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Abstract

We propose a new PDE based method for noise re-
duction in computed tomography (CT) using corre-
lation analysis and compare it to a previously intro-
duced wavelet based method. The arising nonlinear
(an)isotropic PDEs are solved by an efficient multi-
grid solver.

Both approaches are based on the assumption
that the data can be decomposed into information
and temporally uncorrelated noise. In CT two spa-
tially identical images can be generated by recon-
structions from disjoint subsets of projection, e.g.,
by taking every other projection respectively. Our
experimental results in 2D and 3D show that a noise
reduction up to66% can be achieved without noti-
cable loss of image resolution. Additionally, a radi-
ologist compared the visual quality of both methods
with respect to noise and visibility of structures for
real clinical data.

1 Introduction

Noise reduction in CT images gains more and
more attention. It provides a possibility to increase
the signal-to-noise ratio (SNR), hence giving more
space for a further reduction of radiation dose.

Several methods for the reduction of noise in CT
have been proposed [1, 2, 3], in most cases re-
ducing noise in the projections before reconstruc-
tion. In contrast to this we focus on the reduction
of noise in the reconstructed 2D slices or 3D vol-
umes. Noise reduction in reconstructed CT datasets
is not an easy task due to the difficult noise proper-
ties: after reconstruction the distribution of noise is
unknown. Furthermore, noise is non-stationary and
directed noise due to high attenuation along certain
directions may be present.

In [4] we proposed a wavelet based denoising
method for CT images. By separately reconstruct-
ing the odd and even numbered projections of a CT
scan two sets of slices are obtained which include
the same information but noise between the data is
uncorrelated. By using correlation analysis in the
wavelet domain combined with an orientation and
position dependent noise estimation [5] only those
wavelet coefficients containing image structure are
kept for reconstruction of a noise suppressed image.
In [6], the idea of this approach, e.g., using two data
sets with uncorrelated noise, is picked up and trans-
fered to the spatial domain, where we apply non-
linear isotropic diffusion filtering [7, 8]. Now, we
extend it to the anisotropic case, compare it to the
wavelets, and present results on clinical data.

An overview of the methodology is presented
in Section 2. Section 3 summarizes the wavelet
based approach. Then, we propose in Section 4
a new noise reduction method based on nonlinear
(an)isotropic diffusion that tries to estimate the real
image structure out of the correlations of two input
datasets affected with uncorrelated noise. In Sec-
tion 5 we compare the two methods with respect to
noise reduction and edge preservation for phantom
measurements in 2D and 3D. Furthermore, we dis-
cuss the visual results of real clinical data. Finally
Section 6 concludes our work.

2 Method Overview

Figure 1: Overview of the noise reduction method
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Figure 1 shows a brief overview of the denoising
methodology: first, two CT datasetsu1 andu2 are
generated, which only differ with respect to noise.
Note that if more than two sets are used, the SNR in
the separately reconstructed images decreases what
leads to a worse edge detection.

In CT, this can be achieved by separate recon-
structions from disjoint subsets of projectionsP1 ⊂
P and P2 ⊂ P, with P1 ∩ P2 = ∅. As-
suming that the sampling rate is high enough for
both single sets of projections (see [9, 10]), then
R {P} = 0.5 (R {P1} + R {P2}), with R defin-
ing an arbitrary reconstruction operator. Specifi-
cally, we reconstruct one dataset from the even and
the other from the odd numbered projections using
the weighted filtered back projection (WFBP) [11].
Instead of just averagingu1 andu2 we use these
two datasets as input to our denoising algorithm,
which can be a wavelet based or PDE based method.

Both methods have in common that they try to
separate structure and noise by taking into account
the local correlation of the two input datasets. Addi-
tionally, the local standard deviation of noise can be
estimated from the difference betweenu1 andu2.
After denoising, we obtainu, which corresponds to
the reconstruction from the complete set of projec-
tions, but with improved signal-to-noise ratio.

