturde untersucht, wie automa-
tische Verfahren verwendet werden konnen, um eine obgkiHilfsmittel zur Bewertung von
Ersatzstimmen bereitzustellen.

Es gibt viele Methoden zur Wiederherstellung der Stimmei d&e 0sophagealen Ersatz-
stimme dient ein Teil de®sophagus als Pseudoglottis, und der Magen kann als Leffiasver-
wendet werden. Jedoch kann es einige Monate oder sogardkalem, bevor Laryngektomierte
dazu fahig sind, diese Art der Stimme zu kontrollieren. Milfe unterschiedlicher chirurgi-
scher Methoden wurde versucht, die Umlenkung der Luft beinsadmen von der Luftrohre
in den Rachen (Pharynx) durch Fisteln oder auf ahnliches®/eu ermoglichen. Jedoch war
die Aspirationsrate sehr hoch, weshalb die meisten diessai#e heute nicht mehr zur An-
wendung kommen. Die Stimmfunktion des Kehlkopfes kann alioith einen Tongenerator
ersetzt werden. In den meisten Fallen wird dieser elalttrizetrieben und folglich als Elektro-
larynx bezeichnet. Das Gerat wird entweder an die Aul3endes Halses oder den Mundboden
gehalten, oder es wird im Mund platziert. Die Qualitat dieStimmen ist haufig jedoch nicht
zufriedenstellend, da sie sefmoboterhaft* und monoton klingt.
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Bei einer beliebten Methode der Stimmrehabilitation wind ®0g. Shunt-Ventil (Stimm-
prothese*) zwischen Trachea und pharyngotdsophagealEn38gment eingebracht, das die
tracheoodsophageale (TE) Ersatzstimme ermoglicht. RasiNérlaubt beim Ausatmen die Um-
lenkung der Luft in das PE-Segment, wo die Ersatzstimmggstattfindet. Der Ursprung der
Stimme ist derselbe wie bei der dsophagealen Stimme, aseBlunt-Ventil erlaubt es den be-
troffenen Personen, wieder das gesamte Lungenvolumen pueci®n zu nutzen. Zudem ist
die Zeit des Lernens, mit einer TE-Stimme zu sprechen, widekirzer. Fur tber 90% der
laryngektomierten Personen bedeutet das Shunt-Vengl sifortige Wiederherstellung ihrer
Stimmfunktion, und 65% der Patienten benutzen die TE-Sendauerhaft. Alle Patienten, die
fur diese Arbeit rekrutiert wurden, waren mit einem Shuatiil vom Typ Provo® ausgestattet,
das 1988 am Niederlandischen Krebsinstitut entwickehdeu

Es gibt etablierte subjektive Verfahren zur Analyse der lfatavon pathologischen Stim-
men. Es ist jedoch moglich, dass verschiedene TherapédutmnErfahrung entsprechend eine
Stimme unterschiedlich bewerten (Inter-Rater-Diskrepannd auch ein einzelner Bewerter
kann eine andere Meinung haben, wenn er eine Stimme einigeZger erneut hort (Intra-
Rater-Diskrepanz). Dies wird durch automatische Verfakermieden. Sie sind deterministisch
und objektiv, liefern auf denselben Daten stets das gleidmultat, und sie konnen als Refe-
renz dienen, die von der individuellgiKarriere* eines bestimmten Experten unabhangig ist.
Eingefuhrte Methoden fur die objektive Auswertung asayen jedoch lediglich Aufnahmen
von gehaltenen Vokalen, um Unregelmalligkeiten in deri@erau finden. Dies entspricht keiner
realen Kommunikationssituation. Die Untersuchung voreSipe ist fur das tagliche Leben des
Patienten wichtiger. Da die automatische Verarbeiturlig/ideier Rede sehr schwierig ist, lasen
die Testpersonen im Rahmen dieser Arbeit einen StandandiexDieser Text wurde dann mit
Verfahren der automatischen Spracherkennung analysiert.

