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Abstract
In this paper, a novel geometric calibration method for C-arm cone-beam
scanners is presented which allows the calibration of the circle-plus-arc
trajectory. The main idea is the separation of the trajectory into two circular
segments (circle segment and arc segment) which are calibrated independently.
This separation makes it possible to reuse a calibration phantom which has been
successfully applied in clinical environments to calibrate numerous routinely
used C-arm systems. For each trajectory segment, the phantom is placed in an
optimal position. The two calibration results are then combined by computing
the transformation the phantom underwent between the independent calibration
runs. This combination can be done in a post-processing step by using standard
linear algebra. The method is not limited to circle-plus-arc trajectories and
works for any calibration procedure in which the phantom has a preferred
orientation with respect to a trajectory segment. Results are presented for both
simulated as well as real data acquired with a C-arm system. We also present
the first image reconstruction results for the circle-plus-arc trajectory using real
C-arm data.

1. Introduction

Unlike computed tomography (CT) systems, C-arm systems are not capable of acquiring
projections along an ideal trajectory because of their open design (Strobel et al 2003).
Therefore, the trajectory has to be determined by a calibration procedure and the deviations
from an ideal trajectory have to be considered in the reconstruction algorithm to avoid
severe artifacts (Noo et al 2000, Wiesent et al 2000, Dennerlein et al 2005). The calibration
procedure is consequently understood to be an obligatory step in image reconstruction in order
to be able to process real data from a C-arm system. Fortunately, the C-arm motion is highly
reproducible over a period of six months (Fahrig and Holdsworth 2000), and so the calibration
can be done off-line with updating only needed about twice per year in clinical environments.
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The term calibration here refers to the estimation of all parameters which completely
describe the geometry of the cone-beam (CB) data acquisition system. Various calibration
methods have been suggested in the literature (see e.g. Strobel et al (2003), Noo et al (2000),
Strubel et al (2005), Chen et al (2006), Beque et al (2005), Yang et al (2006) and Smekal
et al (2004)). For the parameter estimation, all methods require the scanning of a calibration
phantom of known geometry. In the majority of cases, this phantom consists of various spheres
of high attenuation which are embedded in low-attenuation base material. The measured 2D
location of the spheres in the CB projection together with their known 3D positions then
allows us to obtain expressions for all calibration parameters. The design of the phantom (its
shape, sphere size, sphere location, number of spheres etc), however, may vary considerably
and is mainly motivated by the data acquisition system, the trajectory and the object under
consideration. Apart from the specific calibration phantom, the methods may be divided into
two groups according to how the parameter estimation itself is done.

The first group consists of methods where the complete set of system parameters is
estimated for each CB projection separately and independently of all other projections (e.g.,
Strobel et al (2003, 2005), Chen et al (2006)). The method in Strobel et al (2003) was
specifically designed for C-arm image reconstruction from a circular trajectory using a
calibration phantom with 108 spheres located along a spiral path. The method in Chen et al
(2006) is similar to that in Strobel et al (2003); it presents a C-arm calibration procedure for a
circular trajectory using a phantom with 41 spheres in a spiral arrangement. And the approach
in Strubel et al (2005) investigates calibration for an arbitrary trajectory with a phantom
consisting of 30 spheres located on three orthogonal circles and one additional sphere in the
center of the phantom.

The methods belonging to the second group use more than one projection to determine
the calibration parameters for each source position (e.g. Noo et al (2000), Beque et al (2005),
Yang et al (2006) and Smekal et al (2004)). The method in Noo et al (2000) was designed
to calibrate a circular trajectory by using a calibration object consisting only of two spheres.
The method in Beque et al (2005) can be used to calibrate a pinhole camera of a single photon
emission computed tomography system with a geometry similar to that of a flat-panel C-arm
system. They estimate the calibration parameters using an object with three spheres. The
approach in Yang et al (2006) investigates calibration of a CB scanner using the elliptical
projection orbit of several spheres located on a planar calibration object. And (v. Smekal
et al 2004) presents a calibration procedure for a circular trajectory based on a Fourier analysis
of the projection orbit of several spheres.

This work presents a novel geometric calibration procedure for the circle-plus-arc
trajectory that builds on the method in Strobel et al (2003). Our method is motivated by
the recent development of exact reconstruction algorithms for a circle-plus-arc trajectory
(Katsevich 2005, Pack and Noo 2005). This trajectory is especially well suited for C-arm
systems since it can be performed purely by rotating the C-arm around the patient without
the need to move the patient table. Our main idea for calibration is the separation of the
trajectory into two circular segments (circle segment and arc segment) which are calibrated
independently. This separation allows us to reuse the calibration phantom and the calibration
procedure of (Strobel et al 2003), which has been successfully applied in clinical environments
to calibrate the circular trajectory of numerous routinely used C-arm systems. The proposed
method consists of two major steps: (i) independent calibration of the circle and the arc
segment, where for each calibration run the calibration phantom is placed optimally with
respect to the segment under consideration, and (ii) combination of the calibration results by
computing the transformation the phantom underwent between the independent runs. The
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problem of finding this transformation is formulated as a system of linear equations which is
solved by using standard linear algebra.

