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Abstract—Recently, we proposed a new view differentiation
scheme for analytical cone-beam reconstruction formulae that
demonstrated a strong robustness to changes in the data ac-
quisition geometry and to coarse view sampling, unlike for-
mer differentiation schemes. We incorporated this new scheme
into the Katsevich reconstruction formula for the circle-plus-
line trajectory. We also implemented an alternative Katsevich
formula for the same trajectory, where the view differentiation
step was eliminated by using integration by parts. This work
evaluates both formulae in terms of resolution performance, noise
performance, visual image quality and computational effort. We
also evaluate the impact of the z-sampling on the line segment.
Experiments are presented from simulated cone-beam data. The
experiments show that the view differentiation approach with the
new view differentiation scheme achieves similar image quality
as the integration-by-part approach while being at the same time
much more efficient.

Index Terms—Cone-Beam Reconstruction, View Differentia-
tion, Integration by Parts.

I. INTRODUCTION

In computed tomography (CT), accurate cone-beam (CB)
reconstruction formulae often involve the computation of a
view-dependent data differentiation step, called view differ-
entiation (VD) here, which may be suboptimal in terms of
both spatial resolution as well as image quality. A common
way therefore was to eliminate the differentiation step in the
reconstruction formula by using integration by parts (IBP)
[1],[2],[3],[4]. However, although IBP seems to be attractive
in terms of resolution and image quality [2],[5], the resulting
reconstruction formulae often involve several different filter
terms which have to be backprojected separately with different
backprojection weights, making such formulae less efficient
than conventional one-term filtered backprojection (FBP) ap-
proaches. Moreover, in contrast to VD, some of those terms
assign second order backprojection weights to a given voxel.

Recently, we proposed a new VD scheme that demonstrated
a strong robustness to changes in the data acquisition geometry
and to coarse view sampling, unlike former differentiation
schemes; see [6] for details.

In this work, we focus on the circle-plus-line trajectory. We
evaluate both the new VD scheme and the IBP approach with
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Fig. 1. The circle-plus-line trajectory is shown. To reconstruct a point x
inside the region of interest (ROI), backprojection is performed from λ1 to
λ3.

respect to resolution performance, noise performance, visual
image quality, computational effort and the impact of the z-
sampling on the line segment, using Katsevich’s reconstruction
formula [7] as a starting point. Experiments are presented from
simulated CB data.

The paper is organized as follows. In Section II, we review
the reconstruction formula for the circle-plus-line trajectory
and show how that formula has to be modified to eliminate
the view differentiation step by using integration by parts. Ex-
periments are presented in Section III. Section IV summarizes
our results.

II. RECONSTRUCTION FORMULAE

The task in image reconstruction is to recover the density
of an object f(x) given a set of line integrals through this
object:

g(λ, α) =
∫ ∞

0

f(a(λ) + tα)dt, (1)

where λ denotes the source trajectory parameter, a(λ) de-
scribes the corresponding source position, and where α de-
notes the direction of the line integral.

A. VD Katsevich Circle-plus-Line

With the geometry as in Figure 1, the VD reconstruction
formula for the circle-plus-line trajectory can be compactly
written as follows

f(x) =
1

2π2

∫ λ3

λ1

1
R− x · e(λ)

g1(λ, α)
∣∣∣∣
α=

x−a(λ)
‖x−a(λ)‖

dλ, (2)

where R is the radius of the circle scan, e(λ) is a unit vector
which is orthogonal to the detector plane, pointing from the



detector towards the object. The term g1(λ, α) was obtained by
first computing ∂

∂λg(λ, α) using the new view differentiation
scheme of [6], followed by a cosine weighting, performing
then Hilbert filtering along predefined filter lines, followed by
cosine post weighting; see [7].