3 Wavelet Based Denoising

The discrete, dyadic wavelet transformation (DWT)
of a signal is a linear operation that maps the dis-
crete d-dimensional input signal withN sample
points onto the set ofN wavelet coefficients:a(x)
defining the approximation andwD(x) the detail
coefficients at positionx = (x1, ..., xd) and ori-
entationD. For the 2D case, e.g., we haveD ∈
{LH, HL, HH} altogether resulting in four blocks
of coefficients: the lowpass filtered approximation
and three detail images which include high fre-
quency structures in the horizontal (LH), vertical
(HL) and diagonal (HH) directions, respectively,
together with noise in the corresponding frequency
band.

Multidimensional signals are usually decom-
posed by applying a 1D transformation successively
to all dimensions, whereas the 1D transformation
can be described by a filter bank [12]: The signal is
filtered with a high-pass filter̃g and a correspond-
ing lowpass filter̃h followed by a dyadic downsam-

pling step respectively. This decomposition can be
repeated for the lowpass filtered approximation co-
efficients until the maximum decomposition level
lmax ≤ log2 N (assumedN is a power of two) is
reached leading to a multiresolution decomposition.
For perfect reconstruction of the signal, the dual fil-
tersg andh are applied to the coefficients at decom-
position levell after upsampling. The two resulting
parts are summed up leading to the approximation
coefficients at levell − 1.

The two separately reconstructed datasetsu1 and
u2 are both decomposed into multiple frequency
bands and orientations by a discrete dyadic wavelet
transformation. Because of the linearity of the
wavelet transformation the average ofu1 and u2

can directly be computed in the wavelet domain.
The denoising is performed by applying adapted
weights to the averaged high frequency detail coef-
ficients. These weights depend on the local and fre-
quency dependent similarity of the input datasets.
Different methods for detecting correlated struc-
tures between the two datasets have been proposed
in [4]. Here, we use the correlation between the ap-
proximation coefficients for the detection of struc-
tures. At each decomposition levell for each po-
sition x, the empirical correlation coefficients be-
tween pixel regions taken from the approximation
at levell−1 are computed. The pixel regions in the
approximation are chosen within a local neighbor-
hoodΩx around the corresponding positionx

l−1 of
x

l:

r
l(x) =

Cov(al−1
1 , al−1

2 )
q

Var(al−1
1 )Var(al−1

2 )
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with

Var(s) =
X

x̃∈Ωx

(s(x̃) − s̄)2 (2)

and

Cov(s1, s2) =
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x̃∈Ωx

(s1(x̃) − s̄1) (s2(x̃) − s̄2) ,

(3)
whereal−1

1 andal−1
2 define the approximation co-

efficients ofu1 andu2, respectively,̄al−1
1 andāl−1

2

denote the corresponding average values withinΩx.
The neighborhoodΩx is chosen in dependence on
the used wavelet in order to assure that all pix-
els that influenced the detail coefficient at position
x during decomposition and all those coefficients
that are influenced by the reconstruction from this



coefficient are included into the correlation anal-
ysis. Therefore, the neighborhood is defined by
the length of the used analysis (g̃, h̃) and synthe-
sis (g andh) filters. If we assume that the length
m = (m1, . . . , md) of all these four filters is the
same and even, we define

Ωx =
n

x̃
l−1

˛

˛

˛
|x̃l−1 − x

l−1| ≤ m

o

. (4)

The final noise suppressed resultu is computed by
an inverse wavelet transformation from the aver-
aged and weighted coefficients:
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4 PDE Based Denoising

4.1 PDE model

In contrast to the wavelet based denoising the PDE
based denoising works in the spatial domain. Noise
is removed using a nonlinear diffusion process de-
scribed by the nonlinear PDE

u − u
0 = τdiv(g(‖∇u‖)∇u) (7)

with Neumann boundary conditions. This is equiv-
alent to solving a Perona and Malik nonlinear
isotropic diffusion equation [7] for a fixed artificial
time stepτ . The initial imageu0 is set to the aver-
age of the two input imagesu0

1 andu0
2. The edge-

stopping functiong(‖∇u‖) regulates the diffusion
process. We use the Tukey edge-stopping function

gσ(x) =

(

`

1 − ( x
σ
)2

´2
, |x| ≤ σ,

0, |x| > σ.
(8)

introduced in [13] because of its good edge preserv-
ing properties. Usually, the parameterσ is set to the
standard deviation when dealing with white noise.