The paper is organized as follows. After a brief review of the calibration problem for a
circular trajectory in section 2, the details of the proposed calibration procedure are explained
in section 3. Experiments are presented in section 4 for simulated and real CB data. Section 5
summarizes our results.

2. Background

This section defines the C-arm scanner geometry and shows how all necessary geometrical
information about the device and its trajectory can be contained within projection matrices.
We also provide a detailed description of the used calibration phantom together with the
corresponding calibration algorithm which will later be used to calibrate each segment of the
circle-plus-arc trajectory.

2.1. Mathematical notation

For the rest of the paper, we will follow the convention that vectors are per default column
vectors and will appear underlined to distinguish them from scalar values, whereas matrices
are assigned capital letters. Moreover, 2D points will be distinguished from 3D points by a
tilde (∼) sign, independently of the specific coordinate system they refer to. We make no
distinction between homogeneous or inhomogeneous quantities, such as vectors or matrices,
other than giving textual guidance where this is necessary. Thus, a 3D point x will either have
dimension 4 × 1 or 3 × 1 and a 2D point x̃ will have dimension 3 × 1 or 2 × 1, depending
on the context. Likewise, equations involving homogeneous quantities are treated as normal
equations using an equal (=) sign. The equal sign then means equal up to a non-zero scaling
factor, since each side of the equation may be multiplied by such a factor without changing
the equation.

2.2. Scanner geometry

In C-arm CT, the projective geometry can be described by assigning to each measurement
position one homogeneous 3 × 4 matrix P that contains all geometrical information about
the measurement (Hartley and Zisserman 2003). The matrix P is called a projection matrix
because it maps a point x from the 3D world coordinate system to a point x̃ in the 2D image
coordinate system according to the formula

x̃ = Px, (1)

see figure 1. Both, x and x̃ are homogeneous vectors with dimensions 4 × 1 and 3 × 1,
respectively.

The mapping described by P can be decomposed in three successive steps: (i)
transformation of the point from world coordinates to x-ray source coordinates (Euclidian
transformation); (ii) projection of the point onto the detector plane where it is represented
by detector coordinates (central projection); (iii) transformation of the point to image (pixel)
coordinates (affine transformation):

P =

 1

du
s u0

0 1
dv

v0

0 0 1




︸ ︷︷ ︸
affine transformation


f 0 0 0

0 f 0 0
0 0 1 0
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Figure 1. A projection matrix describes the mapping of any point x from 3D world coordinates to
2D image coordinates x̃ and thus contains all geometrical information about the C-arm device for
a given CB projection.

In this decomposition, R is an inhomogeneous 3 × 3 rotation matrix giving the detector
orientation, a is an inhomogeneous 3 × 1 vector describing the x-ray source position in the
world coordinate system, f is the focus-to-detector distance, du is the pixel width, dv is the
pixel height, s is known as the ‘skew’ parameter because a value of s other than zero amounts to
a device with a sheared detector pixel grid, and (u0, v0)

� are the coordinates of the orthogonal
projection of the source position onto the detector plane. These coordinates are in the image
coordinate system, the origin (0, 0)� of which was chosen to be at the lower left corner of the
image, though a different choice could have been made just as well.

2.3. Calibration phantom

A CB projection of the calibration phantom at a given source–detector position typically
allows the determination of the projection matrix P for this position. For this determination,
which will be further discussed in section 2.4, it is required that the geometrical shape of the
calibration phantom is exactly known in the world coordinate system. The world coordinate
system is thereby attached to the phantom. Thus, a different phantom location or orientation
defines a different world coordinate system. Often, the phantom consists of various spheres
of high attenuation which are distributed over a control region of predefined extent and which
are enclosed in low-attenuation base material. In this work, we use the PDS-2 calibration
phantom (Siemens AG, Medical Solutions, Forchheim, Germany) as in Strobel et al (2003)
(see figure 2). This phantom was originally designed to calibrate a trajectory consisting of
a circle or partial circle. It consists of a cylindrical wall made of low-attenuation material.
Its outer radius is 72 mm and its inner radius is 62 mm measured from the symmetry axis
of the phantom. The height of the cylinder is 206 mm. Inside the wall, there are 108
spheres made of noncorrosive steel with two different radii arranged along a spiral-shaped
path. The large spheres have a diameter of 3.2 mm and the small spheres have a diameter
of 1.6 mm. The sequence of alternating large and small spheres represents a binary string
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Figure 2. The PDS-2 calibration phantom contains 108 steel spheres. The big spheres constitute
a logical 1 and the small spheres constitute a logical 0.