B. IBP Katsevich Circle-plus-Line

Using IBP, equation (2) becomes

f(x) =
1

2π2

[
g2(λ1, α)

R− x · e(λ1)
+

g2(λ3, α)
R− x · e(λ3)

− DR

∫ λ2

λ1

g3(λ, α)
(R− x · e(λ))2

dλ

− 1
D

∫ λ2

λ1

g4(λ, α)
R− x · e(λ)

dλ

+ D

∫ λ3

λ2

g5(λ, α)
(R− x · e(λ))2

dλ

+
∫ λ3

λ2

g6(λ, α)
R− x · e(λ)

dλ

]

α=
x−a(λ)
‖x−a(λ)‖

, (3)

where D denotes the source-to-detector distance. The terms
gi(λ, α) were computed from g(λ, α) by performing first
cosine weighting and then basically applying the following
steps in the given order: Hilbert filtering for g2(λ, α); ramp fil-
tering for g3(λ, α); vertical gradient computation for g4(λ, α);
Hilbert filtering for g5(λ, α); vertical gradient computation and
integration along the filter lines for g6(λ, α). Additionally, for
all gi(λ, α), cosine post weighting was applied. Note that the
terms including g3(λ, α) and g5(λ, α) assign to each voxel
second order backprojection weights.

III. EXPERIMENTS AND RESULTS

For the following experiments, we used a classical CT
scanner geometry with R = 570 mm, D = 1040 mm
and an isotropic detector pixel size of 1.4083 mm. If not
specified otherwise in the text, we used a detector of size
1200×800 pixels (rows × columns); we used an angular range
of 236° (760 projections) for the circle scan and a length of
160 mm (200 projections) for the line scan.

A. Resolution Performance

To measure the achievable resolution of VD and IBP, we
simulated various spheres with radius 0.15 mm (using 14×14
subsamples for each detector value) along four distinct curves
through the ROI, see Figure 2. For the curves 1 to 3, the
detector size was 51×761 pixels and for curve 4, the detector
size was 801× 401 pixels such that all spheres corresponding
to the same curve were covered by the field of view. Each
sphere was reconstructed within a cube of 643 voxels with
a side length of 0.04 mm. Figure 3 shows the resulting
full width half maximum (FWHM) values together with the
standard deviation. For each sphere, the FWHM value was
computed by evaluating the average intensity profile for 2592
half-lines which radiated from the center of the sphere with
angle increments of 5° in every direction.
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Fig. 2. The FWHM values were computed for the depicted spheres along
curve 1 to 4. Curve 1 is parallel to a line connecting the end points of the
short-scan, see trajectory in Figure 1.

From Figure 3 we observe that the IBP approach offers
a slightly higher resolution than the VD approach, at least
in remote off-center regions. The most significant difference
in resolution is of 3.9%, corresponding to a difference of
0.032 mm over an overall mean FWHM value of 0.828 mm.

B. Noise Performance

To evaluate the noise performance, we simulated a modified
FORBILD thorax phantom with an enlarged body contour
(490 mm by 280 mm, shifted by 20 mm along y) using
3×3 subsamples for each detector value. We considered 1000
different Poisson noise realizations. Figure 4 shows the voxel-
wise ratio of the standard deviation of IBP over VD for the
slice z = 0. The slice consists of 5122 voxels of side length
1.0 mm.

The results show that with the VD formula using the new
view differentiation scheme, we obtain a significantly lower
standard deviation at the borders of the object. The highest
difference is 33.83% for a voxel at d = 223.84 mm away
from the origin.

C. Visual Image Quality

Comparison between both VD and IBP reconstructions are
shown in Figure 5 for the modified FORBILD thorax phantom
(see Section III-B) and in Figure 6 for a single noisy data set
of the same phantom.

The visual inspection of the obtained reconstruction results
without noise shows that both formulae achieve overall the
same visual image quality. In the presence of noise however,
we see that the images obtained from the VD formula appear
far more homogeneous than those obtained with the IBP
formula.

D. Computational Effort

Table I shows the computing times obtained by running C
implementations of both reconstruction formulae on a 64-bit
AMD Opteron CPU with 2.0 GHz, 1 MB cache and 7 GB
RAM, by reconstructing a volume consisting of 5123 voxels
of side length 1.0 mm.
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Curve 2, VD
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Curve 2, IBP
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Fig. 3. FWHM values along curve 1 (top) to 4 (bottom) for VD (left) and
IBP (right), see setup in Figure 2.
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Fig. 4. (Left) Voxel-wise standard deviation ratio (IBP over VD). (Right)
Plot along the depicted line.

From the the difference in computing time between the two
methods, we see that the VD formula can be implemented
almost twice as fast as the IBP approach. This difference
is dominated by the circle part of the trajectory, where the
computing time ratio of VD over IBP is less than 60%.