For denoising CT images we have to modifygσ

resulting ing̃V described next (cf. (15)) to achieve
adequate results and we simultaneously denoise the
two input CT imagesu0

1 andu0
2 and its averageu0.

This means we have to solve the nonlinear system
of partial differential equations

u − u
0 = τdiv(D′

u1,u2
∇u) (9a)

u1 − u
0
1 = τdiv(D′

u1,u2
∇u1) (9b)

u2 − u
0
2 = τdiv(D′

u1,u2
∇u2) (9c)

with Neumann boundary conditions. Here,D′

u1,u2

is a nonlinear diffusion tensor with

D
′

u1,u2
= g̃V · E (10)

in the isotropic case and

D
′

u1,u2
= g̃V (D) (11)

with D = 0.25
“

(∇u1 + ∇u2) (∇u1 + ∇u2)
T

”

in the anisotropic case.E denotes the identity ma-
trix and g̃V is applied, e.g., in the 2D case, toD
by applyingg̃V to the eigenvaluesλ1, λ2 of D and
leaving the eigenvectorsv1, v2 of D unchanged,
i.e.,D′

u1,u2
= g̃V (λ1)v1v

T
1 + g̃V (λ2)v2v

T
2 .

Two ways of exploiting the availability of two in-
put images with uncorrelated noise are to compute
the correlation between both and to estimate noise
variance.

Because of the spatially varying noise properties
in CT images the analysis is done locally in a neigh-
borhoodΩx around a pixelx analog to wavelet
based denoising. Additionally, the neighboring pix-
elsx̃ are weighted with Gaussian weights

α(x̃,x) =
1

σ
√

2π

„

−1

2
e

‖x̃−x‖2

σ
2

«

(12)

depending on the distance between pixelx̃ andx.
A local estimate for the correlation of two image re-
gions can be computed by the weighted correlation
coefficient

cα(x) =
Covα(u1, u2)

p

Varα(u1)Varα(u2)
.

using the weighted covariance

Covα(s1, s2) =
X

x̃∈Ωx

2
Y

j=1

(sj(x̃) − s̄j)α(x̃,x)

and weighted variance

Varα(s) =
X

x̃∈Ωx

(s(x̃) − s̄)2α(x̃,x),



where s̄ is the local gray value average. Because
in our case only the amount of similarity between
image regions is interesting, the values below0 of
cα, denoting anti-correlation, are set to0, yielding
a local similarity measure

Cα(x) =

(

1 cα(x) > 0

0 cα(x) ≤ 0
. (13)

A visualization ofCα of the input images of a liver
CT scan is shown in Fig. 2(a).

Two input images give us the possibility to esti-
mate the local noise variance of the average of the
input images by [14]

V (x) =

X

x̃∈Ωx

α(x̃,x)(u1(x̃) − u2(x̃))2

4
X

x̃∈Ωx

α(x̃,x)
. (14)

A plot of the estimated local varianceV in Fig. 2(b)
shows the spatially changing behavior of the noise
variance.

(a) Correlation (b) Variance

Figure 2: Plot of the local correlationCα and local
variance estimateV of a liver CT scan.

Based on the Tukey edge-stopping function we
now design a new function taking into accountV

andCα. The fixed parameter for the noise standard
deviation of the Tukey edge-stopping function is re-
placed byV (x) resulting in

g̃V (x) =

8

<

:

“

1 − x2

V (x)

”2

, |x| ≤ β
p

V (x),

0, |x| > β
p

V (x).

(15)
with an additional fixed weighting factorβ ∈ R

+.
If nothing else is stated, we setβ = 1.