Short-Scan

Calibration Phantom

Symmetry axis

Figure 3. The optimal phantom placement for a short-scan circular trajectory is shown. The
phantom is placed near the iso-center of the scan with its main symmetry axis parallel to the
rotation axis.

with an 8 bit encoding, such that an arbitrary subsequence of length 8 provides enough
information to identify each sphere of the sequence uniquely within the whole binary string.
This identification is independent of any associated coordinate system since only the bit
sequence is relevant here. In fact, this property is used to establish unique correspondences
between the 2D images of the spheres in the CB projection and their 3D counterparts.

We would like to note that the dimensions of the phantom as well as the size of the spheres
assume a C-arm geometry which is similar to that of the scanner we used in our experiments.
Other geometries may lead to different magnification factors so that the phantom may not be
completely within the scanner field of view. Therefore, in order to utilize a scanner with very
different source–object–detector distances, it may become necessary to adapt the phantom
accordingly.

2.4. Calibration algorithm

To calibrate a circular short-scan or full-scan trajectory, the PDS-2 phantom is placed near
the iso-center of the scan with its main symmetry axis almost parallel to the rotation axis (see
figure 3). This arrangement guarantees that the projection of the spheres are arranged along
an ‘S-curve’ in every CB image acquired along the trajectory. Otherwise, when the phantom
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Figure 4. The optimal phantom placement for the circle-plus-arc trajectory for (a) the circle and
(b) the arc segment is shown. Here, the phantom placement to calibrate the arc segment differs
from that of the circle segment by a 90◦ rotation.

is observed from oblique viewing directions, spheres may overlap in the projection and the
projected spiral may cross over itself, so that the task of locating and ordering the spheres
becomes challenging and thus impractical. Locating and ordering the spheres however is an
important part of the calibration algorithm, which proceeds in four major steps: (i) localization
of the spheres in the image, (ii) ordering of the located spheres, (iii) establishment of unique
correspondence between the projection of the spheres in the images and their 3D counterparts
by decoding binary substrings of length 8, and (iv) estimation of the projection matrix for
each source position. See Strobel et al (2003) for details on the last step. Once the algorithm
has at least found a sequence of eight spheres for the decoding step, an initial estimate of
the projection matrix can be computed. Additional spheres can be located in the image by
projecting all spheres onto the image plane using the estimated projection matrix, and then
performing a neighbor search around the projection of previously unlocated spheres. The
process is repeated until no more spheres can be found.

3. Calibration of the circle-plus-arc trajectory

The calibration algorithm explained in section 2.4 is well suited to calibrate each circular
segment of the circle-plus-arc trajectory. For that task, the PDS-2 calibration phantom needs
to be positioned separately for each segment. As motivated before, its main symmetry axis
should be oriented almost parallel to the rotation axis of the segment under consideration (see
figure 4). As a consequence of a non-optimal phantom placement, only a part of the trajectory
may be calibrated, if any. Indeed it will be seen in section 4, that no more than the first 12◦ of
the arc segment could be reliably calibrated with the phantom in the position associated with
the circular scan (the vertical phantom of figure 4(a)). However, the arc length required to
obtain complete data for reconstruction is typically of 22◦.

When placing the phantom differently from one segment of the trajectory to the other, one
encounters the problem that the projection matrices obtained for the segments refer to different
world coordinate systems and have to be registered such that they refer to a single common
world coordinate system. We have developed a method to achieve this registration, providing
thereby a way to calibrate the circle-plus-arc trajectory as a whole, using optimal placement
of the phantom for each of its segments. The registration was done by the determination of
the change in position and orientation applied to the phantom from calibration of the first
segment to the next one, using information provided by so-called connection points (CPs).
The term connection point refers to any source position for which two projection matrices can
be obtained—one using the vertical and the other one using the horizontal phantom placement.
From a theoretical point of view, when the phantom is moved from one location to another,



Calibration of the circle-plus-arc trajectory 6949

Circle Segment

Arc Segment

CP's

P, P ’1 1

P , P ’2 2

P , P ’3 3

P , P ’4 4

P , P ’5 5

H

Figure 5. Connection points along the arc segment. As the name implies, they provide a connection
between the vertical and the horizontal phantom placement which can be used to compute the
phantom motion.

one CP will suffice to determine the phantom motion. Therefore, we will first describe the
theory using a single CP and then extend the results using many CPs.