Wenn eine automatische Methode und die menschliche Bemgevierglichen werden sollen,
dann muss der Grad déibereinstimmung innerhalb der Expertengruppe und zwisalen
menschlichen und automatisch berechneten Resultatamb#swverden. Neben Pearsons Kor-
relationskoeffizient- wurden hierzu weitere Mal3e, die in der Medizin und den Sorssken-
schaften verwendet werden, eingesetzt. Zwei UrsacherJbereinstimmung sind zu unter-
schieden. Die eine ist digbereinstimmung durch Kompetenz, d.h. sie resultiert arska-
fahrung der Bewerter mit den jeweiligen Patienten und itiEprach-)Daten. Der andere Anteil
ist durch eine bestimmte Anzahl gleicher Bewertungen, dreibs zufallig moglich sind, bedingt
und wird deshalb als erwartettbereinstimmung bezeichnet. Folglich ist &lhereinstimmungs-
mal} erforderlich, das nur den Anteil durch Kompetenz wigiegelt, und eine Arf Zufallskor-
rektur” muss erfolgen. Erweiterungen von Cohensvie xkpr hach Davies und Fleiss, leisten
dies fur eine beliebige Zahl von Bewertern und Bewertuagsdorien. Krippendorffs ist sogar
in der Lage, mit dem Problem fehlender Bewertungen in deemamzugehen. Beide Malie
wurden fur den Vergleich der menschlichen und automatis@ewertungen verwendet.

Die Sprachdaten fir die Experimente im Rahmen dieser Aviagiden mehreren Sprachkor-
pora entnommen. In einer Sprachtherapiesitzung solltemsRatienten nicht bewusst sein, dass
er aufgezeichnet wird, da dies den Eindruck des Kontrolerdens erwecken kann. Aus diesem
Grund war eines der Ziele die Verbesserung der Sprachenkegsergebnisse in verhallter Umge-
bung. Die Experimente wurden allerdings nicht mit Sticliygno von pathologischer Sprache
durchgefuhrt, da keine Sprachkorpora vorhanden warergrdi? genug gewesen und mit Raum-
mikrofonen aufgenommen worden waren. Das EMBASSI-Konpusde fur Pilotexperimente
zu diesem Thema benutzt. Wenn ein Erkenner in vielen vegdehen Umgebungen zufrieden-
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stellend arbeiten soll, dann sollten als Trainingsdatea&umen zur Verfigung stehen, die in
einer Vielzahl unterschiedlicher Raumlichkeiten aufg@men wurden. Durch die kinstliche
Verhallung von Nahbesprechungsdaten mit vordefiniertemmRapulsantworten kann dieses
Problem umgangen werden. Ausgesuchte Resultate wurdesremMtidigkeitsstichprobe und
dem VERBMOBIL-Korpus verifiziert. Fur das Erkennertraining wurden digpuinglichen Nah-
besprechungssignale teilweise oder vollstandig duneghktinstlich verhallten Versionen ersetzt.
Die VERBMOBIL-Erkenner wurden mit der originalen und der kiinstlich editen VERBMOBIL-
Testmenge, den Nahbesprechungsaufnahmen der Mudgjlahfsrobe und deren entsprechen-
den Raummikrofonaufnahmen ausgewertet.

Das VERBMOBIL-Korpus war auch die Grundlage fur das Erkennertraininglbe Ersatz-
stimmanalyse. Die Testdaten fur diese Experimente wangnahmen von 41 TE-Sprechern
sowie von 18 alteren und 16 jungeren Normalsprechernatdgrkligruppen. Jede Testperson las
den StandardtextDer Nordwind und die Sonne* vor, der alle Phoneme der deats8prache
enthalt. Er besteht aus 108 Wortern und wird in der Spreghpie eingesetzt. Eine menschliche
Referenzbewertung fur die TE-Sprachdaten wurde von $jpmachpathologieexperten erhoben.
Elf Kriterien, wie z.B., Verstandlichkeit”,, Sprechanstrengung“ undRauigkeit”, wurden an-
hand von funfstufigen Likert-Skalen bewertet, d.h. eing fénf benannten Alternativen musste
ausgewahlt werden. Die Gesamtqualitat wurde auf eirserelien Analogskala mit Werten zwi-
schen 0,0 und 10,0 angegeben. Zwischen einigen der Kritenigde eine hohé&bereinstim-
mung beobachtet, z.B. fur die Verstandlichkeit zur Gasaialitat ¢ =+0,96). Dies zeigt die
Relevanz der Verstandlichkeit fur den perzeptiven Gesardruck von TE-Sprache. Stimm-
klang (- =+0,96) und die Fahigkeit zur Prosodie<+0,88) scheinen weitere wichtige Aspekte
fur menschliche Horer zu sein.