The square root of the product of the gradients on
the input images

‖∇u1,2‖ =
p

‖∇u1‖ · ‖∇u2‖ (16)

is taken as input for the edge-stopping functiong̃V .
It is further linearly scaled by the local similarity
measure, i.e., we usẽgV (s), s ∈ R with

s =

(

‖∇u1,2‖ · W (x) if W (x) > 0,

0 else
(17)

and
W (x) = 1 + γ(2Cα(x) − 1) (18)

with γ ∈ R
+. This has the effect to damp high gra-

dients in image regions with small similarity, e.g.,
in homogeneous regions, and to enlarge the gradient
where similarity is high, i.e., when image structure
is present.

4.2 PDE solver

We discretize Eq. (9) in 2D and 3D by finite vol-
umes on a cell-based gridΩh, the gradients required
for the computation of̃gV are approximated by fi-
nite differences. The resulting nonlinear system of
equations

A
h(uh) = f

h (19)

is solved by a cell-based nonlinear multigrid solver
on a hierarchy of grids [15, 16, 17, 18] based on
the full approximation scheme (FAS) [19] to obtain
the denoised discrete imageuh. In the following
explanations, we restrict ourselves to two grids for
simplicity, a fine gridΩh and a coarse gridΩH .

To deal with the nonlinearity we apply an inexact
lagged diffusivity [20, 21]. The idea is to keep the
diffusivity function g̃V (s) constant during the itera-
tion stepk + 1 and to evaluate it at the old iteration
stepk. That means we successively solve

u
k+1 − u0 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1) (20a)

u
k+1
1 − u

0
1 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1
1 ) (20b)

u
k+1
2 − u

0
2 = τdiv(

`

D
′

u1,u2

´k ∇u
k+1
2 ) (20c)

Note that now the three solution componentsu, u1,
andu2 are decoupled and can be updated indepen-
dently from each other.

Within the FAS multigrid iteration the Gauss-
Seidel method denoted by the operatorSν , where
ν are the number of Gauss-Seidel iterations, serves
as pre- and post-smoother. After each Gauss-Seidel
iteration on each level, we update the values of the
diffusivity function g̃V (s). Furthermore, we apply
simple restriction and interpolation operators [16].



The restriction operator in 2D can be described by
the stencil

I
H
h =

1

4

2

4

1 1
·

1 1

3

5 , (21)

where the dot in the stencil denotes the position on
the coarse grid at which the restriction is applied,
and the constant interpolation in 2D by the stencil

I
h
H =

3

5

1 1
·

1 1

2

4 . (22)

Extension to 3D is straightforward. We denote one
FAS iteration, e.g., by FAS(2,2), i.e., we perform
2 pre- and 2 post-smoothing steps. For the results
in the next section we typically apply 3-4 FAS(2,2)
iterations.

The FAS scheme can be extended to full multi-
grid (FMG) by constructing an image pyramid and
starting to compute a denoised image at the lowest
resolution or level. Then, the solution is interpo-
lated to the next finer level and used as an initial
guess there. On each level one or more FAS itera-
tions are computed. One recursive FAS iterations to
solve the nonlinear systemAhuh = fh is shown in
Algorithm 1. The initial guessu(0)

h = 0.

5 Comparison Results

For a thin reconstructed example slice (0.8 mm)
of an abdomen CT scan (see Fig.3), Fig. 4 shows
the results for the proposed method in comparison
to one standard nonlinear diffusion method and the
wavelet based approach.

(a) Original (b) (u1 − u2)/2

Figure 3: Original average image and its difference
images (one slice is of size512 × 512), displayed
with c = 0 andw = 200.

