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Jasmin Scorzin, and Horst Urbach

Abstract—This paper presents a new algorithm based on the
Mumford–Shah model for simultaneously detecting the edge fea-
tures of two images and jointly estimating a consistent set of trans-
formations to match them. Compared to the current asymmetric
methods in the literature, this fully symmetric method allows
one to determine one-to-one correspondences between the edge
features of two images. The entire variational model is realized in
a multiscale framework of the finite element approximation. The
optimization process is guided by an estimation minimization-type
algorithm and an adaptive generalized gradient flow to guarantee
a fast and smooth relaxation. The algorithm is tested on T1 and T2
magnetic resonance image data to study the parameter setting. We
also present promising results of four applications of the proposed
algorithm: interobject monomodal registration, retinal image
registration, matching digital photographs of neurosurgery with
its volume data, and motion estimation for frame interpolation.

Index Terms—Image registration, edge detection, Mumford–
Shah (MS) model.

I. INTRODUCTION

I N 1989, the general Mumford–Shah (MS) model [1] was
first proposed in the literature. In this model, an image is ap-

proximated by a cartoon : is a piecewise smooth image
with sharp edges and is the discontinuity set in the image
domain. This model has been extensively studied for segmenta-
tion, image denoising and shape modelling, see, i.e.,[2]–[5] and
the references therein.

In 2005, Droske et al. [6], [7] expanded the MS model with
the capability of matching the edge features of two images. The
edge features are represented by two different cartoon approx-
imations of the images. A smooth dense warping function de-
fines the mapping between the edge features. The modified MS
model seeks to simultaneously tackle two highly interdependent
tasks: edge segmentation and nonrigid registration. An impor-
tant benefit of such a joint model is that the intermediate results
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Fig. 1. Nonsymmetric MS model for edge matching. and are the given
reference and template images. and are the restored, piecewise smooth
functions of image and image . is the combined discontinuity set of
both images. Function represents the spatial transformation from image to
image .

of one task serve as prior knowledge to the solution of the other
task. This advantage has already been pointed out by Yezzi,
Zöllei and Kapur [8], who simultaneously segmented edges in
different images based on affine matching deformations and an
active edge model for the segmentation of implicit curves and
surfaces in images, similar to the one proposed by Vese and
Chan [9].

A major drawback of the above Mumford Shah based
matching is its asymmetry with respect to edge features and
the spatial mapping between them. The scheme of the model
is shown in Fig. 1. The definition of the similarity measure is
not symmetrical: a joint discontinuity set is used to estimate
the edges of the restored template image and the deformed
edges of the restored reference image . The model of the
spatial mapping between the two images is not symmetrical:
the transformation in Fig. 1 is only defined in one direction,
from the image to the image . The asymmetry of the
similarity measure and the single directional transformation, as
pointed out in [10], cannot ensure that the method is consistent,
i.e., if one uses it to compute the transformation from to

and then switches the roles of and to compute the
transformation from to , it is uncertain whether these
transformations are inverse to each other.

In this paper, we propose a new symmetric model for edge
matching again based on the MS model. Fig. 2 shows the scheme
of this symmetric model. We use two relatively separated dis-
continuity sets ( and in Fig. 2) to explicitly represent the
edge sets of the associated images. For the ambiguity problem of
the correspondence, we apply the idea of consistent registration
[11], [12] to simultaneously estimate the forward and reverse
transformations and to constrain one transformation to be the
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Fig. 2. Symmetric MS model for one-to-one edge matching. and are the
given images. and are the restored, piecewise smooth functions of image

and image . and are the discontinuity sets of the images and ,
respectively. Function represents the transformation from image to image

and function represents the transformation from image to image .

inverse of the other one. In this way, the edge sets and
of the images and , respectively, have equal influence on
the edge registration. Thus, the proposed method is one-to-one
in the sense, that it allows to determine one-to-one correspon-
dences between the edge features of two images.

Symmetric one-to-one edge matching is not only more sound
in the mathematical sense, but also very significant in a broad
range of applications, where one is interested in determining the
correspondence of the same structure in different images (e.g.,
nonrigid registration for atlas construction [13], [14], historical
biological images [15], [16], or motion estimation).

The paper is organized as follows. In Section II, we intro-
duce some basic knowledge about the classic MS model, the
approximation proposed by Ambrosio and Tortorelli and the fi-
nite element (FE) approximation as a preparation for the dis-
cussion of the proposed method. Afterward, in Section III, we
present the method of one-to-one edge matching, including the
functional definitions, variational formulations, numerical im-
plementations and algorithm. In Section IV, we study the pa-
rameter setting of the algorithm and show experimental results
for several applications. Finally, we draw conclusions in Sec-
tion V. We note that a preliminary version of part of the work re-
ported in this article has appeared in our conference paper [17].

