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Abstract
In computed tomography, analytical fan-beam (FB) and cone-beam (CB)
image reconstruction often involves a view-dependent data differentiation. The
implementation of this differentiation step is critical in terms of resolution and
image quality. In this work, we present a new differentiation scheme that is
robust to changes in the data acquisition geometry and to coarse view sampling.
Our scheme was compared to two previously suggested methods, which we
call the direct scheme and the chain-rule scheme. Image reconstructions were
performed from computer-simulated data of the Shepp–Logan phantom, the
FORBILD thorax phantom and a modified FORBILD head phantom. For
FB reconstruction, we investigated three acquisition geometries: a circular,
an ellipse-shaped and a square-shaped trajectory. For CB reconstruction, the
circle-plus-line trajectory was considered. Image comparison showed that the
new scheme performs consistently well when varying the scenario, in both FB
and CB geometry, unlike the other two schemes.

1. Introduction

A specific view-dependent data differentiation has become a common processing step in
analytical image reconstruction from fan-beam (FB) and cone-beam (CB) projections in x-ray
computed tomography (CT). See e.g., Katsevich (2003), Noo et al (2002), Chen (2003a), Zou
and Pan (2004), Yu and Wang (2004, 2005), Bontus et al (2005), Sidky et al (2005) and Pack
and Noo (2005). This differentiation step, which we describe below, is often regarded as a non-
desired feature, or more specifically as a feature that is bound to yield unwanted resolution loss
and discretization errors. Hence, several authors have suggested to modify the reconstruction
formula using integration by parts, in such a way as to eliminate the differentiation step (e.g.,
Katsevich (2002), Chen (2003b), Sidky et al (2005), Katsevich et al (2006), Yang et al (2006)).
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This approach is effective in that clear improvements in resolution and image quality have
been reported (see, e.g., Katsevich et al (2003) and Yang et al (2006)). Unfortunately, for the
filtered-backprojection methods, the integration by parts generally renders the reconstruction
formula much more demanding in terms of computational effort; for example, more than
one non-local filtering operation may be needed after integration by parts, and there may be
the additional request to backproject each filtering result with a different weight. Given this
weakness of the integration by parts, we decided to revisit the problem of performing the
view-dependent differentiation from discrete data. Doing so, we found a new differentiation
scheme, which we present here. We believe this scheme is more robust than previously
proposed schemes, and we demonstrate this to be at least the case in two geometries: first, the
reconstruction from FB projections measured on a convex source trajectory, and second, the
reconstruction from CB data measured on a circle-plus-line trajectory.

We now describe the view-dependent data differentiation step we are concerned with.
First, let f (x) be the x-ray linear attenuation coefficient to be reconstructed, and let g(λ, α) be
the FB or CB data from which f (x) needs to be reconstructed. In this notation, λ is a scalar
that specifies the position of the x-ray source on a curve, α is a unit vector, and g(λ, α) is the
integral of f (x) along the half-line of direction α that starts from the source position at λ. In
a circular or helical data acquisition geometry, λ usually corresponds to the rotation angle of
the source–detector assembly. By definition, a reconstruction formula is the expression of an
approximation of f (x) in terms of the data g(λ, α). To achieve an accurate approximation,
many formulas nowadays require the computation of

gD(λ, α) = ∂

∂λ
g(λ, α)

∣∣∣∣
α fixed

= lim
ε→0

g(λ + ε, α) − g(λ − ε, α)

2ε
(1)

as a first data-processing step. This computation defines the differentiation step this paper
focuses on. Basically, we need to differentiate g(λ, α) with respect to λ while keeping the
ray direction α fixed. In practice, this operation is difficult to implement accurately because
the sampled values of α change with λ, as they are specified by the detector sampling and the
position of the source and detector relative to each other. Furthermore, the sampling in λ is
often coarser than the sampling on the detector.

The paper is organized in five sections. In section 2, we first review two differentiation
schemes that have been previously suggested for the implementation of (1), then we describe
our new scheme. After that, we compare in sections 3 and 4 reconstruction results that have
been obtained from various sets of computer-simulated data using these three schemes. This
comparison aims at demonstrating the robustness of the new scheme. Section 3 addresses
the reconstruction from fan-beam data on three convex source trajectories, while section 4
outlines the reconstruction from cone-beam data on a circle-plus-line source trajectory. At the
end, section 5 summarizes the content of the paper and discusses the various related aspects.

