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Abstract. This study presents a new approach to feature extraction for
real-time classification of physiological signals. By using multiple resolu-
tions for the analysis of the signal, the stability of large analysis windows
is combined with the capability of small windows to reflect quick changes.
A large number of generic features is extracted from each signal for each
resolution. These are calculated recursively for each sample which makes
them very efficient in terms of computation time; a version with low
memory requirements is also provided. A labelled dataset is utilised to
convert the generic features into task- and signal-specific features by
means of a data-driven transform. The performance of the approach is
evaluated on a database containing different stress levels collected in a
simulated driving context. A recognition date of 89.8 % is achieved for
online, user-independent classification of stress.
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1 Introduction

Research on Human-Computer-Interaction has recently turned a strong focus
on the affective state of the user. Knowledge of this affective user state could
lead to more pleasant, safer and more effective user interfaces [1]. For example,
an in-car infotainment system as the one developed in the SmartWeb [2] project
could respond to a stressed user state by retaining non-vital information in order
not to further increase the user’s cognitive load.

Affective states are known to have bodily correlates, which can be measured
with suitable sensors. Most of the resulting physiological signals, e.g. skin con-
ductivity or heart rate, are not under voluntary control and hence not subject to
masking like e.g. speech and gesture. Physiological signals are therefore a valu-
able source of information for affective user state. Several studies have shown
the feasibility of recognising affective states using physiological signals [3] [4].
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2 Physiological Signal Processing

A number of problems arise when trying to recognise the affective user state with
physiological signals. First, there is a large intra- and interpersonal variability
of the signals. For a reliable classification, it seems therefore advisable to use
large analysis windows in order to smooth out some of the variability. Another
difficulty are artefacts in the physiological signals produced by motion, pres-
sure, etc. which can render a signal useless for whole passages. Signal analysis
and classification should therefore be able to cope with a dynamically varying
number of input channels. For many conceivable applications of user state clas-
sification, at least a near real-time capability is required. On the one hand, this
means that the feature extraction must be fast enough for a high classification
frequency (i. e. small analysis step size) also for the above-mentioned large anal-
ysis windows; on the other hand it means that large analysis windows alone
do not suffice because they can hardly provide the information necessary for a
quickly reacting classification system.

Our approach seeks to address these issues. It is assumed that some detection
algorithm for pronounced artefacts is available that marks passages in each signal
which are probably corrupted as unusable. Furthermore, we discuss the case of
online classification which means that all analysis windows are causal, i. e. using
only samples from the past.

For the present study, six physiological signals are used: electrocardiogram
(ECG), electromyogram measured at the neck (EMG), skin conductivity between
index and middle finger (SC), skin temperature at the little finger (Temp), blood
volume pulse at the ring finger (BVP) and abdominal respiration (Resp). Before
computing the features, four additional signals are derived from the actually
recorded signals: The heart rate acquired from the ECG channel (HR-ECG)
and from the BVP channel (HR-BVP), the lag between ECG and BVP (Lag),
which can be regarded as a surrogate parameter of the systolic blood pressure,
and the respiration rate (Resp-rate). This has the considerable advantage that
no signal-specific algorithms have to be included into the feature extraction.
Furthermore, is makes sense to treat these parameters separately with respect
to artefact detection. For example, if the heart rate computed from the BVP
cannot be used, there might still be useful information in the raw BVP signal.

3 Feature Extraction and Classification

In order to deal with a variable number of input channels, feature extraction is
performed separately for each signal. First, it is decided whether the signal is
corrupted. Currently, this artefact detection is only a simple rule disqualifying
signals with unplugged sensors or physically implausible values for the derived
signals. Then, multiple analysis windows of different length (1, 5, 20 and 60
seconds) are extracted. Signals containing a sample marked as corrupted in any
of the analysis windows are excluded from further processing for the current
point in time. This multi-resolution approach aims at combining the stability
of large analysis windows and the capability of small windows to reflect quick
changes which is needed for real-time classification.

