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Abstract. Noise reduction in CT images gains more and more atten-
tion. It provides a possibility to increase signal-to-noise ratio, hence giv-
ing more space for a further reduction of radiation dose. Nevertheless,
a reduction of noise also bears the risk of suppressing medical relevant
information. We propose a new noise reduction method that tries to
minimize this risk by estimating the real image structure out of the cor-
relations of two input data sets affected with uncorrelated noise. Such
data sets can be achieved by reconstructing a CT scan with only the
odd and the even numbered projections respectively. Furthermore, the
method adapts itself to the spatially changing behavior of noise on CT
images by estimating the local noise variance out of the difference of
the input images. It can be applied to 2D and 3D data, with the latter
giving better results due to the fact that more pixels are available for
correlation computation and variance estimation. Examples show that
the new method easily surpasses standard approaches and leads to noise
suppression rates of about 66%.

1 Introduction

Common noise reduction methods often fail to produce convincing results when
dealing with CT images. The reason for this lies in the unknown distribution of
the noise in the reconstructed data. The intensity of the noise is spatially varying
and directed noise structures appear. We present a new denoising method based
on nonlinear isotropic diffusion that adapts itself to changing noise variance in
different image regions and reduces oriented noise without noticeable loss of
resolution by taking correlations of input images with uncorrelated noise into
account. The approach is suitable for both 2D and 3D data.

2 Previous Work

In [1] A. Borsdorf proposed a Wavelet based denoising method for CT images.
By separately reconstructing the odd and even numbered projections of a CT
scan two sets of slices are obtained which include the same information but noise
between the data is uncorrelated. By using correlation analysis in the wavelet do-
main combined with an orientation and position dependent noise estimation [2]



only those wavelet coefficients containing image structure are kept for recon-
struction of a noise suppressed image. In this work, the idea of this approach,
e.g. using two data sets with uncorrelated noise, is picked up and transfered to
the spatial domain and nonlinear diffusion methods.

3 Method

Noise is removed by minimizing an energy functional, which results in the fol-
lowing Euler-Lagrange equation:

u − u0 = τdiv(g(‖∇u‖)∇u) (1)

This is equivalent to solving a Perona and Malik nonlinear isotropic diffusion
equation [3] for a fixed artificial timestep τ . The initial image u0 is set to the
average of the two input images u1 and u2. The sought-after solution is u. At
the image boundary a homogeneous Neumann condition is applied. g(‖∇u‖)
is called an edge-stopping function regulating the diffusion process. Numerous
edge-stopping functions have been proposed by the researching community, we
have chosen to use the Tukey edge-stopping function introduced in [4] because
of its good edge preserving properties.

For denoising CT images we have to modify g(‖∇u‖) to achieve adequate
results. Two ways of exploiting the availability of two input images with uncor-
related noise are to compute the correlation between both and to estimate noise
variance. Because of the spatially varying noise properties in CT images these
analysis is done locally in a neighborhood Ωx around a pixel x. Additionally the
influence of the neighboring pixels i is weighted with gaussian weights w(i,x)
depending on the distance between pixel i and x.

A local estimate for the correlation of two image regions can be computed
by:

cw(x) =

∑
Ωx

(u1(i) − ū1)(u2(i) − ū2)w(i,x)√∑
Ωx

(u1(i) − ū1)2w(i,x) ·
∑

Ωx
(u2(i) − ū2)2w(i,x)

, (2)

Cw(x) =

{
1 cw(x) > 0,

0 cw(x) ≤ 0;
(3)

Because in our case only the amount of similarity between image regions is
interesting, the values below 0 of the weighted correlation coefficient cw, denoting
anticorrelation, are set to 0, yielding in a local similarity measure Cw.

