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Abstract— State-of-the-art filtered backprojection (FBP) algo-
rithms often define the filtering operation to be performed along
non-horizontal filter lines in the detector. For non-horizontal filter
lines, a limited scan field of view leads to axially as well as
trans-axially truncated projections. In this work, we investigate
the influence of axial and trans-axial data truncation on the
reconstruction result and present two novel truncation correction
methods which effectively handle both types of data truncation.
Method 1 is a one-step approach which performs extrapolation
along the filter lines to account for axial and trans-axial data
truncation simultaneously. Method 2 consists of two steps: the
first step handles trans-axial data truncation while axial data
truncation is corrected during a modified forward rebinning
step. Experiments are presented from simulated data of the
FORBILD head phantom. The accurate M-line algorithm is used
for reconstruction. Although the discussion is focused on accurate
algorithms, the proposed truncation correction methods can be
applied to any FBP algorithm.

Index Terms— Truncation Correction, Cone-beam Reconstruc-
tion, Computed Tomography.

I. INTRODUCTION

In computed tomography (CT), filtered backprojection al-
gorithms involve a filtering step along predefined filter lines
in the detector. Due to the global nature of the filter operation
(Hilbert filter, Ramp filter), these filter lines must not be
truncated to avoid severe reconstruction artifacts. Especially
in C-arm CT, filter line truncation occurs quite frequently
since the device has a limited detector size and therefore a
limited scan field of view. We distinguish between axial and
trans-axial data truncation. Trans-axial data truncation results
from wide objects which are truncated in horizontal direction
whereas axial data truncation results from long objects which
are truncated in vertical direction. In a Feldkamp-type algo-
rithm [1] for example, where filtering is performed along the
detector rows, only trans-axial filter line truncation is possible.
With the invention of new accurate and approximate cone-
beam reconstruction algorithms together with the utilization
of more exotic source trajectories, non-horizontal filter lines
were introduced (see e.g. [2],[3],[4],[5]). Hence, axial data
truncation becomes an issue. Even for methods which solve
the long object problem, non-horizontal filter lines impose an
unwanted restriction on the extend of the volume which can
be reconstructed without artifacts.
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Fig. 1. Filter line truncation for the M-line algorithm where all filter
lines intersect in a single point. a,b) Axially and c,d) trans-axially truncated
projections. a) The filter lines between 1-2, b) between 1-2 and 3-4, c) between
1-2 and d) between 1-2 are truncated. Arbitrary combinations are possible.

In this work, we investigate the influence of axially and
trans-axially truncated projections on the reconstruction result
when dealing with non-horizontal filter lines. We present two
novel methods to handle truncation problems for that case.
Method 1 is a one-step approach which performs extrapolation
along the filter lines to account for axial and trans-axial
data truncation simultaneously. Method 2 consists of two
steps: the first step handles trans-axial data truncation while
axial data truncation is corrected during a modified forward
rebinning step. The discussion is focused on the accurate M-
line algorithm, originally presented in [6], but the results can
easily be generalized to any FBP algorithm.

The paper is organized as follows. In Section II, we review
the reconstruction process with a special focus on the filter
operation to define the type of data truncation problem. Section
III introduces our new methods. Experiments are presented in
Section IV. Section V summarizes our results.

II. BACKGROUND AND PROBLEM DEFINITION

From an implementational point of view, accurate image
reconstruction for a point x inside the support of the object
basically involves the following steps:



(1) Differentiate the cone-beam data with respect to the
source trajectory.

(2) Perform forward rebinng from detector coordinates to
filter line coordinates.

(3) Perform one-dimensional Hilbert filtering along the filter
lines.

(4) Perform backward rebinng from filter line coordinates to
detector coordinates.

(5) Backproject the result into the image space.

If g(s) identifies the (differentiated) cone-beam data for a
given filter line, step (3) can be expressed as follows

gF (s) =
∫ +∞

−∞
hhilb(s− s′)g(s′)ds′, (1)

where gF (s) denotes the filtered data along the line, with the
Hilbert kernel

hhilb(s) =
1
πs

. (2)

Since hhilb(s) has infinite support, the filter operation involves
all values of g(s) along the line. Data truncation now effec-
tively amounts to multiplying g(s) with a rectangular window
in the spatial domain. This corresponds to a smearing of the
spectrum of g(s) and manifests in so called truncation artifacts
in the final reconstructed image (Section IV demonstrates the
effect). We define the problem of filter line truncation as
follows: any filter line that leaves the detector before it leaves
the shadow of the object is a truncated filter line and leads to
reconstruction artifacts for each point which projects onto it.
This implies, that although the point may be well inside the
scan field of view and though Tuy’s sufficiency theorem [7]
may be fulfilled, it cannot be reconstructed exactly as long as
it lies on any such truncated filter line.