No attempt was made to design special features for each of the recorded and
derived signals or the different window lengths. Instead, a large number of multi-
purpose features like mean, standard deviation or slope is extracted from each



of these analysis windows. A labelled dataset is then utilised to create features
specialised to the set of states to be recognised and signal at hand by means
of a data-driven transform, the Fisher linear discriminant analysis (LDA): the
generic features from all analysis windows of a signal are stacked into a single
feature vector which is then projected into a lower-dimensional space.

Two different feature sets are provided. The moving features are computed re-
cursively for each new sample and thus have a constant computational complex-
ity with respect to the length and step size of the analysis windows. A ring-buffer
is used to store the necessary sample history. In effect, these features can be com-
puted very quickly even for the large required window sizes and are well-suited for
a possible implementation on limited hardware. The recursive calculation is illus-
trated by the update rule for the mean value µn of a window containing w sam-
ples at the n-th sample xn: µn = µn−1 −xn−w/w +xn/w. If floating point num-
bers are used, and unless w is small, errors due the numerical instability of adding
and subtracting small values accumulate and render the result useless with time.
This can be solved by periodically providing a mean value calculated anew; sub-
stituting the recursively calculated value every w samples results in a reasonable
degree of numerical stability and only increases the computational effort by a
constant factor of about 2. With similar techniques, also mean values as would
result from a triangle- and bell-shaped window can be computed recursively,
e. g. µtri

n = µtri
n−1 −mn−w1

/w1 + mn/w1, mn = mn−1 −xn−w2
/w2 + xn/w2, w1 =

bw/2c, w2 = w − w1. Further recursively computed features are e. g. the slope
of the regression line, a smoothed derivative, energy, variance, mean absolute or
squared rise, fall and change and approximations of minimum, maximum, median
and the amplitude. The variance σ2

n = en − µ2
n, en = en−1 − x2

n−w/w + x2
n/w

is given as another example. Furthermore, the square, the square root or the
absolute value of the computed features is added where applicable, e. g. the ab-
solute value of the slope or the square root of the variance, yielding the standard
deviation. In total, 50 moving features are calculated for each analysis window.

The sliding features drop the need for a sample history, resulting in a memory
requirement independent of the window length. This is favourable for a possible
implementation on hardware with small memory. The recursive calculation is
illustrated by the update rule for the sliding mean µα,n with a parameter α < 1:
µα,n = α ·µα,n−1 +(1−α) ·xn = (1−α)

∑
∞

i=0
αixn−i, i. e. µα,n is the mean value

of the signal multiplied with an exponentially decaying window function. The
parameter α determines how quickly the window function approaches zero. The
standard deviation is used to characterise this by assigning a nominal window
length w = 2

√
3/(1−α) which is the length of a rectangular window that has the

same standard deviation as the exponential window. This rectangular window
contains approx. 97% of the mass of the exponential window. Depending on the
desired length of the analysis window, α is computed from the nominal window
length. Due to the fact that the window function never actually reaches zero,
large outlier values of a signal can corrupt the mean value for a long time.
Therefore, µα,n is periodically substituted by a value that would result if the
exponentially decaying window function was set to zero after 99% of its mass.
Again, the computational effort is only increased by a constant factor of about 2.
With similar techniques, “sliding” equivalents of most of the moving features
can be calculated, e.g. the mean value over a decaying bell-shaped window,
µbell

α,n = (a− 1)2/(ε(1− a− ε)) · µα+ε,n − (1− a)/ε · µα,n, and a sliding smoothed

derivative, δα,n = (α − 1)3/(2/ε2) · (µα,n − 2µα+ε,n + µα+2ε,n) with ε → 0 (for



practical purposes, ε = (1 − α)/100 suffices). In total, 44 sliding features are
calculated for each analysis window.

The final feature vectors of each valid signal resulting from the LDA trans-
formation of the generic features are scored with a Gaussian Mixture Model
consisting of 10 mixture components. The resulting probabilities are, assuming
statistical independence between the different physiological signals, combined by
multiplication, yielding a final score for each class.

4 Experiments and Results

We evaluate our approach on the Drivawork (Driving under Varying Work-
load) database which contains audio, video and physiological recordings of differ-
ent stress levels in a simulated driving context. The six above-mentioned physio-
logical signals have been digitised at 256/2048Hz with the Mind Media NeXus-10
device. Relaxed and stressed states are elicited by giving the participant differ-
ent tasks; subjective and objective measures support the effectiveness of this
approach. The structured design of the experiment can be used to obtain a
preliminary “ground truth”; a fine-grained manual annotation of the perceived
stress level is currently being conducted. The database contains recordings of 24
participants and amounts to 15 hours or 1.1GB of physiological data alone.