3.1. Calibration using one connection point

We choose our CP to be one of those depicted in figure 5, located on the arc segment. Assume
we have determined the projection matrices P and P ′ for this CP by applying the calibration
procedure of section 2.4 first on the vertical phantom to get P and then on the horizontal
phantom to get P ′. Two arbitrary projection matrices can always be transformed into each
other by multiplying either of them by a homogeneous 4×4 matrix, say H, as follows (Hartley
and Zisserman 2003):

P = P ′H. (3)

The matrix H is a called a homography and has 15 degrees of freedom which results from its 16
entries minus one because a multiplication of H with an arbitrary non-zero scaling factor does
not change the transformation implied. Because only the position of the phantom changed
from the calibration of P to P ′,H describes the motion the phantom experienced thereby.
Once H is known, equation (3) can be used to transform the projection matrix P ′ into P at all
x-ray source positions along the arc segment, especially where only P ′ is available, so that
finally the projection matrices of the arc segment refer to the same world coordinate system
as those of the circle segment.

To obtain H, we choose a set of 3D points xi expressed in the world coordinate system
defined by P. Because P = P ′H , the matrix P will project the points xi to the same locations
as the matrix P ′H . We may therefore write

Pxi = P ′Hxi. (4)

It is obvious that equation (4) is linear in the unknown entries of H. By ordering these entries
row-wise into a 16×1 vector h, we can reformulate (4) such that after some calculation which
is shown in appendix A, we obtain

Aih = 0, (5)

where Ai has dimension 2×16. We call Ai the measurement matrix because it is made up only
of known quantities P,P ′, xi . Because h has 16 entries and 15 degrees of freedom, we need
15 linearly independent equations to solve for h. Since each point xi provides two equations
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in the form of (5), a minimum of n = 8 points allow us to determine h. More rigorously, for
a minimal configuration, one can set up 14 equations from the first seven points and then add
one of the two equations of the remaining eighth point. However, in the case of errors in P
or P ′ it is recommended to use more than eight points to provide a stable estimate for h. In
that case, the Ai resulting from each point xi will be stacked on top of each other to generate
a composed measurement matrix B of dimension 2n × 16, with

Bh = 0, (6)

where

B =




A1

A2

...

An


 . (7)

If n � 8 and if the measurements are not exact, e.g. P or P ′ are not error-free, equation (6)
will only be satisfied approximately. Therefore, we define the solution h as the vector of
norm 1 that minimizes ‖Bh‖. Numerically, this solution can be calculated as the right-hand
singular vector corresponding to the smallest singular value of B by using a singular value
decomposition, as suggested in Hartley and Zisserman (2003) for similar problems. This
basically corresponds to a linear least-squares estimation of H.

There exist a number of so-called degenerate configurations which involve the distribution
of the points xi as well as the location of the CP under consideration, where no unique solution
for H can be obtained. These degenerate configurations are independent of errors in P or P ′

and can occur even if both P and P ′ are error-free (for further reading we refer to (Hartley and
Zisserman 2003), see in particular chapter 22). In short terms, we can say that the points xi may
be chosen arbitrarily as long as they are well distributed inside the field of view. Especially, the
points must not be coplanar or otherwise lie on a linear subspace of R

3. Also, the uniqueness
of H strongly depends on the location of the chosen CP. Even close-to-degenerate locations
must be avoided. For example, the very first CP of figure 5, located at the connection of
circle and arc segment, causes a degenerate configuration if the phantom is rotated according
to figure 4, no matter how the points xi are distributed. This is so because in this case one can
show that P and P ′ are related via a 3 × 3 homographic matrix, say J , such that P = JP ′.
Because J has nine entries but only 8 degrees of freedom, the relation between P and P ′ lets
us determine only eight free parameters. Consequently, there are 15 − 8 = 7 parameters in
H that are not uniquely defined by B. Therefore, in practice, it might be useful to look at the
singular values of B. If the smallest singular values have the same magnitude, we may assume
that B is not well conditioned and that the solution might be unstable. We investigated this and
found that the situation becomes fundamentally different when incorporating more than one
CP. Just how many CPs are needed is shown in section 4, where we plot the error associated
with H over a varying number of CPs.

3.2. Calibration using many connection points

For improved stability, we want to incorporate more than one CP, e.g. all CPs depicted in
figure 5. This can be done in a straightforward manner given the theory of the last section.
From each connection point CPj , with j = 1, . . . , k, a 2n × 16 measurement matrix Bj

is obtained. Again, the Bj will be stacked on top of each other resulting in a composed
measurement matrix C of size 2nk × 16, with

Ch = 0, (8)
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Table 1. Parameters used for the experiments.

Simulated CB data Real CB data

Radius (circle/arc) (mm) 750 750
Focus-to-detector distance (f ) (mm) 1200 1200
Pixel width (du) (mm/px) 0.372 0.372
Pixel height (dv) (mm/px) 0.372 0.372
Detector dimension (px2) 1024 × 1024 1024 × 1024
Angular sampling (circle) (◦/projection) 0.4 0.4
Angular sampling (arc) (◦/projection) 0.4 0.4
Number of projections (circle) 538 (214.8◦) 538 (214.8◦)
Number of projections (arc) 50 (19.6◦) 50 (19.6◦)

where

C =




B1

B2

...