Two cases can be distinguished: trans-axial data truncation
results from wide objects which are truncated in horizontal
direction whereas axial data truncation results from long
objects which are truncated in vertical direction. With non-
horizontal filter lines, both types may occur separately or
simultaneously. Figure 1 displays several scenarios for filter
lines proprietary to the M-line algorithm, where filtering is
performed along the projection of so called M-lines (see [6]
for details). By choosing the setup similar to [8], all filter
lines converge to a common point, as depicted. Note that only
points within the backprojection region need to be filtered.

III. TRUNCATION CORRECTION

Both proposed truncation correction methods build upon the
so called water cylinder correction originally presented in [9].
It will therefore be reviewed shortly before presenting the new
material. Note that in both methods, truncation correction is
done solely for the purpose of filtering. No extrapolated value
will ever be backprojected. Our methods can be applied, be-
sides the M-line approach, to any FBP algorithm (there should
of course be some oblique filter lines) e.g. the Katsevich
circle-plus-line or circle-plus-arc algorithms [3],[4] or the ACE
algorithm [5] which requires filtering on very oblique lines.
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Fig. 2. Projection values p(u) along one detector row with truncation at the
right detector border. For each detector row and for each side of that row, the
extend (midpoint and radius) of a 2D water cylinder is determined (see [9]
for details).

A. Review: Water Cylinder Correction

This method is commonly used for the FDK algorithm to
handle trans-axial data truncation. For each detector row and
for each side of that row, the extend (midpoint and radius)
of a 2D water cylinder is determined (Figure 2). The basic
assumption of this method is that the missing portion of the
object is well enough approximated by integrals along parallel
lines through that water cylinder, disregarding the cone-beam
nature of the beam. The method effectively removes the data
discontinuities at the detector border and produces decreasing
projection values for the missing part of the object.

B. Method 1: Extrapolation along Filter Lines

This method is a straight forward extension to the water
cylinder correction for non-horizontal filter lines. While the
water cylinder correction was initially developed for horizontal
filter lines, the extension to oblique lines is made by applying
it to each filter line, rather than to each detector row. Thus,
axial as well as trans-axial data truncation can be corrected
simultaneously within one processing step. The extended re-
construction algorithm comprises the following steps:
(1) Perform forward rebinng.
(2) Apply method 1.
(3) Differentiate the cone-beam data.
(4) Perform one-dimensional Hilbert filtering.
(5) Perform backward rebinng.
(6) Backproject the result into the image space.
Note the reversed order of the forward rebinning step since
method 1 has to be applied before the differentiation step.

C. Method 2: Separate Axial and Trans-axial Extrapolation

This method consists of two steps. Step 1 handles trans-axial
data truncation using the original water cylinder correction
e.g. along the detector rows. Step 2 accounts for axial data
truncation by filtering along lines with a kink, if these lines
exceed the detector axially (Figure 3). When a line intersects
the detector border, the samples are taken from the first or last
detector row, respectively. This can be efficiently incorporated
into a modified forward rebinng step. The method has the nice
property that the projection values along the lines with the kink
will always smoothly decrease towards zero because the water
cylinder correction ensures that the projection values along
the first and last row smoothly decrease towards zero. The
extended reconstruction algorithm comprises the following
steps:
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Fig. 3. Method 2: filtering is done along lines with a kink if these lines
exceed the detector axially. a) Original filter lines. b) Corresponding filter
lines with kink. The setup matches that of Figure 1b).

(1) Apply method 2, step 1.
(2) Differentiate the cone-beam data.
(3) Apply method 2, step 2 (modified forward rebinng).
(4) Perform one-dimensional Hilbert filtering.
(5) Perform backward rebinng.
(6) Backproject the result into the image space.