Verschiedene Verfahren wurden getestet, um die Erkeneugeisnisse der verhallten Test-
daten zu verbessern. Das erste war die Anwendung der idmsérhallten Trainingsdaten.
Es wurde angenommen, dass die Testumgebung wahrend deingsphase nicht bekannt ist.
Aus diesem Grund wurden zwolf verschiedene Raumimpulgaien verwendet, um die Nahbe-
sprechungsdaten des Baseline-Spracherkenners zu eerhdllie Resultate zeigten, dass es
maoglich ist, sowohl Nahbesprechungs- als auch verhabtgdhaten zufriedenstellend zu ver-
arbeiten, wenn die Trainingsmenge aus Nahbesprechungskiumstlich verhallten Signalen
zusammengestellt wird. Auf der Mudigkeitsstichprobegtdie durchschnittliche Wortakku-
ratheit von klaren und nattrlich verhallten Signalen v8t266 auf dem Nahbesprechungserken-
ner bis auf 76,8% auf einem Erkenner, dessen eine Halftad@ningsmenge aus kinstlich
verhalltem Material bestand. Alle Erkenner waren HMM-bBé&si

Die zweiteAnderung am Ausgangssystem betraf die Merkmalsextraktile Merkmale
fur die Spracherkennung wurden urspringlich Mel-Frequ€epstrum-Koeffizienten (MFCC)
verwendet. Die logarithmische Komprimierung der Filtetkleoeffizienten kann jedoch auf
gestorten Daten nachteilig sein. Folglich wurden altveavierkmale untersucht. Das Root-
Cepstrum ersetzt den Logarithmus durch eine Wurzelfunkumd die, u-law-Merkmale* be-
nutzen stattdessen eine Kompandierungsfunktion, dierigeedVerte erhoht und hohe Werte
staucht. Das Root-Cepstrum erreichte nur annahernd debirsse der Standard-MFCC, aber
manche Verbesserungen mitlaw-Merkmalen auf den EMBASSI-Daten waren signifikant.
Auf der Mudigkeitsstichprobe erreichte die durchschiolie Wortakkuratheit auf klaren und
naturlich verhallten Signalen 77,2%. Obwohl dies nur wgdmsser ist als mit MFCC, konnen
die u-law-Merkmale fur die Erkennung von Raummikrofonaufnamempfohlen werden.

Die Gaul3-Normierung der Merkmale war fir einige der Roep&irum-Merkmale vorteil-



214  APPENDIX E. GERMAN TRANSLATION OF INTRODUCTION AND SUMMARY

haft, aber im Allgemeinen trat eine Erhohung der Wortakkieit nicht haufig genug auf, um das
Verfahren als zuverlassig fur andere Daten erachteronndi.

Fur den dritten Ansatz wurde nicht der Erkenner veranderdern die Testdaten. Da von
den EMBASSI- und Mudigkeitsdaten einige synchrone Aufmah vorhanden waren, wurden
diese Signale durch Delay-and-sum-Beamforming komMtinien ein neues Signal mit weniger
Rauschanteil zu erzeugen. In der Tat stieg fur dear&MoBIL-Baseline-Erkenner (MFCC-
Merkmale) die Wortakkuratheit auf dem verhallten Teil deiidvgkeits-Testmenge von 47,8%
auf 63,1%. Wiederum hatten eine kunstlich verhallte Tirgamenge und:-law-Merkmale
einen positiven Effekt auf die Resultate. Die beste eeidfbrtakkuratheit lag bei 77,4%, als
alle Trainingsdaten verhallt waren.