2. View-dependent differentiation

In this section, we review two schemes that have previously been suggested for the
implementation of (1), then present our new scheme. To simplify the discussion, some
hypotheses are made on the data acquisition geometry, and these hypotheses are given first.

2.1. Geometric assumptions

Throughout this work, the source trajectory is viewed either as a single curve or the union of
a finite number of curves. We assume that the projections are measured with a fixed sampling
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distance in λ on each of these curves. However, we allow this distance to vary from one curve
to another.

For the computation of gD(λ, α) in equation (1), there is nothing that fundamentally
changes from one curve that forms the source trajectory to another, so we can focus the
discussion in this section on any one of these curves. We write the sampling distance and
the number of projections on the selected curve as %λ and Nλ, respectively, and we use
λi = λ0 + i%λ to specify the position of the projections measured on this curve. In this
notation, λ0 defines the source position for the first projection, and i is an integer that runs
from 0 to Nλ − 1.

Some hypotheses are also made on the detector geometry: we assume the detector is flat
and we assume the detector pixels fit perfectly on a Cartesian grid of points in the detector
plane. The coordinates used to define this grid are denoted by u and v and are such that the
point (u, v) = (0, 0) corresponds to the orthogonal projection of the source position onto the
detector plane. The points on which the detector pixels are centered have uj = u0 + j%u

and vk = v0 + k%v for coordinates, with j = 0, . . . , Nu − 1 and k = 0, . . . , Nv − 1. We
call Nu the number of detector columns and Nv the number of detector rows. In our notation,
changing (u0, v0) amounts to physically translating the detector while keeping the detector
plane unchanged relative to the source position. Note that in FB geometry, there is only one
row of detector pixels, and therefore Nv = 1. In this case, v gives the direction along which
the detector thickness is measured, while u gives the direction along which the detector pixels
are aligned.

Let gm(λ, u, v) be the integral of f (x) along the half-line that connects the source position
at λ to the point of coordinates (u, v) in the detector plane. The quantities we have introduced
allow the measured data to be seen as a sampling of gm(λ, u, v) with the samples being
gm(λi, uj , vk). To link gm(λ, u, v) to the expression g(λ, α) that was used to describe the
data in the introduction, we introduce a distance D(λ) and three unit orthogonal vectors,
eu(λ), ev(λ) and ew(λ) = eu(λ) × ev(λ). As emphasized, these four quantities may each
depend on λ. Vector ew(λ) is orthogonal to the detector plane and points toward the source
position, which is pictured at distance D(λ) from this plane. Thus, eu(λ) and ev(λ) are always
parallel to the detector plane, and we let them define the axes along which the coordinates u
and v are measured. Under these conditions,

gm(λ, u, v) = g(λ, α̂) (2)

with

α̂ = ueu(λ) + vev(λ) − D(λ)ew(λ)
√

u2 + v2 + (D(λ))2
. (3)

Consequently,





u = −D(λ)
α̂ · eu(λ)

α̂ · ew(λ)

v = −D(λ)
α̂ · ev(λ)

α̂ · ew(λ)
.

(4)

See figure 1. In particular, we have

gm(λi, uj , vk) = g(λ, αi,j,k) (5)

with

αi,j,k = ujeu(λi) + vkev(λi) − D(λi)ew(λi)√
(uj )2 + (vk)2 + (D(λi))2

. (6)
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Figure 1. Data acquisition geometry with a flat panel detector. See the text in section 2.1 for
details.

Conversely, if the line of direction α through the source position at λ hits the detector in
the direction of α, then

g(λ, α) = gm(λ, û, v̂) (7)

with





û = −D(λ)
α · eu(λ)

α · ew(λ)

v̂ = −D(λ)
α · ev(λ)

α · ew(λ)
.

(8)

The differentiation step in equation (1) converts gm(λ, u, v) into another function
g′

m(λ, u, v) such that

g′
m(λ, u, v) = gD(λ, α̂) (9)

with α̂ given by equation (3). Likewise, for any α that points toward the detector plane

gD(λ, α) = g′
m(λ, û, v̂) (10)

with û and v̂ defined in (8).