II. BACKGROUND

A. Mumford–Shah Model

For a function on an image domain
with or 3 and nonnegative constants , and , the MS
functional is given by

(1)

The first term measures the degree of fidelity of the approxima-
tion with respect to the input data . The second term acts
as a kind of “edge-preserving smoother,” which penalizes large
gradients of in the homogeneous regions while not smoothing

the image in the edge set. The last term denotes the
-dimensional Hausdorff measure, which is used to control the

length of the edge set.

B. Ambrosio-Tortorelli Approximation

It is difficult to minimize the original MS functional (1) be-
cause of its implicit definition of the discontinuity set . Var-
ious approximations have been proposed during the last two
decades. In this paper, we focus on the Ambrosio–Tortorelli
(AT) approximation with elliptic functionals [18].

In the AT approximation, the discontinuity set is expressed
by a phase-field function . This scalar function approximates
the characteristic function of the complement of , ,
i.e., if and otherwise. The entire
approximation functional is defined as follows:

(2)

The second term, still working as an “edge-preserving
smoother,” couples zero regions of with regions where
the gradient of is large. The following “coupling” between
and is energetically preferable:

where
where .

(3)

The last term approximates the edge length, i.e., the -di-
mensional measure of the edge set . The parameter

controls the “width” of the diffusive edge set. Mathematically
speaking, the sequence of functionals —converges to the
MS functional, i.e.,

For a rigorous proof and further explanation we refer to [19].

C. Finite Element Method

FE methods are used in this work to discretize the equa-
tions. The whole image domain is covered by an uniform
rectangular mesh , on which a standard multilinear Lagrange
FE space is defined. We consider all images as sets of voxels,
where each voxel corresponds to a grid node of . Let

denote the nodes of . The FE basis function of
node is defined as the piecewise multilinear function that
fulfills

The FE space is the linear hull of the , i.e.,

The FE space of vector valued functions is , the canonical
basis of this space, is
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where is the th canonical basis vector of . In the FE space
scalar and vector valued functions, e.g., and , are approxi-
mated as follows:

and

... ...

The FE approximation of a function can also be represented
by the vector of the function values on the nodes, e.g.,

and where
. In this paper we denote con-

tinuous functions by uppercase letters (e.g., or ), their FE
representation by boldface uppercase letters (e.g., or ), and
their vector representation by “over-lined” uppercase letters
(e.g., or ).

III. ONE-TO-ONE EDGE MATCHING

A. Problem Statement

The major task of image registration is stated as follows: Find
an appropriate transformation such that the transformed tem-
plate image becomes similar to the reference image

[20]. The degree of similarity (or dissimilarity) is evalu-
ated using the gray values and or certain features such
as edges. We consider a edge based matching method that seeks
to register two images based on a joint edge extraction and reg-
istration. Thus, the algorithm simultaneously has to fulfill the
following two tasks:

• detection of the edge features from two noisy images;
• registration of two images using these detected edge

features.
The first task is more related to image denoising and edge

detection, for which we simply employ the MS model as the
feature representation. In practice, the discontinuity sets are ap-
proximated by phase-field functions as in the AT approxima-
tion. Thus, four unknowns are estimated, where

and are the feature representations of and ,
respectively.

The second task is more related to image registration.
The nonrigid transformation from image to image is
frequently different from the inverse function of the transforma-
tion from to . In order to overcome such correspondence
ambiguities, we follow the method of consistent registration
[11] to jointly estimate the transformations in both forward
and reverse directions. We denote the transformation from

to as and the transformation from to as .
Functions and are estimated to match the two feature
representations and to each other. Additionally,

and are required to be smooth and approximately inverse
to each other. For the desired spatial properties, a regularization
functional and a consistency functional are used to constrain
the transformations to satisfy these requirements.

B. Functional Definitions

The six unknowns—the restored reference image , the re-
stored template image , the edge describing phase-fields and

of the reference and the template image, respectively, and the
deformations and from the template to the reference do-
main and vice versa—are estimated by minimizing a joint func-
tional with the following structure:

(4)

where , and are nonnegative constants which control the
contributions of the associated functionals. The detailed defini-
tions of these functionals are as follows.

1) Autocoupling Functional:

(5)

Here, denotes the functional of the AT approximation
whose definition has been given in (2), where is replaced by

or , respectively. The single autocoupling cost function,
e.g., , essentially makes use of the mechanisms of
the MS model and its AT approximation to estimate the feature
representation of the image , such that the piecewise
smooth function optimally couples with the phase-field
function in a manner similar to (3). Roughly speaking, this
autocoupling functional is responsible for detecting the edge
features of each image and for defining the internal relation
between the phase-field function (or , respectively) and
the piecewise smooth function (or , respectively). In this
functional the segmented edge features of the two images, i.e.,

and , are totally independent from each other.
2) Cross-Coupling Functional:

(6)

This functional is responsible for matching the edge features of
the two images. It favors spatial transformations and which
optimally couple the feature representations and
in the following way:

where
where

where
where .