E. Impact of z-Sampling on the Line

To evaluate the robustness and stability of the two recon-
struction formulae for a varying number of sampling points
on the line segment, we simulated three different data sets of

Circle Line Circle-plus-Line

VD 7239.04 [sec] 3988.57 [sec] 11227.61 [sec]
IBP 12337.38 [sec] 4442.17 [sec] 16779.55 [sec]

VD/IBP 58.68 % 89.79 % 66.91 %

TABLE I
COMPUTING TIMES FOR THE RECONSTRUCTION OF A 5123 VOXEL

VOLUME.

200 proj. 100 proj. 50 proj.

x = 0 mm 1.84 1.81 1.79
y = −80 mm 2.00 1.99 1.96

TABLE II
AVERAGE STANDARD DEVIATION RATIOS OF IBP OVER VD.

the modified FORBILD thorax phantom (see Section III-B)
for the line segment. These data sets consist of 200, 100, and
50 projections, respectively. In each case, the line length is
160 mm, reaching 80 mm above and 80 mm below the plane
of the circle scan. We simulated only one data set for the circle
segment with 760 projections, corresponding to a short-scan
of 236°, the same range we used for all the other experiments.

Figure 7 shows two reconstructed orthogonal slices for each
case, without noise. Each slice consists of 2562 voxels of side
length 2.0 mm. The slices have been chosen to include high
frequencies, especially in the z-direction, the direction where
the sampling on the line varies.

Figure 8 shows the standard deviation images for the same
slices for all three sampling rates. Those images were obtained
from 20 different Poisson noise realizations. However, since
this study is about the influence of the sampling on the line,
only the line contribution was disturbed by noise while the
circle contribution was noise-free.

From the noiseless experiment we observe that there is al-
most no difference in visual image quality between the VD and
the IBP approach. The computed standard deviation images
show that (i) for each sampling rate, the VD formula offers a
significantly lower standard deviation in both orthogonal slices
and (ii) that the standard deviation increases with decreasing
sampling on the line. Observation (i) highlights, as Figure
4 did, that VD and IBP propagate noise in a significantly
different way. Observation (ii) is expected since we apply only
25% of the dose when using a sampling of 50 projections
compared to the case where we have 200 projections on the
line.

Table II shows that the ratio of the mean standard deviations
of IBP over VD is for all three sampling rates close to 180%
for the slice z = 0 mm and close to 200% for the slice
y = −80 mm, which means that for an average reconstructed
pixel of the regarded slices, the standard deviation offered
by the IBP approach is almost twice as high as for the VD
approach. On the other hand we observe that IBP offers a
maximal improvement in resolution of only 3.9%, c.f. Section
III-A.
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Fig. 5. Slices z = 0 mm (top), x = 0 mm (middle) and y = 20 mm (bottom) through the modified FORBILD thorax phantom without noise. Window:
[-20;20] HU.
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Fig. 6. Slices z = 0 mm (top), x = 0 mm (middle) and y = 20 mm (bottom) through the modified FORBILD thorax phantom from one realization of
Poisson noise (150000 photons). Window: [-100;100] HU.

IV. CONCLUSIONS

We evaluated two cone-beam reconstruction formulae for
the circle-plus-line trajectory in terms of resolution perfor-

mance, noise performance, visual image quality, computational
effort and the impact of z-sampling on the line segment.
The experiments show that the IBP approach offers a slightly
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Fig. 7. (a) The slice x = 0 mm and (b) the slice y = −80 mm of the modified FORBILD thorax phantom is shown. Window: [-40;40] HU.
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Fig. 8. (a) The standard deviation images of the slice x = 0 mm and (b) the slice y = −80 mm of the modified FORBILD thorax phantom are shown.



higher resolution, especially in remote off-center regions. On
the other hand, the VD formula using the new differentiation
scheme offers a significantly lower standard deviation than
the IBP formula in those regions. Discretization errors appear
to impact image quality in the same way for VD and IBP.
Noise propagation is however quite different. The VD formula
offers a significant variance reduction in off-center regions.
Moreover, the VD formula allows an improvement of almost
a factor of two with respect to the computational effort. Also,
the VD formula is easier to implement, compared to the much
more complex IBP formula. The varying z-sampling on the
line segment showed that the VD formula can be as robust as
the IBP formula when the sampling rate is reduced.

Given those arguments, we may conclude that the VD
formula using the new view differentiation scheme appears to
be more attractive than the IBP formula despite the front-end
requirement for view differentiation.
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