2.2. The direct scheme

This scheme amounts to a direct discretization of (1), in the form

gD(λ + %λ/2, α) % g(λ + %λ, α) − g(λ, α)

%λ
. (11)

Thus, each measured projection is differentiated from the previous one while ensuring the ray
direction remains fixed, and the outcome is placed at the mid-position in λ.
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Formula (11) is implemented as the computation of g′
m(λ, u, v) at (λi+1/2, uj , vk)

according to the formula

g′
m(λi+1/2, uj , vk) %

g(λi+1, αi+1/2,j,k) − g(λi, αi+1/2,j,k)

%λ
(12)

where αi+1/2,j,k is the result of equation (6) with λi replaced by λi+1/2 = λi +%λ/2. Of course,
in general, neither of the two terms in the numerator of (12) is part of the measurements. To
solve this issue, equation (12) is applied using an approximation of these terms based on
equation (7) and bilinear interpolation. For example, to estimate g(λi+1, αi+1/2,j,k), we apply
equation (8) using λi+1 for λ and αi+1/2,j,k for α. The outcome of this application is the
coordinates of a point in the detector plane that depend on the indices i, j and k and may be
denoted as






ûi,j,k = −D(λi+1)
αi+1/2,j,k · eu(λi+1)

αi+1/2,j,k · ew(λi+1)

v̂i,j,k = −D(λi+1)
αi+1/2,j,k · ev(λi+1)

αi+1/2,j,k · ew(λi+1)
.

(13)

The value of gm(λi+1, αi+1/2,j,k) is estimated from bilinear interpolation of the four detector
pixel values that are closest to (ûi,j,k, v̂i,j,k) in the projection at λi+1.

2.3. The chain-rule scheme

Here, we use (9) in combination with (1) and (2) to write

g′
m(λ, u, v) = gD(λ, α̂) = ∂

∂λ
g(λ, α̂)

∣∣∣∣
α̂ fixed

= ∂

∂λ
gm(λ, u, v)

∣∣∣∣
α̂ fixed

. (14)

Then, we apply the chain rule recalling that u and v are tied to α̂ through equation (4). The
outcome is

g′
m(λ, u, v) =

(
∂gm

∂λ

)
(λ, u, v) + w0(u, v)

(
∂gm

∂u

)
(λ, u, v) + w1(u, v)

(
∂gm

∂v

)
(λ, u, v)

(15)

where

w0(u, v) = ∂u

∂λ

∣∣∣∣
α̂ fixed

(16)

and

w1(u, v) = ∂v

∂λ

∣∣∣∣
α̂ fixed

. (17)

To get practical expressions for w0(u, v) and w1(u, v), we replace u and v in (16) and
(17) by their expression from (4), we apply the differentiation in λ at fixed α̂, and then
replace α̂ by its expression from (3). Recalling that e′

u(λ) · eu(λ) = 0, e′
w(λ) · ew(λ) = 0 and

ew(λ) · e′
u(λ) = −eu(λ) · e′

w(λ) because eu(λ) and ew(λ) are unit orthogonal vectors, we get

w0(u, v) = uD′(λ)

D(λ)
+

u2 + D2

D
eu(λ) · e′

w(λ) + vev(λ) ·
(
e′
u(λ) +

u

D
e′
w(λ)

)
(18)

where the prime refers to taking a derivative in λ; for example, e′
w(λ) = dew(λ)/dλ. Similarly,

w1(u, v) = vD′(λ)

D(λ)
+

v2 + D2

D
ev(λ) · e′

w(λ) + ueu(λ) ·
(
e′
v(λ) +

v

D
e′
w(λ)

)
. (19)
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Two ways of implementing (15) are considered in this paper. The first way, called here the
blended chain-rule scheme, consists in computing each derivative in (15) using an average of
differences of consecutive values, defined so that the final result is an estimate of g′

m(λ, u, v)

at (λi+1/2, uj+1/2, vk+1/2). The detailed formula is

g′
m(λi+1/2, uj+1/2, vk+1/2) % 1

%λ

j+1∑

j ′=j

k+1∑

k′=k

(gm(λi+1, uj ′ , vk′) − gm(λi, uj ′ , vk′))

+
w0(uj+1/2, vk+1/2)

%u

i+1∑

i ′=i

k+1∑

k′=k

(gm(λi ′ , uj+1, vk′) − gm(λi ′ , uj , vk′))