Alle Ergebnisse in Betracht ziehend, kann folgendes Fazbgen werden: Fir ein Auf-
nahmeszenario in einem Raum mit verteilten Mikrofonen, evolie Testumgebung in der Train-
ingsphase nicht bekannt ist, sollte ein Erkenner mit Nghteetiungsaufnahmen und kinstlich
verhallten Signalen trainiert werden. Er sollte Beamfarmgnals Vorverarbeitungsschritt und
u-law-Merkmale anstelle von MFCC verwenden.

Die Spracherkenner fur die Experimente mit TE-Sprecheunden vom Baseline-ERB-
MOBIL-Erkenner abgeleitet. Sie wurden mit jungen, normal spedbn Personen trainiert,
weil nicht geniigend Trainingsdaten von den alteren Persoder laryngektomierten Sprechern
vorhanden waren. Zudem war es wichtig, dass das System re@nen Horer simuliert, d.h. je-
manden, der nie zuvor TE-Sprache gehort hat, weil diesiti@t®n ist, mit der die Patienten in
ihrem taglichen Leben konfrontiert werden. Fur die Aufmeen der TE-Sprecher war die durch-
schnittliche Wortakkuratheit auf einem polyphonbasieEekenner 36,9%. Es wurde erwartet,
dass das robustere Training von Monophonmodellen einebhvyewsEffekt auf die Erkennung
von Ersatzstimmen hat. Dies konnte jedoch nicht beobaweten. Obwohl die automatische
Erkennung so schlechte Resultate erzielte, war die Kaioelanit den menschlichen Bewertun-
gen hoch. Der Grund dafir ist, dass das entscheidende Mbaf3d@r Durchschnitt der Erken-
nungsrate ist, sondern deren Wertebereich. Verstam@igiStimmklang, Qualitat der Ersatz-
stimme und der Gebrauch von Prosodie wahrend des Sprezéigiesn die hochste Korrelation
zur Wortakkuratheit|¢| > 0,7). Dies bestatigt auch die Beobachtung, dass die digs=ikn in
hohem Maf3e miteinander in den menschlichen Bewertundsaisgen korrelieren. Die Korrela-
tion zwischen dem durchschnittlichen Bewerter und der ®iratheit des polyphonbasierten
Erkenners fur das Verstandlichkeitskriterium vdr=0,88.

Zur Verbesserung der Erkennung wurden die akustischen Matty VERBMOBIL-basierten
Erkenner auch mit TE-Sprachaufnahmen interpoliert. Esde/jedoch keine positive Auswir-
kung auf die Korrelation zwischen Wortakkuratheit und nodtisher Bewertung beobachtet.
Aus diesem Grund kann die zeitraubende Anpassung veassigt werden.

Die Wortakkuratheit ist ein sehr gutes Mal3 fur Verstaetteit. Es gibt jedoch Bewertungs-
kriterien, die nicht durch die Zahl richtig verstandeneeodrkannter Worter ausgedriickt wer-
den konnen. Um adaquate automatische Gegenstuckefiau $inden, wurde ein Prosodiemo-
dul angewendet. Prosodische Merkmale werden aus der Anatys stillen Pausen, geflllten
Pausen, der Signalenergie, Wort- und Silbendauern undptaciggrundfrequengz, gewonnen.
Die Analyse prosodischer Merkmale zeigte Mal3e auf, die leaiee Korrelation zu den mensch-
lichen Bewertungskriterien aufweisen. TE-Sprache idichibrweise langsamer als normale
Sprache, und die Anzahl stimmhafter Abschnitte ist starkivgert. Dies beeinflusst viele Merk-
male, die die Stimmein- und Stimmausschwingzeit erfasseer, auch Wort- und Pausendauern.
Diese Merkmale zeigen Korrelationen von bis |z0=0,76 zu Kriterien wie Verstandlichkeit,
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Gesamtqualitat, Sprechanstrengung oderUereinstimmung von Atem- und Sinneinheiten.
Das Kriterium, Stimmklang” wird durch EnergiemalRe dargestellt. Wegentadren Irregu-
laritat von Ersatzstimmen ist es nicht einfach, korrekiéNerte zu ermitteln. Dies konnte der
Grund dafir sein, dags,-Merkmale die Bewertungskriterien nicht sehr gut abbgdet