In 2D we used the redundant SWT, in 3D the non-
redundant DWT, both in combination with the Haar
wavelet and three decomposition levels. The noise
reduced images are compared to the average of the
input images, which corresponds to the result of a
reconstruction from all projections and is in the fol-
lowing referred to as the original image. In Fig. 5
the corresponding difference images to the origi-
nal image are shown, providing an impression of
the denoising behavior of the different approaches.
Fig. 4(a) clearly demonstrates that a standard non-
linear diffusion method fails to denoise a CT image
with spatially varying noise power in an adequate
manner. While noise in the center of the image
is nearly unchanged, the outer regions are already
blurred. Using the proposed PDE approach or the
wavelet based method (Fig. 4(c)- 4(f)) shows that
both methods are capable of adapting themselves to
the local noise variance, thus removing noise more
uniformly. For both approaches in 2D a noise re-
duction of about 45% is achieved throughout the
image. To get a proper estimate of the correla-
tion of the input images a5 × 5 neighborhood was
used in the wavelet approach and a8 × 8 neigh-
bourhood with gaussian weights of standard devia-
tion 2 in case of the PDEs. Because image struc-
tures like edges have influence on the correlation
value of distant pixels in their neighborhood, unfor-
tunately noise remains around high contrast edges
if the window for correlation analysis is chosen too
large. However, if the window is chosen too small
the correlation analysis gets unreliable. Using 3D
data reduces this problem, because pixels for es-
timating the noise variance and correlation can be
taken from the neighborhood in all three dimen-
sions. Fig. 4(d) and 4(f) show the results in 3D
using a window of5 × 5 × 5 pixels (with gaus-
sian weights of standart derivation 1 in case of the
PDEs). It can be seen clearly that a strong noise
suppression of about 60% is achieved while image
structures are well preserved.

These images were also used for clinical tests,
where a radiologist judged the images with respect
to noise and visibility of structures in two consecu-
tive tests. Within these tests unlabeled image pairs
were shown to the radiologist in randomized order.
For all image pairs, the radiologist decided if there
was one preferred image with respect to the cur-
rent evaluation criterion. Switching the position of
the two images, allowed to notice even small dif-



Algorithm 1 FAS iteration (V-cycle): Computeu(k+1)
h = MFAS

h

“

u
(k)
h , Ah, fh, ν1, ν2

”

1: ū
(k)
h = S

ν1

h

“

u
(k)
h , Ah, fh

”

{pre-smoothing}
2: rh = fh − Ah

“

ū
(k)
h

”

{compute residual}
3: rH = IH

h rh {restrict residual}
4: ūH = IH

h ū
(k)
h {restrict solution}

5: fH = rH + AH
`

ūH
´

6: if number of coarse grid points< ǫmin then
7: Solve nonlinear problemAH(wH) = fH by a suitable nonlinear solver or sufficiently many Gauss-

Seidel iterations
8: else
9: wH = MFAS

H

`

ūH , AH , fH , ν1, ν2

´

10: end if
11: eH = wH − ūH

12: eh = Ih
HeH {interpolate error}

13: ũ
(k)
h = ū

(k)
h + eh {coarse grid correction}

14: u
(k+1)
h = S

ν2

h

“

ũ
(k)
h , Ah, fh

”

{post-smoothing}

ferences between the images. Within the tests all
denoised images were compared to the original im-
age. Furthermore, the 2D and 3D results of the pro-
posed PDE approach were compared to the results
of the wavelet based approach. Summarizing, the
test showed that all denoised images were judged
superior in comparison to the original for both eval-
uation criteria.

For the comparison between PDE and wavelets
the results of the tests were not that clear. With
respect to noise the wavelet based methods were
preferred. Regarding the visibility of structures the
PDE approach gives better results.

In addition to the visual inspection, quantitative
tests were performed evaluating noise reduction and
edge preservation in phantom images. For gen-
erating the simulated CT-scans theDRASIM soft-
ware package provided by Karl Stierstorfer [22]
was used. The phantom consists of a water cylinder
with an inlaid quartered cylinder of defined density.
In order to test the preservation of edges at differ-
ent contrast-to-noise levels the density of the object
was varied leading to edge-contrasts between 20 to
100 Hounsfield units (HU). The Hounsfield scale is
a quantitative measure for radiodensity, i.e., it de-
scribes the relative transparency of a material, if X-
rays pass through it.