We investigate the task of user-independent, online classification of a relaxed
or stressed user state using a subset of the Drivawork dataset: due to the fact
that the actual user state is unknown, the classification accuracy is only evalu-
ated during the most unambiguous segments. For those 3.4 hours, it is assumed
that the affective state of the person is the one intended by the experimental
design. Classification is done with a frequency of 1 Hz, so the number of used
feature vectors is about 15600. Note that the chosen online classification task is
more difficult than the task of discriminating previously defined, relatively large
segments in an offline manner as studied e. g. in [4] in the following sense: the
context of 60 seconds available to the classification module is relatively small,
in addition, it is only taken from the past. So, a considerable fraction (28%) of
the feature vectors is computed from intervals that are not completely contained
within the unambiguous segments. However, the task is still artificially simplified
by the fact that the studied segments are well separated.

All evaluations are done using person-independent 10-fold cross validation,
i. e. each pair of train and test set is disjoint with respect to the participants.
The class-wise averaged recognition rates are reported. Table 1 lists the results
obtained using different input features, for the individual signals as well as for
the combination of all signals. Using the moving features from a single analysis
window of length 60 seconds, recognition rates between 48.5% (Resp-rate) and
80.5% (ECG) were obtained for the single signals. The combination of all signals
yielded an accuracy of 88.1%. Using the multi-resolution approach with the four
analysis windows of 1, 5, 20 and 60 seconds length (i. e. a total of 200 generic
features) was better than using only the single window of 60 seconds in all but
one case. Again, ECG was the best single channel with 83.8% recognition rate.
For the combination of all signals, 89.8% resulted in this case. The sliding feature
behaved similarly; however, the gain from the multi-resolution approach is not
so marked. For the combination even a slight decrease from 89.6% to 89.5%
was observed. Combining moving and sliding features (i e. using a total of 376



Table 1. Class-wise averaged recognition rates in % for recognising stress using single
channels or the combination of all signals. For feature extraction, either one analysis
window of length 60 seconds (“single”) or multiple windows of length 1, 5, 20 and
60 seconds (“multi”) are used. The used feature set per analysis window is either the
moving or sliding set or both (“All”).

Features ECG EMG SC Temp BVP Resp
HR-
ECG

HR-
BVP Lag

Resp-

rate Comb.

Moving single 80.5 67.4 64.7 77.1 76.3 75.6 66.3 68.9 54.3 48.5 88.1
Moving multi 83.8 67.6 71.4 76.0 79.5 77.5 68.2 69.6 54.7 49.1 89.8

Sliding single 80.9 73.0 72.4 76.4 77.7 79.5 67.8 68.7 54.7 50.5 89.6
Sliding multi 84.2 71.3 75.2 76.9 78.4 79.8 67.6 68.7 55.9 50.6 89.5

All multi 84.3 72.6 75.0 77.3 78.7 80.1 67.7 69.5 56.0 49.2 88.8

generic features) gave an additional gain only in some cases, but not for the
combination. Simulating user adaption by normalising the mean and variance
of all features per participant (before estimating the LDA transform), the best
recognition rate was obtained for the moving features from multiple resolutions.
Here, an accuracy of 96.0% resulted (not contained in the table).

5 Conclusion

This study presents a unified and efficient approach to feature extraction and
classification for physiological signals. No signal- or task-specific knowledge is
used to define the features; instead, a labelled dataset is utilised by means
of a data-driven transform to convert a large number of generic features into
specialised features. The approach is evaluated on the task of online, person-
independent classification of relax vs. stress. The results of up to 89.8% are
quite satisfactory and prove that the approach works well. Further research will
be devoted to the evaluation of the real-time capability of the system in terms of
a reaction speed to user state transitions. It is expected that the multiple analysis
windows will be especially useful in this respect. Further studies will investigate
a sophisticated artefact detection, recursively calculated spectral features and
an un-supervised adaption to the user.
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