Als die Wortakkuratheit der Spracherkenner und die prasdain Merkmale gemeinsam mit
Leave-one-speaker-out-Multikorrelations-/Regressamalyse verarbeitet wurden, wurde wie-
derum die Wortakkuratheit als dasjenige Mal3 bestimmt, @éast&hdlichkeit am besten darstellt.
Beim Postlaryngektomie-Telefontest (PLTT), der entwitkeurde, um die Kommunikations-
situation am Telefon abzubilden, war jedoch die Korrelazam menschlichen PLTT-Resultat
fur die Worterkennungsrate besser{0,9, polyphonbasierter Erkenner).

Da keine Raummikrofondaten von Laryngektomierten vorleandaren, wurden das Root-
Cepstrum und dig-law-Merkmale auf kiinstlich verhallten TE-Sprachsigmedjetestet, um eine
Therapiesitzung zu simulieren, in der kein Headset benvitdt Die ;-law-Merkmale erzielten
konsistent bessere Erkennungsresultate und bewiesditlioldgass sie auch bei pathologischer
Sprache eine Alternative zum klassischen MFCC-Ansatzelées.

Fur Sprachtherapeuten konnte es sehr nitzlich seie, griafische Darstellung pathologi-
scher Sprache zu erhalten. Die Sammon-Transformatiam éirire topologieerhaltende Reduk-
tion der Datendimension durch. Sie minimiert eji@annungsfunktion“ zwischen der Topolo-
gie der niederdimensionalen Sammon-Karte und den hocmgdimealen Originaldaten. Letz-
tere Topologie wird durch ein Abstandsmal zwiscterBerungen oder Sprechern definiert.
In einer Sammon-Karte von TE-Sprechern und normal sprefgreldontroligruppen wurden alle
Sprechergruppen voneinander getrennt. In einer Karteyuid E-Sprecher enthielt, erreichten
die Positionen der einzelnen Sprecher Korrelationen veaint = 0,74 zur Wortakkuratheit und
von |r|~ 0,7 fur Bewertungskriterien wie Verstandlichkeit unéh8nklang.

Trotz der guten Resultate, die in dieser Arbeit erzielt vem,dgibt es einige Aspekte, die in
Zukunft bearbeitet werden mussen. Ein Standardtexasgmitiert keine reale Kommunikations-
situation, aber er stellt eine viel genauere Naherung \imsifjer, spontaner Sprache dar als ein
einzelner, gehaltener Vokal. Dieser Kompromiss ist notliggrda die Auswertung vollig freier
Rede umfangreichdnderungen an allen Bestandteilen des Analysesystemslerfowiirde.
Das Out-of-vocabulary-Problem (OOV) wurde noch nicht wsueht, da die Zahl der Lese-
fehler in den vorhandenen Aufnahmen sehr klein war. Fie eukiinftige klinische Anwen-
dung mussen jedoch die zwei Arten von Fehlern — durch daked&m und durch die Erken-
nung — voneinander getrennt werden. Zusatzlich sollterAdiswertungsergebnisse durch eine
Langzeitstudie bestatigt werden. Die Verfahren, die @sdr Arbeit beschrieben werden, konnen
nicht nur fur Patienten nach totaler Laryngektomie vdintgt sein. Sie werden im Rahmen eines
neuen Forschungsprojekts zur Bewertung der Stimme nagmxigilresektion erweitert und
verbessert werden.
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Index

agreement measures, 33-41
airway resistance, 11, 15, 16
alternating motion rate, 137
APIS algorithm, 64
Approximate Entropy, 28-29
averaged voicing evidence, 138

Baum-Welch training, 64
beam search, 66
beamforming, 96-101, 135

chance correction, 35

Cicchetti weights for, 36—-37
codebook, 64, 67,72, 75, 83, 88

Cohen’sk, 35, 41

control groups, 61-62

correlation coefficients, 33-34, 41, 112, 140
cosmosseeSammon transform
Cronbach’sy, 38

