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Abstract. Precise localization of moving targets in the thorax and ab-
domen during the course of treatment can be used to increase local con-
trol via dose escalation while reducing the severity of normal tissue com-
plication. Localization of targets in real time with radio-opaque marker
is not practical considering the excess radiation dose to the patient and
potential complications of implantation. Various external surrogates can
be used to give indications of locations of the targets during the breath-
ing process. However, there is a great deal of uncertainty in correlation
between external surrogates and internal target positions/trajectory dur-
ing respiratory cycles. This is due to the fact that the correlation tends
to vary through time as the patient’s breathing pattern changes. In this
paper, we address the problem of establishing the correlation between a
surrogate signal and an internal target prior to treatment. We have de-
veloped an algorithm that automatically establishes correspondences be-
tween the fluoroscopic sequence frames taken from the patient on the day
of treatment and the various phases of a 4DCT planning data set. Image
based mapping/synchronization procedure is performed using an under-
lying Markov model established for the breathing process. The mapping
procedure is formulated as an optimization process and is solved effi-
ciently using a dynamic programming technique. Results on the phan-
tom, synthetic, and real patient data demonstrate the effectiveness of the
proposed method in coping with respiratory correlation variations. The
approach could primarily be used for automatic gating interval adapta-
tion in the gated radiotherapy.



1 Introduction and Background

Radiation therapy is a treatment modality with primary goal of precisely deliv-
ering the prescribed dose to the tumor while minimizing the dose to surrounding
healthy tissues and critical structures. Recent technological advances in radiation
therapy enable delivering of a highly conformal radiation dose distribution to a
morphologically complex target volume. Main sources of delivery errors include
the inter- and intra-fraction target and organ motions.

1.1 Respiratory Motion in Radiotherapy

Intra-fraction organ motion is mainly caused by patient respiration. Respiration
induced tumor motion has been studied indirectly by movements of organs,
radio-opaque markers (implanted at the vicinity of the tumor) [12], and surrogate
organ/structure [6]. Real-time imaging technologies can be used to observe either
tumor motion or indirectly perceive the tumor motion [10]. It has been shown
that the tumor motion can be as large as 2-6 cm [7]. The variation of the motion
size as well as the breathing pattern makes the prediction of the tumor location
very difficult.

There are three major approaches for dealing with tumor motion in radiation
treatment. In the first method, which is clinically used, the patient is asked to
hold the breath or do a forced shallow breathing. The drawback here is that
the method requires patient compliance. Furthermore, the implementation of
the strategy is rather subjective and it depends on the skill of the therapist
and participation of the patient. In the second and third method, the patient
is required to do free breathing and no compliance is expected. In the second
method, which is usually referred to as “gating”, the radiation beam is gated
in a way that the tumor is only treated at the “prescribed or planned” position
[8]. Whereas in the third method, which usually referred to as “tracking”, the
radiation beam or table is moved so that the tumor always remains at a fixed
point within the treatment field [11]. Although, tracking has the advantage of
a higher duty cycle and a shorter delivery time, it is technically challenging to
implement [13]. In contrast, respiratory gating is more practical, and has been
adopted in clinic practice by a number of cancer centers [7].

1.2 Gated Radiotherapy

We focus on the external gating approach that it is non-invasive and the exter-
nal surrogate signals could be generated from strain gauges around the patient’s
thorax, optical markers on the patient skin, or airbag systems measuring air
flow or temperature. On the other hand, having a real time external signal is
not equivalent to knowing the location of the tumor at all times. Exploiting
external signal blindly to turn the radiation beam on and off can cause signif-
icant errors. In particular, the correlation between the tumor motion and the
surrogate signal may change from the planning phase to the treatment sessions.
The major drawback of this method is the variability of the correlation between
the external signal amplitude (marker position) and the internal target position.



The main challenge of the gated treatment is to adapt the gating intervals based
on up-to-date breathing pattern of the patient. This paper focuses on an image
based method, which maps the up-to-date images of the patient to the various
phases captured during the planning phase. The mapping function is then used
to determine optimal gating interval for the breathing surrogate for a specific
treatment session.