By definition, this functional jointly treats segmentation and
registration: For the registration, the functional can act as the
similarity measure based on the intermediately segmented edge
features. Instead of directly matching the phase-fields functions

and the smooth functions , the functional
seeks to match the gradient field of the smooth function of one
image to the phase-field function of the other image

. For the segmentation, this functional also im-
poses the influence of the edge features segmented in the other



HAN et al.: MUMFORD–SHAH MODEL FOR ONE-TO-ONE EDGE MATCHING 2723

image. In Section III-B3, we will see that both spatial transfor-
mations are controlled by regularization. The regularized spatial
transformations lead to local edge feature correspondence.

3) Regularization Functional:

(7)

Here, denotes the identity mapping and ,
the displacement fields corresponding to and . Gen-

erally speaking, the regularization functional is used to rule out
singular transformations which may lead to cracks, foldings, or
other undesired properties. In this work the regularization con-
straint is the sum of the norm of the Jacobian of both displace-
ment fields (see [21] for further explanations of regularization
based on the Jacobians of transformations).

Other candidates for regularization constraints are linear
elastic [22], [23] and viscous fluid [23], [24] regularizations.
These two constraints make use of the continous mechanical
model to regularize the transformations [25]. Another alterna-
tive, which already ensures a homeomorphism property, is the
nonlinear elastic regularization which separately cares about
length, area and volume deformation and especially penalizes
volume shrinkage [26].

4) Consistency Functional:

(8)

The forward and reverse transformations and are purely
independent of each other in and and are implic-
itly correlated in via the matching of the two image/phase-
fields pairs, i.e., . The consistency
functional in (8) explicitly specifies the relationship be-
tween forward and reverse transformations: is minimal if
and only if , i.e., and

. The transformation in one direction has to be the in-
verse function of the transformation in the other direction. For
the registration, this consistency constraint favors an invertible
and bijective correspondence of the segmented edge features.

C. Variational Formulation

We assume that the minimum of the entire energy
is the zero crossing of its variation with respect to all the un-
knowns . The definition of the entire func-
tional , as well as each individual functional , ,

and , is symmetric with respect to the two groups of
unknowns: and . Thus, we restrict ourself
to the description of the computation of variations with respect
to . The variational formulas of the other group can be
deduced in a complementary way.

Given an arbitrary scalar test function , we obtain
the variations with respect to and

(9)

(10)

Here, we have used the transformation rule

and . Given an arbitrary vector-valued test function
, we obtain the variation with respect to

(11)

Due to the high complexity of the minimization problem
(four scalar functions and two vector-valued functions), the un-
knowns are estimated in an estimation minimization (EM)-like
procedure: Let denote the unknown functions and

denote the functional.

while has not yet converged

for to do

.

end for

end while

D. Solution of the Linear Part

First, we introduce generalized mass and stiffness matrices,
which play the key roles in the discretization of (9) and (10)
using FE approximation.
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Given a function , the generalized mass
and stiffness matrices are defined as follows:

(12)

(13)

Both matrices are -dimensional, where is the number
of nodes in the FE space. Both matrices are sparse, i.e., most
entries are zero. An entry is nonzero, if and only if or node

and are adjacent in the mesh. To compute the integrals in
these nonzero entries, we use a numerical Gaussian quadrature
scheme of order three (cf. [27]). Obviously, the common mass
matrix and stiffness matrix are just special cases of the
generalized ones, i.e., and .

The variations in (9) and (10) are linear with respect to
the unknowns and respectively. In each iteration of
the EM procedure, the zero-crossings are simply calculated
by solving the corresponding linear systems. Replacing the
continuous functions and with their FE approximations

and and
considering base functions of the FE space as test functions,
the equation for zero crossings of (9) is equivalent to

(14)

Using the notations of generalized mass (12) and stiffness ma-
trices (13), (14) can be rewritten as

(15)

Similarly, (9) leads to

(16)

Here, denotes the one vector, i.e., . Analogously,
we get the linear systems for and

(17)

(18)

The linear systems (15)–(18) are solved with a preconditioned
conjugate-gradient (CG) method.

E. Solution of the Nonlinear Part

Equation (11) shows that the variation of the energy is
nonlinear with respect to one of the transformations. Thus,
the unknown transformation cannot be estimated by solving
a linear system. Instead, we employ a regularized gradient
descent method to iteratively find the zero crossing

(19)

where is the regularized gradient with respect to
the unknown and a metric , and is the step size.