Bk


 . (9)

As before, the solution h is obtained as the vector of norm 1 that minimizes ‖Ch‖.

4. Experiments

Experiments were performed using simulated as well as real CB data acquired with a
AXIOM Artis dBA C-arm system (Siemens AG, Medical Solutions, Forchheim, Germany).
For the simulation, a detailed computer model of the calibration phantom was created. The
corresponding CB projections were generated using an analytical forward projector. The
phantom was rotated by 90◦ according to figure 4 but in addition translated by 10 mm along
the z-axis to mimic a realistic phantom motion. The parameters of the experiments are given
in table 1. For the computation of H, we chose the xi to be the midpoints of the spheres of
the calibration phantom because they are well distributed over the field of view. Since the
phantom has 108 spheres, this gives n = 108 points.

In order to measure how well H has been estimated, we computed the root-mean-square
(RMS) error between the true and registered projection matrices P ∗ and P ′H for each source
position along the arc segment according to

σ =
(

1

m

m∑
i=1

(
P ∗y

i
− P ′Hy

i

)2

)1/2

. (10)

Here, the 3D points y
i

are homogeneous 4 × 1 vectors and P ∗ is the error-free version of
P. Note that both homogeneous 3 × 1 vectors P ∗y

i
and P ′Hy

i
must be inhomogenized by

dividing each vector by its last component before applying the equation to compute σ . Also
note that σ is measured in pixel (px) units because P ∗y

i
and P ′Hy

i
represent points in the

image coordinate system. The points y
i

were chosen to lie on a square grid with a 5 mm
sampling. We performed experiments with two different point sets (see figure 6). The
first set S1 was located inside a cylinder of radius r1 = 70 mm and height h = 140 mm
(which corresponds to the control region defined by the calibration phantom), such that
S1 = {

y
i
= (xi, yi, zi, 1)�

∣∣ x2
i + y2

i � r2
1 ∩ −h/2 � zi � h/2

}
. This selection resulted in

m = 17 777 points. The second set S2 was located outside this cylinder (to see what happens
beyond the control region) and bounded by the scanner field of view with r2 = 125 mm,
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Figure 6. The points y
i

used to compute the RMS error are evenly distributed inside and outside
the control region defined by the midpoints xi of the steel spheres of the calibration phantom.
(a) Orthogonal projection of these points onto the xy-plane. (b) Orthogonal projection onto the
xz-plane.

with S2 = {
y

i
= (xi, yi, zi, 1)�

∣∣ x2
i + y2

i > r2
1 ∩ x2

i + y2
i � r2

2 ∩ −h/2 � zi � h/2
}

and
m = 38 976. Thus, both point sets differ in number and position from the points xi used to
compute H.

The RMS error for both point sets is shown in figure 7 for simulated and real CB data.
For the simulated data, we were able to calibrate P with the vertical phantom on the first 28
source positions along the arc segment, measured from the connected end of the arc. The
projection matrix P ′ was calibrated from the horizontal phantom for all 50 source positions on
the arc. Thus, H was estimated from the CPs related to the first 28 source positions where we
have both P and P ′. This corresponds to an arc length of 10◦. Since we have simulated data,
the ground truth P ∗ was available for all source positions, even beyond the last connection
point.

The situation becomes different for the real data. Here, we were able to calibrate P on the
first 31 source positions and P ′ on all 50 source positions as before. This resulted in 31 CPs
along the arc corresponding to an arc length of 12◦. However, for real data we don’t know
the ground truth P ∗ and so we used P instead of P ∗ to evaluate the RMS error. This is why
the plot stops at position 31. Since P is also needed to estimate H, we dropped every second
CP and computed H only from the remaining 16 CPs to obtain a value for σ which is more
independent of the calibration. The fact that we have a different number of CPs for simulated
and real data is caused by a slightly different phantom position in both cases.

The RMS error gives an estimate of how much the average projected point deviates from its
true position. A different error measurement may be chosen instead. For example, (Faugeras
1996) suggests a decomposition of the projection matrices to obtain every single calibration
parameter e.g. x-ray source position, focus-to-detector distance, skew etc. However, by
comparing these values separately, we get only little insight into how accurately the point
mapping itself behaves, because deviations from different measurements may compensate for
each other when acting together on a point in 3D space. With regard to image reconstruction,
we need an error measurement which we expect to correlate well with the errors in the
backprojection step of the reconstruction algorithm, since this is the step we care about the
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Figure 7. Calibration accuracy from simulated (top) and real CB data (bottom) for the calibrated
arc segment. In each case, the projection number is plotted against the RMS error given in pixel
units. Projection 50 corresponds to the last source position (at 19.6◦) along the arc segment. The
minimal and maximal overall errors (marked with circles) are 0.019 px (projection 41) respectively
0.114 px (projection 36) for simulated and 0.045 px (projection 18) and 0.297 px (projection 28)
for real data, respectively.

most. For this reason, we prefer to use (10) instead of the measure suggested in Faugeras
(1996).