IV. EXPERIMENTS AND RESULTS

Experiments were done on simulated data of the FORBILD
head phantom [10]. The data was collected along a short-scan-
plus-arc trajectory. The radius was set to 750 mm, the source-
to-detector distance was set to 1200 mm. The detector was
simulated with 2562 pixels (using 4×4 sub detector elements)
with an isotropic resolution of 1.6 mm/pixel. The sampling rate
was 0.4 °/projection resulting in 500 projections for the short-
scan and 58 projections for the arc-scan. The reconstructed
volume has an isotropic resolution of 2.0 mm/voxel and is
of dimension 1283 voxels. We used the M-line algorithm [6]
as a representative of the class of accurate algorithms. The
point on the source trajectory, at which all M-lines intersect
was positioned at 140° on the short-scan, measured from the
start of the arc segment. This gives very oblique filter lines
for the arc segment and for the first half of the short-scan
but almost horizontal filter lines on the second half of the
short-scan. Figure 4 shows the non-truncated reference images
for comparison. Figure 5 shows how the projections were
artificially truncated for the various experiments. The degree
of truncation (DoT) is further quantified according to

DoT (λ) = (1−N(λ)/N0(λ)) · 100, (3)

where N(λ) and N0(λ) count the number of non-zero detector
pixels in the truncated and non-truncated case, respectively,
and λ identifies the projection under consideration (Figure 6).

A. Trans-Axial Data Truncation

To simulate trans-axial data truncation, 25 detector columns
at the left and right border of the projection images were
set to zero as shown in Figure 5b). Figure 6a) shows the
corresponding DoT. The results can be seen in Figure 7 (row
1). In a), the density values of the whole slice are disturbed

a) b)
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Fig. 4. Reference images. a) Ground truth. b) Reconstruction without
truncation. The window was set to [1.01,1.09]. The white line indicates the
location for the density profiles used throughout the experiments.

a) b) c) d)

Fig. 5. Artificial truncation, shown exemplarily for the first projection along
the short-scan. a) Original projection. b) Trans-axial data truncation. c) Axial
data truncation. d) Combined data truncation.
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Fig. 6. DoT for a) trans-axial (dotted line), b) axial (dashed line) and c)
combined data truncation (solid line). The mean DoT values are a) 3.07%,
b) 36.00% and c) 38.51%.

severely. Moreover, the slice shows an extreme intensity drop-
off. In b) and c), method 1 and method 2 restore the image
quite well, except for some minor shadows next to the outer
bone structure. Figure 8a) shows the corresponding density
profiles along a selected line (cf. Figure 4).

B. Axial Data Truncation

To simulate axial data truncation, 100 detector rows at the
top border of the projection images were set to zero as shown
in Figure 5c). Figure 6b) shows the corresponding DoT. The
results are displayed in Figure 7 (row 2). The dark shadow
in d) clearly is a data truncation effect, arising from the
introduced discontinuity of the projection data. Its location is
a result of the chosen M-line configuration. In e) and f), this
shadow is removed by method 1 and method 2 which perform
almost identically. Figure 8b) shows the corresponding density
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Fig. 7. Reconstruction results for trans-axial (row 1), axial (row 2)
and combined (row 3) data truncation when using no truncation correction
(column 1), using method 1 (column 2), using method 2 (column 3). The
window was set to [1.01,1.09].

profiles along a selected line (cf. Figure 4).

C. Combined Data Truncation
To simulate combined data truncation, the images were

truncated axially and trans-axially according to Figure 5d).
Figure 6c) shows the corresponding DoT. Figure 7 (row 3)
depicts the results. With no truncation correction in g), the
outcome appears almost identical to the trans-axial truncation
case a), since these artifacts are dominant. However, in fact, the
artifacts are composed of both truncation types. In h) and i),
method 1 as well as method 2 remove the shadows as expected.
This confirms that the proposed methods can handle both types
of data truncation, concurrently.

V. CONCLUSIONS

We have presented two methods to handle data truncation
for non-horizontal filter lines. They can be applied to any FBP
algorithm. The methods were tested on simulated data of the
FORBILD head phantom. The results show that truncation
effects resulting from very oblique lines can be removed
effectively. Almost no difference with respect to image quality
can be observed between method 1 and method 2. However,
method 1 is computationally less efficient since it forces the
differentiation to be performed on the rebinned cone-beam data
rather than on the original cone-beam data as with method 2.
This requires more operations since the number of filter lines
is in general much higher than the number of detector rows.
For this reason, we suggest to use method 2.
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Fig. 8. Density profiles for trans-axial (row 1), axial (row 2) and combined
(row 3) data truncation when using no truncation correction (black line), using
method 1 (green line), using method 2 (red line).
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