1) : This regularized gradient combined with
the time discretization is closely related to iterative Tikhonov
regularization, which leads to smooth paths from the initial de-
formations towards the set of minimizers of the matching en-
ergy. As metric, we choose

For theoretical details, we refer to [28]–[30]. In our implementa-
tion, the regularized gradient is computed in two
steps.

• Compute the variation

according to (11), where the integrals are computed with
a Gaussian quadrature scheme of order three and the test
functions are the canonical basis functions of ; see
Section II-C.

• The representation of the metric in FE terms is

which leads to

Here, and denote block matrices with the
standard mass and stiffness matrices, respectively, on the
diagonal positions, and zero matrices on the off diagonal
positions. We use , where is the mesh reso-
lution. The solution of the linear system is computed by a
single -cycle of a multigrid solver.

At this point, we see that the principle difference from “clas-
sical” gradient descent methods is that the regularized method
does not use the primitive variation but a regularized (smoothed)
one as descent direction.

2) : The step size of the gradient flow is determined by
the Armijo-rule [31], choosing the largest such that energy
is minimized in a successive reduction rule. The natural way in
the EM procedure is to estimate the step size for each transfor-
mation individually, i.e., estimating for the transformation
then estimating for . However, if and are estimated
sequentialy in each iteration, the consistency functional in (6)
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will prevent and from being large, because large indi-
vidual step sizes will increase the consistency functional signif-
icantly. Consequently, the regularized gradient descent requires
a large number of iterations to approach the minimum. In order
to solve this problem, we simultaneously estimate both transfor-
mations and compute one step size for both of them

(20)

Since and are updated at the same time, the consistency
energy does not penalize a large step size any more.

Let , and
. We define the condition for the suc-

cessive reduction rule (SRR) as

The step size is estimated as follows:

% Initialize from previous iteration.

if then

else

% Find the largest fulfilling SSR.

if SSR succeeds then

do until SSR fails

else

do until SSR succeeds

end if.

The regularization of the gradient and the adaptive estimation
of the step size allow the regularized gradient descent method to
perform more efficiently than the classical ones. In most cases,
we use five gradient descent steps to estimate the transforma-
tions in each iteration of the EM procedure.

F. Multiscale Algorithm

In order to avoid being trapped in local minima, the algorithm
employs a spatial multiscale scheme, in which global structures
are segmented and matched before local ones.

The image domain is discretized by a rectangular
mesh , which has equidistant nodes in each axis, thus,

nodes total. is called the level of the mesh. A
discrete function on the mesh can also be called a function
on level . Fig. 3 shows a 2-D example of two nested meshes

and , in which the feature representations
and the transformations are first computed on the coarse
mesh . Then, the results are prolongated to the next higher
level on the finer mesh .

Although such a nested mesh hierarchy is not natural for finite
difference methods, where commonly discrete images with
voxels in each axis are used, it is common for the canonical hi-
erarchy in the FE context. This way, the prolongation from one
level to the next higher level is very convenient. Let de-
note the set of nodes of the th mesh, as shown in Fig. 3. The

Fig. 3. Simple 2-D example of nested mesh hierarchy. The nodes of the coarse
mesh are a subset of the nodes of the fine mesh . The prolongation of a
function from the mesh to the mesh only requires the interpolation of the
function values on the new nodes.

nested mesh hierarchy ensures . During prolon-
gation from level to the function values stay the same
on the nodes in and the function values on the nodes in

are determined by multilinear interpolation from
the values on the neighboring nodes in .

The entire multiscale algorithm is summarized as follows:

given images and

given starting level and ending level

given number of iterations on each level

intialize with 0

intialize with .

for to do

for to do

update through (15)

update through (16)

update through (17)

update through (18)

update with five regularized gradient descent steps
through (20)

end for

if then

intialize

through prolongation from

end if

end for,

IV. RESULTS

Five experiments are performed to demonstrate the
one-to-one edge matching algorithm. The first one is de-
signed to study the parameter settings of the algorithm. We
have chosen T1- and T2-magnetic resonance image (MRI)
volumes of the same patient as input data. The second one is
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designed to show the effect of the algorithm in 3-D interobject
monomodal registrations, whose major task is to build up
anatomical correspondence between different individuals. The
third experiment shows the application of the algorithm in
the registration of retinal images. Then, we present results of
matching 2-D photographs taken during neurosurgery to the
projections of 3-D MRI volume data. Finally, we show that the
method can be used in the application of frame interpolation.
In order to comply with the mesh hierarchy introduced in
Section III-F, the data sets in experiments A, B, C, and D are
resampled, while the data set in experiment E is cropped. We
have chosen multilinear interpolation, i.e., bilinear for 2-D data
and trilinear for 3-D data, because it conveniently fits into our
FE framework and gives acceptable accuracy. However, the
method does not depend on the way the data is resampled nor
on the concrete construction of a multiscale.