From the figure it is observed that our approach achieves sub-pixel accuracy even with
real data. For simulated data, we see that the error is higher for points outside the phantom
as for those inside, as expected. Still, the error is far below one pixel. The accuracy of real
data is reduced by a factor of 3 compared to simulated data. Also, in contrast to simulated
data, no significant error difference can be observed between the two point sets for real data.
We believe that both effects are a consequence of using a real data acquisition system. For
example, the fact that the error difference for points inside and outside the phantom is small
may be due to the ground truth being known only approximately. Further on, we assume that
the higher errors for real data compared to simulated data are coming from inaccuracies of the
underlying calibration procedure (sphere localization etc). However, it is quite possible that
physical phenomena such as quantum noise or beam hardening also play a role.

Figure 8 shows the projection of the midpoints xi of the steel spheres of the calibration
phantom onto the acquired projection images for simulated and real CB data, respectively.
Those points were projected with the projection matrices which are associated with the minimal
and maximal RMS errors (cf figure 7). We included this figure for three reasons. First, to
provide an illustration of the calibration results. Second, to see how the CB projections of the
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(a)

(b)

Figure 8. Projection of all 108 midpoints (indicated by white crosses) of the steel spheres of
the calibration phantom onto (a) the simulated and (b) the real CB data from source positions
corresponding to the minimal (left) and maximal RMS errors (right). Note that the white crosses
do not belong to the CB projections but were inserted only to demonstrate the calibration results.

calibration phantom look like, especially for real data and third, to demonstrate qualitatively
that the simulated data and the real data are very similar.

In figure 9, the maximal RMS error is plotted over a varying number of CPs. For simulated
data, H was computed from 1, 2, . . . , 28 CPs in turn, starting from the end of the arc segment
connected to the circle segment. Each time, the error was computed for all 50 source positions
using P ∗ and the maximal value thereof is shown. For real data, we computed H from
1, 2, . . . , 31 CPs and evaluated the error on 31 source positions using P as the ground truth
as above. In each case, the points y

i
were located inside the control region of the phantom.

The figure shows that the error is quite high for a single CP. As explained earlier, this CP
(located at the connection of circle and arc segment) leads to a degenerate configuration when
the phantom is rotated according to figure 4 (we further discuss this in section 5). However,
as soon as more CPs are involved, the ambiguities in estimating H are resolved and the error
drops rapidly below one pixel, starting from the third (simulated data) respectively the fifth
CP (real data), and then levels off gradually until the improvements are negligible. Another
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Figure 9. Maximal RMS error over a varying number of CPs for simulated and real CB data. The
error is plotted using a logarithmic scale.
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Figure 10. Singular values s1 . . . s16 of the composed measurement matrix C for simulated and
real CB data. The singular values are plotted in descending order using a logarithmic scale.

observation is that some CPs lead to higher errors when added, see for example the curve
progression from 13 to 14 (simulated data) or from 2 to 3 (real data). Thus, the RMS error
may provide a means for singling out ‘bad’ CPs should this become necessary.

Figure 10 shows the singular values s1 . . . s16 of the composed measurement matrix C
with dimension 2nk × 16 for the simulated (n = 108, k = 28) and the real (n = 108, k = 16)

experiment. A few observations: (i) The plots for simulated and real data are almost identical.
(ii) Singular value s16 differs from s15 by a factor of magnitude 102, while any other two
successors differ by a factor of magnitude 10 or less. (iii) The difference between s1 and s16

is in the order of 107. From (i), we see that the simulated and the real data set have the same
numerical characteristics. Thus, with our simulation, the numerical behavior of a real system
appears to be reproducible. From (ii) and (iii), we observe that the matrix C has a very large
condition number c = s1/s16 and therefore seems to be singular with s16 being considerably
smaller than all other singular values, as it should be. The fact that s16 is close to but not
exactly equal to zero, can be attributed to measurement errors in P or P ′ (e.g., resulting from
the sphere localization of the underlying calibration procedure).

Figure 11 shows reconstructions of a modified clock phantom (Turbell 2001), see appendix
B, using the M-line approach according to (Hoppe et al 2006). The simulation of the phantom
was done with the geometry of table 1 for simulated CB data. In addition to the modifications,
the phantom was also shifted by 100 mm along the z-axis such that the slices shown in the
figure at z = 100 mm required about 44 of the 50 projections along the arc segment for
accurate reconstruction. This corresponds to 88% of the projections of the arc segment. For
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Figure 11. The slice at z = 100 mm through the modified clock phantom. In (a), we used the
ground truth P ∗ for both, the circle and the arc segment. In (b), we used only calibrated quantities,
that is the calibrated projection matrices P for the circle segment and the registered projection
matrices P ′H for the arc segment. (c) Difference image: (a) minus (b). (d) Arc contribution of
(a). (e) Arc contribution of (b). (f) Difference image: (d) minus (e).