2 Image Based Verification Technique for Gated
Radiotherapy

At the planning phase, in order to have a better understanding of the tumor
motion, time resolved volumetric CT images (so-called 4DCT) are acquired (see
figures 1a). A surrogate signal is usually used to resolve the projections prior
to reconstruction into a set of phases (usually 8-12) [14]. After reconstruction,
various phases of the 4DCT are represented by either an amplitude or phase
from the surrogate signal. The 4DCT scans are processed and the gross target
volume (GTV) of the tumor for each phase is determined. Furthermore, based
on the tumor location, residual motion, and duty cycle, a gating phase interval
that is delimited by two phases of the 4DCT is selected. The union of the GTVs
from the phases within the gating interval forms a new volume that is usually
referred to as internal target volume (ITV). Based on the prescribed dose and
shape of the ITV, a treatment plan is devised. Furthermore, amplitude or phase
of the surrogate signal at the two end phases of the gating phase interval signifies
the planned gating surrogate interval.

At the day of treatment, the initial patient setup is performed. . In order to
reduce the positioning bias due to respiratory motion, we select a single phase
out of 4DCT that roughly resembles the same breathing phase apparent from
the acquired 2D setup x-ray or portal images. An image guided method is then
used to correct for the residual positioning error [5]. After the setup verification
process, the patient is at the optimal treatment position. Since the surrogates
signal correlation with the target position varies day by day, the gating intervals
set during the planning phase might not be valid anymore. It is desirable to
check and possibly to adapt the gating intervals using an up-to-date respiratory
pattern seen in a pre-treatment fluoroscopic acquisition.

2.1 Problem Statement

The image based verification process starts with acquisition of a pre-treatment
image sequence. Mega voltage or kilo voltage fluoroscopic acquisition synchro-
nized with a breathing surrogate is considered (see figures 1b). We assume that
the pre-treatment image sequence {Ipt(j)}j∈[0,K−1] has K frames taken at inter-
vals of δt covering at least several respiratory cycles (both j and K are integers).
Furthermore, a corresponding synchronized surrogate signal {spt(j)}j∈[0,K−1] is
acquired. In both notations, superscript pt stands for “pre-treatment”. We also
assume that we have a planning 4DCT acquisition, which includes L phases of
breathing. We generate a set of Digitally Reconstructed Radiographs (DRRs),
{Ip(i)}i∈[0,L−1], using each phase of the planning 4DCT (e.g., ith) with the exact



(a) (b)

Fig. 1. (a) depicts the coronal slices of planning 4DCT data sets with visible con-
tour lines. (b) demonstrates two frames of a fluoroscopic acquisition overlaid with the
outlines of the projected structures from the planning 4D dataset.

geometry of the pre-treatment imaging system and the known patient position
from the initial patient setup step (both i and L are integers). As mentioned in
the previous section, the gating phase interval is delimited by two phases imin

and imax both within [0, L−1]. In order to map the gating phase interval, which
is set at the planning step onto the surrogate signal acquired prior to treatment,
we need to establish a mapping function L : [0,K − 1] 7→ [0, L]:

L(j) =
{

i ∈ [0, L− 1] there is a correspondence for the frame j
L no correspondence (1)

The mapping function needs to determined based on the image information
from the two time series of {Ip(i)}i∈[0,L−1] and {Ipt(j)}j∈[0,K−1]. Once the map-
ping function is estimated, the treatment day gating surrogate interval can be
estimated as follows:

smin
pt = min

j|L(j)∈[imin,imax]
spt(j) . (2)

For computing smax
pt , we switch the min to max in equation 2. The treatment day

gating surrogate interval [smin
pt , smax

pt ] can also be used to estimate a new duty
cycle. The surrogate signal amplitudes of spt(j) for j satisfying the condition
L(j) ∈ [imin, imax] can also be further analyzed to detect the outliers, mainly to
increase the duty cycle as much as possible.

2.2 Image Similarity Matrix

The first step in establishing an optimal mapping function is to generate a sim-
ilarity image matrix between the two image sequences of {Ip(i)}i∈[0,L−1] and
{Ipt(j)}j∈[0,K−1]. We generate a matrix M with size of (L + 1) × K, where
M(i, j) (for i < L) is the normalized mutual information value between the two
images of Ip(i) and Ipt(i). Each column of the matrix M can be thought of as
matching likelihood profile between a frame of the fluoroscopic sequence and



various phases of the planning DRRs. A clear peak in that profile could signal
a potential match. However, in the case where there is no match, one would
expect to have consistently low value across the whole column. In order to deal
properly with these cases, we have considered the last column, which is in fact
representing the likelihood of having a “no-match” situation. For each element
in the last row of the matrix M, we consider a constant value that is the median
of the maximums for various columns minus the range of the similarity values
of the corresponding column.