A. Parameter Study For 3-D Data

Two MRI volumes are acquired from the same individual and
with the same machine but with the different scan parameters
(T1/T2). The original T1-MRI (our reference image ) and
T2-MRI (our template image ) volumes are already nearly
perfectly matched to each other. In order to demonstrate the ef-
fect of registration, the T2-MRI volume is artificially deformed
by a given elastic transformation. We specified the displacement
vectors on eight points and computed the displacement vectors
in the remaining part of the data using thin-plate spline interpo-
lation. Both of the given volumes are of size 512 512 101
and have been resampled to 129 129 129 pixels to comply
with the mesh hierarchy presented before. We performed 18
experiments with different parameter settings. For each experi-
ment, ten EM-iterations were run on the 129 129 129 mesh.
It took approximately two hours for each experiment on a stan-
dard PC with Intel Pentium 4 processor 2.26 GHz and 2.0-GB
RAM. It is expected that the computational time will decrease
significantly by further optimization of the code. Although these
parameters are only tested for T1-/T2-MRI edge matching, they
can also be used to determine the parameters for edge matching
of the other modalities.

Experiments A1–A4 demonstrate how the parameters ,
and balance the edge detection and the edge matching in the
algorithm. The other parameters are fixed at , ,

, . In this example, we denote the phase field
functions of T1- and T2-MRI volumes as and respec-
tively. Fig. 4 shows how the two phase-field functions varied
in a local region with different parameters. In the experiments
A1–A3, the overwhelmingly large regularization weighting pa-
rameter prevents the algorithm from matching the
edge features of the two images. Without consideration of the
edge matching, the detection of edge features is controlled by
the ratio between the autocoupling weighting parameter and
the cross-coupling weighting parameter . In experiment A1,
since is much larger than , the autocoupling functional
has more influence than the cross-coupling functional . The
resulting phase-field functions are more likely to describe its
own edge feature. Experiment A2 is exactly the opposite case of
A1. With small and large the phase-field function is more
likely to represent the edge feature of its counterpart. Namely,

Fig. 4. Experiments A1–A4 show the influence of the parameters , and
on the phase-field functions. In experiments A1–A3, the overwhelmingly large

disables the edge matching functionality and allows only edge detections.
Furthermore, the ratio between and determines whether the phase-fields
represent edge features of its own image or the features of its counterpart. In
experiment A4, edge matching as well as edge detection are enabled. Note that
edge matching merged the phase-fields of both sides compared to experiment
A3.

shows the edge features of the image T2 and shows the
edge features of the image T1. The parameters and need to
be customized to specific applications. A general principle:
and need to be set in such a way that the resulting phase field
functions and clearly describe the edge features of both
images, as shown in experiment A3. For the T1-/T2-MRI data
in this experiment, it is reasonable to set and equal. How-
ever, when the intensity patterns of images are largely different,
like in the neurosurgery photographes and the brain MR projec-
tion in Section IV-D, it can be necessary to choose the parame-
ters and differently. In experiment A4, we activate the edge
matching through a relative small regularization weighting pa-
rameter . Each phase-field function describes, not only
its own edge features, but also the transformed edge features
of the other image. From the figure, one can observe that the
phase-field functions are merged with respect to experiment A3.

Experiments B1-B7 and C1-C7 were used to study the set-
ting of the parameters and . We measured the cross-cou-
pling cost , regularization cost , and consistency cost

for each experiment. The values of these costs are shown
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TABLE I
STUDY OF THE WEIGHT OF THE REGULARIZATION FUNCTIONAL

TABLE II
STUDY OF THE WEIGHT OF CONSISTENCY FUNCTIONAL

in Tables I and II and have been scaled by 10 000 for presenta-
tion purposes. The minimum and the inverse of the maximum
of the determinant of the Jacobians of the forward and reverse
transformations are computed to measure the degree of preser-
vation of the topology. If a transformation is regular, these de-
terminants should be close to 1.

Experiments B1–B7 demonstrate the effect of the regu-
larization functional as the weight parameter is varied. In
experiments B1 and B2, there are minor regularization con-
straints. A negative Jacobian of the transformations appeared.
This means that the estimated transformation failed to preserve
the topology of the images. As increases, the regularization
constraints improve the transformations because the minimum
Jacobian and the inverse of the maximum Jacobian are far
from being singular. Experiments C1–C7 demonstrate the
effect of the consistency functional as the weight parameter

varied. In the experiment C1, the consistency functional
has no influence on the registration. The forward and

reverse transformations are relatively independently estimated.
The inconsistency of the two transformations are confirmed
by the relatively large cost of the consistency functional. As

increases, the cost of the consistency functional approaches
to zero. This means that one transformation is more likely to
be the inverse function of the other one. Notice that the cost
of cross-coupling functional increases when the consistency
constraints and regularization constraints become strong, which
indicates a worse matching of edge features between the two
images. The optimal parameters should be chosen so as to
achieve optimal feature matching, least amount of topological
distortion and acceptable inconsistency of the transformations.
According to our experience, it is safe to roughly fix five of

the parameters in most 2-D and 3-D applications, i.e., ,
, , , usually achieves

good results.