Davies and Fleiss, multi-ratet, 37-38, 41,
112

decoding, 66—67

dereverberation, 97

disability, definition, 20

DSI, seeDysphonia Severity Index

Dysphonia Severity Index, 29—-30

early-to-late energy ratio, 44

electroglottogram, 28—-29

electrolarynx, 9, 10, 16

EMBASSI corpus, overview, 44-46, 56, 57

esophageal substitute voicege substitute
voice, esophageal

esophagus, 7, 8

evaluation criteria, 4, 17-18, 59-61, 104-
106, 111, 114-117, 129-133, 135

EVAR, 63

Fy, seefundamental frequency
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Fast Hartley Transform, 65

Fatigue corpus, overview, 51-53, 56, 57

feature extraction, 65-66, 70—71

features, gaussianizatiseegaussianization
of features

FHT, seeFast Hartley Transform

filterbank,seeMel filterbank

formant, 3, 16, 23, 28, 44

fundamental frequency, 20, 22, 24, 27, 29,
30, 79-82, 118-120, 133, 138

gaussianization of features, 95-97, 189-191
glottal-to-noise excitation, 30

glottis, 7, 10, 16

GNE, seeglottal-to-noise excitation

GRBAS evaluation scale, 18

Hamming window, 65
handicap, definition, 20
harmonics-to-noise ratio, 23-27, 30, 67, 138
heat and moisture exchanger, 14
Heiserkeitsdiagrammsee Hoarseness Dia-
gram
Hidden Markov Model
acoustic models, 63-65
adaptation, 71-74
distance metric, 74-76
interpolation,seeHidden Markov Mo-
del, adaptation
left-to-right, 64
recursive seeRecursive Markov Model
training, 64—65, 67
HME, seeheat and moisture exchanger
HMM, seeHidden Markov Model
HNR, seeharmonics-to-noise ratio
Hoarseness Diagram, 1, 30-31, 119, 120

IINFVo rating scale, 18
impairment, definition, 20
impulse responsegeroom impulse response
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INFVo rating scaleseelINFVo rating scale
ISADORA, 63—67
ltakura-Saito distortion measure, 28

jitter, 3, 22-24, 27, 29, 30, 80, 82, 114, 138

Kendall's7, 39
Krippendorff’'sa, 38—41
Kullback-Leibler divergence, 73

language model, computation, 66—67
laryngectomy, 1, 7-8

larynx, 7, 8

Levenshtein distance, 83, 125

Likert scale, 17, 59

Linear Frequency Cepstrum Coefficients, 89
long-term log spectral subtraction, 69

Mahalanobis distance, 75

Medan-Bagshaw-Nutt algorithm, 118

Mel filterbank, 65, 66

Mel-Frequency Cepstrum Coefficients, 65—
66, 70

MFCC, seeMel-Frequency Cepstrum Coef-
ficients

MLP, seemulti-layer perceptron

monophone, definition, 64, 65

u-law features, 70-71, 89-97, 99-101, 128,
135, 189-191

multi-correlation/regression analysis, 133

multi-layer perceptron, 48, 69

neoglottis, 10

“Nordwind und Sonne”,see“North Wind
and Sun” text

“North Wind and Sun” text, 27, 56, 58, 179

octave error, 114, 118, 119

OOT word,seeout-of-text word

OOV word, seeout-of-vocabulary word
out-of-text word, 141
out-of-vocabulary word, 57, 58, 141

PEAKS, 133

Pearson’s correlation coefficiergeecorre-
lation coefficients

Perceptual Linear Prediction, 48, 70

pharyngoesophageal segment, 12, 14-15, 23

INDEX

pharynx, 7-10
PLP,seePerceptual Linear Prediction
PLTT, seePost-Laryngectomy Telephone
Test
polyphone, definition, 64—65
Post-Laryngectomy Telephone Test, 11, 123—
127,135, 138, 139, 180-182
prosodic analysis
of TE speechseesubstitute voice, tra-
cheoesophageal, prosodic analysis
principle, 77—-82
pseudoglottis, 9, 15