Finding maximum values for each column of the matrix M could be a po-
tential solution for the mapping function L. However, the problem with this
approach is that since each columns are processed independently, no temporal
consistency is considered. For example, images from certain phases of inhale
and exhale could look quite similar if they are observed independently and not
considered in the context of a sequence. Not considering temporal aspect of the
process also makes it difficult to deal with cases, where there is no match. Fur-
thermore, robustness to noise and/or to variations of image intensities from the
two sequences could be easily compromised.

2.3 Respiratory Motion as A Markov Process

In order to enforce temporal consistency in finding the mapping function L from
the image similarity matrix M, we first need to find a reasonable model for
the breathing process [4]. We assume that the breathing can be modeled as a
Markov process. We consider L + 1 states for the Markov process; L of which
is based on the number of phases in the planning 4DCT and an additional one
that accommodates variations beyond the observed states in the planning 4DCT.
Since the pre-treatment acquisition is not triggered, it can start at any breathing
phase, therefore the initial probabilities of the various states are constant(i.e.
P0(i) = 1

L+2 for i ∈ [0, L + 1]). We consider that the observations are identical
to the process states, therefore the emission probability matrix is the identity.
The state transition probability matrix S, which is of size (L + 1)× (L + 1) can
be estimated from a set of observation sequences using Baum-Welch algorithm
[1]. Observation sequences, in this case, could be derived from various surrogate
signals, where the signal amplitude is separated into L + 1 bins.

We denote the states of the process as Si for i ∈ [0, L], where SL is the state
not present in the prior observations. S0 denotes the start of inhale and SL−1

indicates the end of exhale. The elements of the transition probability matrix
S are S(i, j) = P (sn+1 = Sj |sn = Si) for i, j ∈ [0, L], where sn indicates the
state at the the time index n. Therefore, the sum of each column or row of
the matrix S is one. Aside from being able to estimate the transition matrix
given a series of sequences, there are many heuristic constraints that one might
consider in determining the elements of the matrix Si. For example, it is more
likely to have an arrangement of states, where the state at k + 1 has a higher
state index than the state at k. The only exception is for SL−1 that most likely
transits back to state S0. Furthermore, there is a possibility that the states
repeat themselves. This case covers scenarios, where the breathing process is



(a) (b)

Fig. 2. (a) depicts the state transition network (thicker lines denote higher transition
probability). (b) shows various instances of the sequences from the Markov process de-
picted at (a). Top most shows a most probable case. Middle row shows three breathing
cycles, where the inhale is elongated in the first cycle, shallow breathing is present in
the second cycle, and the slow breathing is shown in the last cycle. The bottom row
depicts deep breathing in the first cycle, fast exhale and deep inhale in the second
cycle, and fast and deep inhale and slow exhale in the last cycle.

slow. Furthermore, there should be a possibility for having forward transitions
more than one step covering fast breathing scenarios. It is also reasonable to
consider that the unknown state of SL is more likely to happen after the states
closer to the full inhale or full exhale. Considering all these constraints, we
consider the L×L sub-matrix from S to be a circulant matrix. The first column
of the matrix has a negative quadratic form (i.e., maximum at the first element
and quadratically decreasing as the index increases). The last row of the matrix
represents the probability of the transition to an unknown state. For the last
row, we consider to have a four degree polynomial, which maximizes at the mid
range of the index (i.e., full inhale) and minimizes at the mid range of inhale
and exhale. Finally, a normalization factor is applied to ensure that the sum of
each column is one. The probability of a given sequence having been produced
by a specific Markov process can be computed using the initial state probability
P0 and the transition matrix S using a forward-backward propagation algorithm
[9]. An example of a heuristically determined transition matrix for the breathing
cycle is depicted in figure 2.

2.4 Mapping as a Solution of an Optimization Problem

The mapping function L is in fact a constellation of states Si for i ∈ [0, L] from
the planning phase. The likelihood of a certain mapping due to the imaging cues
can be computed using the image similarity matrix M. Furthermore, the proba-
bility of a certain mapping solely due to the a priori Markov process model can
be computed using P0 and S. Therefore, we setup an optimization to maximize



the posteriori probability that is expanded to the product of the likelihood and
prior probability using bayesian rule. The optimization formulation can then be
written as:

L̃ = arg max
L

j<K∏
j=0

M(L(j), j)

 ×

P0(L(0))
j<K−1∏

j=1

S(L(j),L(j + 1))


likelihood prior

(3)

where L̃ is the solution. Equation 3 depicts a combinatorial optimization prob-
lem, since the number of possibilities for state constellations are finite. The
evaluation of the cost function in this problem is computationally inexpensive,
therefore standard optimization techniques such as simulated annealing could be
used. However, since the problem can be looked at as overlapping sub-problems,
we could use Dynamic Programming to find the optimal solution [2]. Similar to
Dijkstra shortest path algorithm, we can define and store the maximum cost of
getting at the time index j in a (L + 1)×K matrix Q:

Q(i, j) =


∞ j < 0
M(i, j)× P0(i) j = 0
M(i, j) + max

i
(Q(i, j − 1)× S(i, j)) otherwise

(4)

Once the matrix Q in the equation 4 is computed recursively, the solution of the
optimization problem in the equation 3 is:

L̃(j) = ĩ = arg max
i

Q(i, j) for j ∈ [0,K]. (5)

Estimated mapping function L̃ can be used in equation 2 to compute the updated
gating surrogate interval.

3 Experimental Results

To evaluate the performance of the proposed method, we define two error mea-
sures. First error metric e1 is the percentage of wrongly labeled fluoroscopic
frames. Second error measure e2 is the percentage of wrongly labeled “no-match”.
Although the wrongly labeled “no match” does not have any affect on the com-
puted gating surrogate interval, it has an adverse impact on the duty cycle.

For the first series of tests, we used a breathing phantom that has a moving
target within a hallow cavity. The speed and range of the target motion within
the phantom can be adjusted. A ten phase 4DCT of the breathing phantom was
acquired using Siemens Sensation 64 CT Scanner (Siemens Medical Solutions,
Med CT, Forchheim, Germany). Simulator fluoroscopic sequences of the phan-
tom were taken using Siemens Mevasim S Simulator (Siemens Medical Solutions,
Med OCS, Concord CA, USA) from the phantom with three different motion
ranges and speeds. For the second and third series, the 4DCT of patients with
synthetic and real fluoroscopic sequences were used. We acquired two 4DCT



Test e1 (%) e2 (%)

Phantom Original (i.e., same as 4DCT) 0% 0 %
Phantom Slow Breathing 8% 0 %
Phantom Fast Breathing 5% 0 %
Phantom Deep Breathing 8% 15 %
Phantom Shallow Breathing 8% 15 %

Patient1 with Syn. Fluo. 4% 10 %
Patient1 with Syn. Fluo. Modified Pattern 1 7% 10%
Patient1 with Syn. Fluo. Modified Pattern 2 8% 10%

Patient2 with Fluo. 15% 15%

Patient3 with Fluo. 14% 10%

Average 7% 8.5%

Table 1. Results of the two error measures for various datasets.

scans of the same patient at two different time points. We generated DRRs
from one the 4DCT phases and puzzled them together to form synthetic fluo-
roscopic sequences. We generated three sequences. For the first, we concatenate
the original 4DCT phases multiple times. For the second and third, we varied
the sequence order and generated two distinct synthetic breathing patterns.

Finally, we acquired two 4DCT scans of the two different patients with the
corresponding simulator acquisitions. In all the cases, correct correspondences
were manually selected. We used split-screen and a blending display method to
identify the correct correspondences for each fluoroscopic frame out of various
4DCT phases. Sample images and the similarity matrix with the overlaid map-
ping function are depicted in Figure 3. The results of the two error measures are
brought in the table 3. The processing time depends on the number of fluoro-
scopic sequence frame and it is roughly one second per frame. All the tests were
performed on an Intel Centrino Duo CPU with 2.0 GHz and 2 GB of RAM and
a NVIDIA Quadro FX 2500 display adapter.

4 Summary and Conclusion

We have developed an image based mapping/synchronization procedure that au-
tomatically labels pre-treatment fluoroscopic image frames with the correspond-
ing phase from 4DCT. The mapping procedure is formulated as an optimization
process, which finds an optimal mapping maximizing the image similarity be-
tween the corresponding pairs, while preserving a temporal coherency to an es-
tablished Markov model for breathing. The mapping procedure also detects the
frames with no corresponding phase from the planning 4DCT. The fluoroscopic
image based verification addresses the problem of establishing the correlation
between surrogate signal and internal target prior to treatment. By virtue of
having the labels generated from a mapping process, we can adaptively change
the surrogate gating interval to the up-to-date breathing pattern of the patient.
Results on phantom, synthetic, and patient data shows in average 93 percent of
frames are correctly labeled.
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Fig. 3. (a) and (b) depicts a 4DCT frame with matching fluoroscopic frame with over-
laid contours for phantom and patient datasets, respectively. The bottom row shows
the corresponding image similarity matrix for each case.
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