B. Volumes of Different Individuals

In the following, two experiments we use the one-to-one edge
matching method to solve the interobject monomodal registra-
tion problem: registering two MR data sets (MR-to-MR) and
two CT data sets (CT-to-CT). The two MR data show healthy
brains of two individuals. The two CT data show two other pa-
tients, one normal and one abnormal. The data sets are collected
by the same MR and CT scanners with the same scanning pa-
rameters. The MR data sets are preprocessed by segmenting the
brain from the head using MRIcro.1

The original sizes of the two CT data sets were
512 512 58 and 512 512 61 while the two MR data
sets were 256 256 160 and 256 256 170. All of them
have been resampled into a 257 257 257 voxel lattice with
the same resolution in all three directions. The experiments
were performed with the previously described multiscale
scheme, with ten iterations for each of the levels: 33 33 33,
65 65 65, 129 129 129, and 257 257 257. It took
approximately 1 min, 10 min, 90 min, and 5 h, respectively,
for each level. The parameters of the algorithm were set as
follows: , , , , , ,

The matching results of the data sets are visualized by a pat-
tern of “interlace stripe,” showing the two data sets in turns
within a single volume. As shown in Figs. 5 and 6, the titles of

1http://www.sph.sc.edu/comd/rorden/mricro.html
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Fig. 5. Interobject MR-to-MR registration using one-to-one edge matching
method. The subfigure and the subfigure show the inter-
lace-stripe volumes of the original data sets and , while the subfigures

and show the interlace-striped volumes of regis-
tered data sets in forward and reverse directions.

Fig. 6. Interobject CT-to-CT registration using one-to-one edge matching
method. The subfigure and the subfigure show the inter-
lace-stripe volumes of the original data sets and , while the subfigures

and show the interlace-striped volumes of regis-
tered data sets in forward and reverse directions.

each subfigure keep consistent with the notations in the paper:
and denote the two original data sets, while and de-

note the forward and reverse transformations. The subfigures
and show the interlace-stripe volumes of the

original data sets and , while the subfigures and

Fig. 7. Matching of skulls in CT-to-CT registration. Above: Interlace-stripe
volumes of skulls of original data sets. Bottom: Interlace-stripe volumes of
matched skulls.

show the interlace-stripe volumes of the registered
data in forward and reverse directions.

From visual inspection, the algorithm of one-to-one edge
matching successfully registers MR-to-MR and CT-to-CT
volume data sets of different individuals in both directions.
Fig. 5 shows precise alignments of the edges such as the brain’s
volume shape, hemispheric gap and ventricular system for in-
terobject MR-to-MR registration. In the interobject CT-to-CT
registration the main interest is to obtain the fitting shape of the
bone. In Fig. 6, axial cuts of the 3-D CT data set are shown.
Fig. 7 shows that the initial mismatch of the data sets, visible
by the discontinued bone edges in the top row, is dissolved with
the computed transformation, as is evident from the continuous
bone edges in the bottom row.

C. Retinal Images

A concurrent representation of the optic nerve header and
the neuroretinal rim in various retina image modalities is sig-
nificant for a definite diagnosis of glaucoma. Several modali-
ties of retinal images have been used in the ophthalmic clinic:
the reflection-free photographs with an electronic flash illumi-
nation and the depth/reflectance retina images acquired by scan-
ning-laser-tomograph. By acquisition, the depth and reflectance
images normally have been perfectly matched to each other.
Thus, the task of this application is the registration of multi-
modal retina images, i.e., to match the reflectance and depth
images with the photograph. For the registration of monomodal
retina images, we refer to [32], [33]. Fig. 8 shows an example
of multimodal retina images of a same patient. In a recent paper
[34], an affine transformation model and an extended mutual in-
formation similarity are applied for the registration of bimodal
retina images. However, as shown in Fig. 9 (first column), this
method (using the software described in [34]) still cannot re-
cover the minor deviations in the domain of vessels and neu-
roretinal rims. In this experiment, we employ our one-to-one



HAN et al.: MUMFORD–SHAH MODEL FOR ONE-TO-ONE EDGE MATCHING 2729

Fig. 8. Multimodal retina images of a same patient: (left) photograph,
(middle) depth image, and (right) reflectance image.