Two input images give us the possibility to estimate the local noise variance
of the average of the input images by:

V (x) =

∑
Ωx

w(i,x)(u1(i) − u2(i))2

4
∑

Ωx
w(i,x)

; (4)



Based on the Tukey edge-stopping function we now derive a new function tak-
ing into account V and Cw. The fixed parameter for the noise standard derivation
of the Tukey edge-stopping function is replaced by V (x), with a parameter β
serving as an additional weighting factor:

gV (x) =


(
1 − ( x2

V (x) )
)2

, |x| ≤ β
√

V (x),

0, |x| > β
√

V (x).
(5)

The square root of the product of the gradients on the input images is taken as
the input for the edge-stopping function. It is further linearly scaled by the local
similarity measure with a parameter λ. The idea behind this is to weaken high
gradients in image regions with small similarity, e.g. in homogeneous regions,
and to enlarge the gradient where similarity is high, i.e. when image structure
is present.

g(‖∇u1,2‖) =

{
gV (x)(‖∇u1,2‖ · W (x)) if W (x) > 0,

gV (x)(0) else;
(6)

where ‖∇u1,2‖ =
√
‖∇u1‖ · ‖∇u2‖ and

W (x) = 1 + λ(2Cw(x) − 1)). (7)

This edge-stopping function is used in the Perona and Malik diffusion equa-
tion as presented in equation (1) to denoise CT images.

The diffused images of the two input images u1 and u2 and the average
uA are calculated for a fixed timestep τ . All diffusion processes are regulated
by the same edge-stopping function g(‖∇u1,2‖). The gradients are discretized
by finite differences and the equation system by finite volumes. The method
is implemented both in 2D and 3D. The partial differential equation system is
solved by a nonlinear multigrid solver [5,6]. The solver of the diffusion equation
updates uA, u1 and u2 simultaneously, calculating g(‖∇u1,2‖) from the current
images u1 and u2 to preserve nonlinearity. The output of the denoising method
is the diffused image uA.

4 Results

Fig. 1 shows results from the proposed method and one standard nonlinear dif-
fusion method applied to a thin reconstructed slice (0.8 mm) of a liver CT scan
compared to the average of the input images, which reflects the result of a re-
construction of all projections. It is referred to as the original image. In Fig. 2
the difference images to the original image are shown, providing an impression of
the denoising behavior of the different approaches. Fig. 1(b) clearly shows that
a standard nonlinear diffusion method fails to denoise a CT image with spa-
tially varying noise power in an adequate manner. While noise in the center of
the image is nearly unchanged, the outer regions are already blurred. Using the



(a) Original (b) Tukey

(c) 2D Proposed (d) 3D Proposed

Fig. 1: Denoising results for a CTA of a liver, displayed with c = 200 and w = 700.

proposed method in 2D, Fig. 1(c) shows that this method is capable of adapting
itself to the local noise variance, thus removing noise more uniformly. A noise
reduction of 45% is achieved throughout the image. To get a proper estimate
of the correlation of the input images a gaussian window with a standard de-
viation of 2 was used in a 9 × 9 neighbourhood. Because image structures like
edges have influence on the correlation value of distant pixels in their neigh-
bourhood, unfortunately noise remains around high contrast edges. Hence, if a
natural look of the image should not be sacrificed the noise suppression must be
kept weak. Using 3D data reduces this problem, because pixels for estimating
the noise variance and correlation can be taken from the neighbourhood in all
three dimension. Fig. 1(d) shows the result using a gaussian window of standard
deviation 1.5 in a 5 × 5 × 5 neighbourhood. It can be seen clearly that a strong
noise suppression of about 66% is achieved while image structure nearly remains
unharmed.

5 Conclusions

A modified Perona-Malik diffusion process was presented that is able to deal with
the special noise characteristics of CT data. The method surpasses standard dif-
fusion methods due to its adaption on local noise variations and its regularizing



of the diffusion depending on an estimation of the real image structure by cal-
culating correlations between two input images with uncorrelated noise. A noise
suppression rate of about 66% can be achieved.

(a) u1 − u2 (b) Tukey - Original

(c) 2D Proposed - Original (d) 3D Proposed - Original

Fig. 2: Difference images, displayed with c = 0 and w = 200.
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