(a)
0.5

1

1.5

(b)
0.5

1

1.5

(c)

0

0.01

(d)

0

0.05

0.1

0.15

(e)

0

0.05

0.1

0.15

(f )

0

0.01

Figure 12. The slice at z = 30 mm through the human head phantom. In (a), we used the calibrated
projection matrices P for both, the circle and the arc segment. In (b), we used the same projection
matrices for the circle as in (a) but we replaced the projection matrices of the arc segment by the
registered projection matrices P ′H . (c) Difference image: (a) minus (b). (d) Arc contribution of
(a). (e) Arc contribution of (b). (f) Difference image: (d) minus (e).

calibration, all 28 CPs along the arc were used to compute the matrix H. Thus in (b) and (e),
the reconstruction algorithm used 16 projections beyond the last CP which were not part of the
estimation of H. From (c), we see that differences between the reconstruction using P ∗ and
the one using P (for the circle) and P ′H (for the arc) are visible mainly for the two smallest
spheres on the outer ring. With increasing sphere size, those differences become negligible.
From (f), we see that both arc contributions are almost identical.
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Figure 12 shows M-line reconstructions of a human head phantom. The CB data
were acquired with the AXIOM Artis dBA C-arm system (Siemens AG, Medical Solutions,
Forchheim, Germany) specified as in table 1 for real CB data. Note that no pre- or post-
processing steps were applied to the data other than logarithmic scaling. For the calibration of
the system, all 31 CPs were used to compute the matrix H. The reconstructed slice at z = 30 mm
was chosen such that less than 31 projections along the arc segment were required for accurate
reconstruction to allow a comparison between reconstructions using the calibrated projection
matrices P (which here again act as our ground truth) and the registered projection matrices
P ′H . As can be seen from (c) and (f), the differences between the reconstruction using P
and the one using P ′H are marginal. The fact that (c) and (f) are almost identical can be
explained from the circle contributions of (a) and (b) being almost the same (except for the
backprojection weighting masks which are determined by the arc segments, cf Hoppe et al
(2006)). Therefore, the arc contributions define the appearance of the difference images.

5. Discussion and conclusions

We have presented a method to calibrate the circle-plus-arc trajectory. The method consists
of two steps: (i) independent calibration of the circle and the arc segment by placing the
calibration phantom optimally for each segment, and (ii) combination of the calibration results
by computing the transformation the phantom underwent between the independent runs. The
first step built on an accurate and robust calibration procedure for circular trajectories. The
second step presented new material. The idea of combining different trajectory segments by
identifying the phantom motion applies to any calibration procedure in which the calibration
phantom has a favored orientation with respect to a trajectory segment.

It has been shown that the phantom motion can be computed from so-called connection
points along the arc segment using standard linear algebra. Experiments for simulated and
real CB data have demonstrated that the method works with sub-pixel accuracy at least for
our specific C-arm device, if five or more connection points are provided. Other scanners
and scanner geometries might require a different number of connection points though this
has not been evaluated. Our calibration results have been confirmed with reconstructions of
a modified clock phantom using computer-simulated CB data and of a human head phantom
using real CB data. To our knowledge, image reconstructions for the circle-plus-arc trajectory
using real C-arm data have not been published before.

In addition to the experiments corresponding to figure 9, we have also attempted to
calibrate the system from only one connection point trying different locations along the arc
segment. We used every available connection point in turn and found consistently that no
better results could be obtained by using a single connection point only, no matter which one,
than those already shown and so these results have been omitted.

Often, the circle-plus-arc trajectory is two sided, which means that two arc segments
(arc-up and arc-down) are attached to the circle segment to allow reconstruction above and
below the circle plane. Depending on the location of the two arc segments relative to each
other, the trajectory can be calibrated in one of the two ways. Whenever the two arc segments
can be calibrated from one and the same phantom position (for example, because the arcs are
connected to each other at their end points), the connection points of the two arc segments can
be combined into a single measurement matrix and the computation of the phantom motion
can be done as if there had only been one arc segment. Then, both arcs are transformed into
the coordinate system of the circle segment using the computed phantom motion. When the
phantom has to be placed differently for each arc segment (for example because the arcs are
attached at different end points of the circle segment), the whole calibration procedure must



6958 S Hoppe et al

be performed twice, calibrating first the circle-plus-arc-up and then the circle-plus-arc-down
trajectory such that afterwards, both arcs refer to the coordinate system of the shared circle
segment.