In addition to noisy phantoms, ideal CT-scans
were simulated leading to noise-free ground-truth

data. In CT a standard measurement for resolu-
tion is the modulation transfer function (MTF) (see
e.g. [10, 23]), indicating how many line pairs per
cm (lp/cm) can be distinguished. It is possible to
determine the local MTF directly from the edge in
an image. For this purpose, we manually selected
a fixed region of20 × 125 pixels around an edge
(with a slope of approx. 4 degrees). The slight tilt of
the edge allows a higher sampling of the edge pro-
file, which is additionally averaged along the edge.
The derivation of the edge profile leads to the line-
spread function (LSF). The Fourier transformation
of the LSF results in the MTF, which is additionally
normalized so thatMTF(0) = 1. Reliable mea-
surements of the MTF from thisedge techniquecan
only be achieved if the contrast of the edge is much
higher than the pixel noise in the images [24].

In case of the wavelet based approach this can
be easily circumvented by applying the computed
weights at each decomposition level to the wavelet
coefficients of the ideal noise-free image and com-
puting the inverse transformation. This has the ef-
fect of making the influence of the weighting to the
real signal directly visible. The MTF can then be
computed at the edge in the processed noise-free
image.

In case of the diffusion method this is not pos-
sible and, therefore, the average of 200 denoised
slices was used for computing the MTF. The MTFs



(a) Tukey - Original (b) 2D Anisotropic - Original

(c) 2D Isotropic - Original (d) 3D Isotropic - Original

(e) 2D Wavelet - Original (f) 3D Wavelet - Original

Figure 5: Difference images, displayed withc = 0
andw = 200.

measured at edges with different contrasts are plot-
ted in Fig. 6 and compared to the MTF measured at
the original edge of 100 HU. All approaches used a
5×5 neighborhood, the PDE with Gaussian weights
of standard derivation1.

It can be clearly seen that the preservation of an
edge very much depends on the contrast-to-noise
level. The lower the contrast at the edge the stronger
the MTF falls below the original curve, indicating
that the edge was blurred. Fig. 6(a) shows that
the phantom edges with a contrast of more than
40 HU are nearly fully preserved by the 2D PDE
method. Additionally, due to the large time pa-
rameter needed to obtain a noise reduction of45%
the edge is enhanced by the diffusion process. The
3D PDE approach leads to better results for low-
contrasty edges and the amount of sharpening ap-
plied is lower, as it can be seen in Fig. 6(c). Supris-

ingly, if anisotropic diffusion is used the edges are
blurred as Fig. 6(b) shows. It seems that this ap-
proach is not capable of denoising images with fine
structures, because even minor errors in the estima-
tion of the edge gradient lead to a blurring over it.

For comparing the PDE approach to the wavelet
based method theρ50-values of the MTFs were
plotted against the contrast of the edge in Fig. 7.
Theρ50-value is defined as MTF(ρ50) = 0.5. Ad-
ditionally, the values of the original noise-free im-
ages are plotted for comparison. It can be seen that
the edge preservation of the PDE method outper-
forms the wavelet based method.

6 Conclusions

Isotropic and Anisotropic diffusion is adapted to be
able to deal with the special noise characteristics of
CT data. The diffusion depends on local noise vari-
ations and an estimation of the real image structure
by calculating correlations between two input im-
ages with uncorrelated noise. The approach is com-
pared to a similar wavelet based denoising method.

To enable the use of the presented algorithms
in practical applications, it is necessary to improve
their performance. Currently it takes for both ap-
proaches on a Laptop (Pentium M 2.0 GHz and
1 GB RAM) and typical parameter settings about
3–7 seconds to denoise a 2D slice of size512 ×
512 and about 80–120 seconds for a 3D volume
of size 512 × 512 × 16. Although the wavelet
method is implemented within Matlab, it is slightly
faster. The PDE based approach is implemented in
C++. Applying standard optimization techniques
[25, 26, 27] to the unoptimized multigrid solver
could lead to a performance gain of factor 2–5.
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contrast of the edge.

fication of Correlation,” inPattern Recogni-
tion (DAGM 2006), Lecture Notes in Com-
puter Science, K. Franke, K. M̈uller, B. Nick-
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Figure 4: Denoising results for a CTA of a liver, displayed withc = 200 andw = 700.