Fig. 9. Example of postregistration of bimodal retina images using one-to-one
edge matching. The photograph is registered with (top) the depth image and
(bottom) the reflectance image. (First column) A published registration method
for bimodal retina images cannot fully recover the minor deviations of fine struc-
tures. The forward and reverse transformations estimated by the one-to-one edge
matching successfully remove such minor mismatching.

edge matching algorithm as a postregistration to compensate
such small deviations of fine vessels.

The images are preprocessed in the following way: extracting
the green channel of the photograph as the input for the regis-
tration, affinely preregistering the photograph to reflectance and
depth images using the automatic software described in [34],
sampling the preregistered images in a mesh of 257 257. The
algorithm is run for ten iterations in three levels, which takes
less than three minutes altogether. The parameters of the algo-
rithm are set as follows: , , , ,

, , . From Fig. 9, one can observe
that most minor deviations in the domain of vessels are com-
pensated by the computed nonrigid transformations. Note that,
in this example with fine elongated structures, different from
more volumetric image structures in the other applications, an
affine preregistration is used to compensate the large initial mis-
match and to avoid getting stuck in a local minimum.

D. Photographs of Neurosurgery

In neocortical epilepsy surgery, the tumor (lesion) may be lo-
cated adjacent to, or partly within, so-called eloquent (function-
ally very relevant) cortical brain regions. For a safe neurosur-
gical planning, the physician needs to map the appearance of the
exposed brain to the underlying functionality. Usually, an elec-
trode is placed on the surface of the brain in the first operation
for electrophysiological examination of the underlying brain
functionalities, then the photograph within the tested anatom-
ical boundaries is colored according to the function of electrode

Fig. 10. Experimental results of matching a neurosurgery photograph of a
section of the brain with its MR projection. All the subfigures only display
the region of interest: the exposed cortex. : Photograph of the exposed
left hemisphere from an intraoperative view point. : Projection of the MR
volume, whose orientation is specified by physicians. Preprocessed and
Preprocessed : Preprocessed photograph and MR projection. and

: Interlace-strip images of unregistered photograph and MR projection.
and : Interlace-strip images of registered photograph

and MR projection.

contacts. On the other hand, the preoperative 3-D MR data set
contains the information of the underlying tumor and healthy
tissue as well. In the second operation, the registered photo-
graph and MRI volume are used together to perform the cutting
without touching eloquent areas. At the moment, a neocortical
expert needs to manually rotate the 3-D MR to find the best
2-D projection matching to the photographs. However, due to
the different acquisitions and the brain shift during surgery, the
photograph and MR projection cannot be accurately aligned. In
this experiment, we make use of our one-to-one edge matching
algorithm to refine the matching between a 2-D digital photo-
graph of epilepsy surgery to the projection of 3-D MR data of
the same patient.

The digital photographs of the exposed cortex are taken
with a handheld Agfa e1280 digital camera (Agfa, Cologne,
Germany) from the common perspective of the neurosurgeon’s
view. The high-resolution 3-D data set is acquired according
to the T1-weighted MR imaging protocol (TR 20, TE 3.6,
flip angle 30 , 150 slices, slice thickness 1 mm) using 1.5-T
Gyroscan ACS-NT scanner (Philips Medical Systems). The
brain is automatically extracted from the MRI volume using
the SISCOM module of the Analyze software (Mayo Foun-
dation, Rochester, MN). For both the photograph and the MR
projection, the regions of interest are manually selected by a
physician.

Fig. 10 shows the input images, preprocessed images, inter-
lace-stripe registered and unregistered images. In subfigure ,
the digital photograph shows the exposed left hemisphere from
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an intraoperative viewpoint, the frontal lobe on the upper left,
the parietal lobe on the upper right and parts of the temporal
lobe on the bottom. The surface with the gyri and sulci and
the overlying vessels are clearly visible. Alongside, subfigure

displays the left-sided view of the rendered MR volume
in the corresponding parts. Comparing subfigures and ,
one can notice that the undesired surface vessels and reflectance
flash are strongly presented in the digital photograph, while the
MR projection images clearly display the desired edge features.
The photographic image and the projection image were prepro-
cessed by appropriate GIMP filter chains for edge enhancement.
The preprocessed images are displayed in subfigures “ pre-
processed” and “ preprocessed,” respectively. Both images
were resampled to 2049 2049 pixels. The algorithm was run
from level 3 to level 11. We note that the values of the param-
eters and are quite different from the other examples. The
reason is that the image modalities of the photograph and the
MR projection differ largely from each other. The two param-
eters are set as and , so that both phase field
functions and clearly represent the edge features on the
brain and have comparable influence on the registration. In sub-
figures and , the interlace-stripe images illus-
trate the mismatch of photograph and MR projection. Subfig-
ures and show that the method greatly
refines the matching of the desired edge features. Particularly,
the brain sulci and gyri, which are significant for neurosurgery,
are nearly perfectly aligned to each other. We have implemented
a mutual information algorithm in the same FE framework (in-
cluding the step sized controlled, regularized, multiscale de-
scent) for a comparison. Overall, our method gives comparable
results in most cases, especially when dealing with coarse struc-
tures. However, in this example that contains a large number
of fine structures, the edge-based matching gives better align-
ment. The zoom views of local regions in Fig. 11 show that the
edge-matching method can achieve a better alignment of fine
structures than the mutual information based registration.