Acknowledgments

This work was supported by Siemens AG, Medical Solutions and was supported in part by the
U.S. National Institutes of Health (NIH) under grant R01 EB000627.

Appendix A. Determination of the measurement matrix

In this appendix, we show how the entries of the measurement matrix Ai can be determined,
following steps similar to Hartley and Zisserman (2003). Our starting point is equation (4),
section 3.1,

Pxi = P ′Hxi. (A.1)

We proceed by applying the vector cross product to obtain

Pxi × P ′Hxi = 0. (A.2)

We denote the j th row of the matrix P ′ by p′j� and the j th column of the matrix H by hj

and also xi = (xi, yi, zi, 1)�. As an intermediate result, we find

P ′Hxi =




xip
′1T h1 + yip

′1T h2 + zip
′1T h3 + p′1T h4

xip
′2T h1 + yip

′2T h2 + zip
′2T h3 + p′2T h4

xip
′3T h1 + yip

′3T h2 + zip
′3T h3 + p′3T h4


 . (A.3)

Now the cross product can be written as

Pxi × P ′Hxi =




xia
�h1 + yia

�h2 + zia
�h3 + a�h4

xib
�h1 + yib

�h2 + zib
�h3 + b�h4

xic
�h1 + yic

�h2 + zic
�h3 + c�h4


 = 0, (A.4)

with

a = (p2�xi)p
′3 − (p3�xi)p

′2 (A.5)

b = (p3�xi)p
′1 − (p1�xi)p

′3 (A.6)

c = (p1�xi)p
′2 − (p2�xi)p

′1, (A.7)

where pj� is the j th row of P. Equivalently,

Pxi × P ′Hxi =

xia

� yia
� zia

� a�

xib
� yib

� zib
� b�

xic
� yic

� zic
� c�







h1

h2

h3

h4


 = 0. (A.8)

This is a system of three equations. However, in general, the vector c is a linear combination of
the vectors a and b and so the third equation does not provide much additional information if
any, even if P or P ′ are not error-free. We therefore decided to use only the first two equations.
Thus, we obtain

Ai =
[
xia

� yia
� zia

� a�

xib
� yib

� zib
� b�

]
, (A.9)

with a and b as defined above.
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Table B1. The midpoints (mx, my, mz)
�, radii (ex, ey, ez)

� and densities ρ of the spheres of the
modified clock phantom. For the water cylinder in the first row, ex (respectively ey ) gives its radius
and ez its half-height.

mx (cm) my (cm) mz (cm) ex (cm) ey (cm) ez (cm) ρ (HU/1000+1)

0.00 0.00 0.00 8.00 8.00 2.40 1.00
0.00 6.40 0.00 0.80 0.80 0.80 2.00
3.20 5.52 0.08 0.80 0.80 0.80 2.00
5.52 3.20 0.16 0.80 0.80 0.80 2.00
6.40 0.00 0.24 0.80 0.80 0.80 2.00
5.52 −3.20 0.32 0.80 0.80 0.80 2.00
3.20 −5.52 0.40 0.80 0.80 0.80 2.00
0.00 −6.40 0.48 0.80 0.80 0.80 2.00

−3.20 −5.52 0.56 0.80 0.80 0.80 2.00
−5.52 −3.20 0.64 0.80 0.80 0.80 2.00
−6.40 0.00 0.72 0.80 0.80 0.80 2.00
−5.52 3.20 0.80 0.80 0.80 0.80 2.00
−3.20 5.52 0.88 0.80 0.80 0.80 2.00

0.00 4.00 0.00 0.40 0.40 0.40 2.00
2.00 3.44 −0.08 0.40 0.40 0.40 2.00
3.44 2.00 −0.16 0.40 0.40 0.40 2.00
4.00 0.00 −0.24 0.40 0.40 0.40 2.00
3.44 −2.00 −0.32 0.40 0.40 0.40 2.00
2.00 −3.44 −0.40 0.40 0.40 0.40 2.00
0.00 −4.00 −0.48 0.40 0.40 0.40 2.00

−2.00 −3.44 −0.56 0.40 0.40 0.40 2.00
−3.44 −2.00 −0.64 0.40 0.40 0.40 2.00
−4.00 0.00 −0.72 0.40 0.40 0.40 2.00
−3.44 2.00 −0.80 0.40 0.40 0.40 2.00
−2.00 3.44 −0.88 0.40 0.40 0.40 2.00

Appendix B. Modified clock phantom

Table B1 shows our version of the clock phantom originally presented in Turbell (2001).
Compared to the definition given in Turbell (2001), the phantom has been scaled by a factor
of 8, the densities of the spheres have been raised from 0 HU to 1000 HU and the spheres have
been embedded in a surrounding water cylinder.
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