Rainbow Passage, 56

RASTA, 48, 71

rating criteria, seeevaluation criteria

RBH evaluation scale, 18

recognizerseespeech recognizer

Recursive Markov Model, 64

reverberation time, definition, 44

reverberation, artificial, 48-51

RMM, seeRecursive Markov Model

room impulse response, 44, 48-49, 54, 57,
69, 86, 87, 128-130, 139, 140

Root Cepstrum, 70, 87-91, 95-97, 128, 130,
189-191

Sammon transform, 74-77, 129-132
SCHMM, seeHidden Markov Model
self-evaluation scales, 18-19
sequential motion rate, 137
SF-36 survey, 19
shimmer, 3, 23, 25, 29, 30, 80, 82, 138
shunt valve

Blom-Singer “duckbill”, 12

Blom-Singer indwelling, 13

duckbill, seeshunt valve, Blom-Singer

“duckbill”

ESKA-Herrmann, 12

Groningen, 13

indwelling, 12-13

introduction, 1

non-indwelling, 12

percental use, 10, 12

principle, 9-12, 14

Provox, 12-16, 19, 57, 59, 125, 126

\VoiceMaster, 13
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vs. surgical methods, 10
signal-to-noise ratio, 23, 25
SMARTKOM, 51
SNR, seesignal-to-noise ratio
sound generator, electrical, 9-10
speaker group, definition

bas16 58, 61, 62

kom1858, 61, 62

laryng18 57-59

laryng41, 57-58

laryng418kHz 123

laryng418kHzrev-a 130

laryng418kHzrev-b, 130

laryng418kHzrev-¢ 130
Spearman’s correlation coefficiersgecor-

relation coefficients
spectral slope, 28
speech production, normal, 7
speech recognizer, definition

EMB-2 47, 49-51

EMB-12 47, 49-51

EMB-base45-47

EMB-rey, 47-48

NW-base-mon®b7, 71

NW-base-mono-8kK123

NW-base-poly67

NW-base-poly-8kHA23

NW-i1-mong 107

NWe-ilall-mong 108

NW-i40-monp107

NW-i40all-mono 108

NW-mule5-mono-8kKH128

NW-root7-mono-8kHZ.28

VM-2, 54-56

VM-12, 54-56

VM-base 54-56
star,seeSammon transform
substitute voice

esophageal, 1, 8-11, 15-16, 21-26, 78,

125, 142
surgical methods, 8, 10-11
tracheoesophageal
acoustic properties, 16—-17
aerodynamic properties, 15-16
airflow model, 21, 22
analysis by Hoarseness Diagram, 31
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artificially reverberated, 128-130
frequency spectrum, 27
history, 10-13
human evaluation, 59-61, 138
intelligibility, 2
objective measures, 22-27
origin, 9
prosodic analysis, 6, 113-123, 138
prosodic properties, 16-17, 77
recognition, 4—6, 103-113
recognizer adaptation, 71-74, 105-113
recognizers, 67—68
telephone speech, 123-124, 126-127
test speakers, 57-59
visualization, 129-133

Support Vector Regression, 133-134

SVR, seeSupport Vector Regression

Tso, Seereverberation time, definition

TE voice, seesubstitute voice, tracheoeso-
phageal

telephone speeclseesubstitute voice, tra-
cheoesophageal, telephone speech

“The North Wind and the Sun’see“North
Wind and Sun” text

trachea, 7, 8

tracheoesophageal substitute vomegsub-
stitute voice, tracheoesophageal

tracheostoma, 7, 9, 12, 14, 116

tracheostoma filter, 14

tracheostoma valve, 14

Trierer Skalen z. Krankheitsbewaltigung, 19

triphone, 64

TSK surveyseeTrierer Skalen z. Krankheits-
bewaltigung

two-mass model, 14, 15

V-RQOL, seeVoice-Related Quality of Life
VAS, seevisual analog scale

VERBMOBIL corpus, overview, 52-54, 56
VHI, seeVoice Handicap Index
videostroboscopy, 3

visual analog scale, 17, 59

vocal folds, 7

voice assessment, defined by ELRG, 3
Voice Handicap Index, 18-19

voice onset time, 16
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voice prosthesiseeshunt valve
\oice-Related Quality of Life, 19
VOT, seevoice onset time

WHG, seeword hypotheses graph, definition
word accuracy, definition, 83

word hypotheses graph, definition, 78
word recognition rate, 126-127
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