E. Motion Estimation for Frame Interpolation

Temporal interpolation of video frames in order to increase
the frame rate requires the estimation of a motion field (transfor-
mation). Then pixels in the intermediate frame are interpolated
along the path of the motion vector. In this section, we give a
proof of concept that the one-to-one edge matching method can
be used for this application. For a review of techniques of frame
interpolation, we refer to [35] and [36].

We perform our test on the Susie sequence and interpolate
frame 58 in Fig. 12. We use a 257 257 cropped version for the
experiment. Frames 57, 58, and 59 are denoted as , and

, respectively. The forward transformation
and reverse transformation are estimated by
the one-to-one edge matching with the parameter setting:

, , , , , ,
. Frame 58 is interpolated as:

. It is compared with a standard block matching
algorithm using an adaptive rood pattern search [37], 16 16
blocks and a search range of in the horizontal and
vertical directions. The experimental results show that the block
matching algorithm produces blocky and noisy motion fields,

Fig. 11. (Left) Comparison of one-to-one edge matching and (right) the mutual
information based matching. The two algorithms are implemented in a same FE
framework including the step size controlled, regularized multiscale descent.
The first row shows how the preprocessed images are registered by the two
methods. The last two rows show zoomed views of local regions in the reg-
istered images. The comparison shows that one-to-one edge matching comes
along with a significantly better registration of fine structures.

Fig. 12. Motion estimation for frame interpolation. Top: Original frame 57,
58, and 59 of Susie sequence. Bottom: (left) Interpolated frame 58 using simply
averaging, (middle) one-to-one edge matching motion estimation, and (right)
standard block matching motion estimation.

while the one-to-one edge matching based motion estimation
gives an excellent visual quality of frame interpolation.

V. CONCLUSION AND SUMMARY

This paper presents a new algorithm for the edge matching
problem. It simultaneously performs the following three tasks:
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detecting the edge features from two images, computing two
dense warping functions in both forward and reverse directions
to match the detected features, and constraining each dense
warping function to be the inverse of the other. An adaptive
regularized gradient descent, in the framework of multireso-
lution FE approximation, enables the algorithm to efficiently
find the pair of dense transformations. The algorithm has been
tested on T1-/T2-MR volume data. It is found that the proposed
algorithm successfully preserved the topology of the images
and the bijectivity of the mappings. The paper also shows that
the algorithm has been successfully used in four applications:
registration of interobject volume data, registration of retinal
images, matching photographs of neurosurgery with its volume
data and motion estimation for frame interpolation.

ACKNOWLEDGMENT

The authors would like to thank R. Bock (Chair of Pattern
Recognition, Erlangen-Nürnberg University) for providing the
retinal images and the retina registration software for compar-
ison. They would also like to thank M. Fried (Chair of Applied
Mathematics, Erlangen-Nürnberg University) for his valuable
comments and suggestions, as well as HipGraphics, Inc., for
providing the software (InSpace) for volume rendering.

REFERENCES

[1] D. Mumford and J. Shah, “Optimal approximation by piecewise
smooth functions and associated variational problems,” Commun.
Pure Appl. Math., vol. 42, pp. 577–685, 1989.

[2] J. M. Morel and S. Solimini, Variational methods in image segmenta-
tion. Cambridge, MA: Birkhauser, 1995.

[3] T. F. Chan, B. Y. Sandberg, and L. A. Vese, “Active contours without
edges for vector—valued images,” J. Vis. Commun. Image Represent.,
vol. 11, pp. 130–141, 2000.

[4] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Trans. Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[5] M. Fried, “Multichannel image segmentation using adaptive finite ele-
ments,” Comput. Vis. Sci., to be published.

[6] M. Droske and W. Ring, “A Mumford–Shah level-set approach for geo-
metric image registration,” SIAM Appl. Math., to be published.

[7] M. Droske, W. Ring, and M. Rumpf, “Mumford–Shah based registra-
tion,” Comput. Vis. Sci., 2007, to be published.

[8] T. Kapur, L. Yezzi, and L. Zöllei, “A variational framework for joint
segmentation and registration,” in Proc. IEEE Workshop on Mathemat-
ical Methods in Biomedical Image Analysis, 2001, pp. 44–51.

[9] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Trans. Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.
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