+
w1(uj+1/2, vk+1/2)

%v

i+1∑

i ′=i

j+1∑

j ′=j

(gm(λi ′ , uj ′ , vk+1) − gm(λi ′ , uj ′ , vk)). (20)

Note that without the averaging process, the computation of each term in (15) through the
difference of consecutive values would yield an estimate of each term at a different location,
thus complicating the filtering and backprojection steps that are typically applied to the data
after computation of g′

m. Formula (20) was identified in Noo et al (2003) as a preferred
approach for helical CB reconstruction using Katsevich’s formula (Katsevich 2004a).

The second way we consider here for the implementation of (15) is called the split chain-
rule scheme. This scheme acknowledges that the sampling in λ is often coarser than the
sampling in (u, v), and thus aims at limiting losses in λ through splitting off the first term in
(15) from the other two terms. More specifically, we compute on one hand

g′
m,1(λi+1/2, uj , vk) % 1

%λ
(gm(λi+1, uj , vk) − gm(λi, uj , vk)) (21)

as an approximation of the first term in (15), and on the other hand we compute

g′
m,2(λi, uj+1/2, vk+1/2) % w0(uj+1/2, vk+1/2)

%u

k+1∑

k′=k

(gm(λi, uj+1, vk′) − gm(λi, uj , vk′))

+
w1(uj+1/2, vk+1/2)

%v

j+1∑

j ′=j

(gm(λi, uj ′ , vk+1) − gm(λi, uj ′ , vk)) (22)

as an approximation of the sum of the other two terms in (15). Using this scheme allows a
strong control of resolution losses in λ. However, observe that it causes the computational
effort to be doubled for most reconstruction methods because g′

m,1 and g′
m,2, are not computed

on the same grid and thus need to be filtered and backprojected separately whenever such steps
are required.

2.4. The new scheme

Like the direct scheme, this scheme amounts to a direct discretization of (1), but this time in
the form

g′(λ, α) % g(λ + ε%λ, α) − g(λ − ε%λ, α)

2ε%λ
(23)

where ε is a free parameter between 0 and 1; more specifically, 0 < ε ! 1. Note that no
shift is applied anymore in λ. Note also, from the form of (23), that ε may be interpreted as a
resolution-control parameter.

To implement (23), we need to define a method to estimate from the sampled data each
term that appears in its numerator. In the direct scheme, this task was easy because each term
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Figure 2. The new scheme for data differentiation. We first approximate the value of g(λ+ε%λ, α)
by a linear combination of the projection values at λ and λ + %λ along the lines that contain
b(λ + ε%λ, α) (see the lines labeled with the ⊕ sign). Next, we approximate the value of
g(λ−ε%λ, α) in a similar way, but from the lines labeled with the ' sign. From there, gD(λ, α) is
obtained by differentiation of the approximations obtained for g(λ + ε%λ, α) and g(λ− ε%λ, α).

in the numerator of (11) could be forced to correspond to one sampled source position, as
shown in (12). This approach is no longer possible here as ε is a free parameter.

To estimate the two terms in the numerator of (23), we introduce a function b(λ, α) that
gives the position of a point-of-interest along the line of direction α through a(λ), the source
position at λ. Then, we approximate the first term, g(λ + ε%λ, α), as a linear combination
of the projection values at λ and λ + %λ along the lines that contain b(λ + ε%λ, α). See
figure 2. In a detailed form, we carry out the following approximation:

g(λ + ε%λ, α) % (1 − ε)g

(
λ,

b(λ + ε%λ, α) − a(λ)

‖b(λ + ε%λ, α) − a(λ)‖

)

+ εg
(
λ + %λ,

b(λ + ε%λ, α) − a(λ + %λ)

‖b(λ + ε%λ, α) − a(λ + %λ)‖

)
. (24)

The second term, g(λ− ε%λ, α), is obtained similarly, and this amounts simply to computing
the right-hand side of (24) with %λ replaced by −%λ. If λ is chosen as a sampled source
position, then each value of g on the right-hand-side of (24) can be computed from the
measured data using bilinear interpolation in (u, v), in the same way as with equation (13) in
section 2.2.

The new scheme is defined as the computation of g′
m(λi, uj+1/2, vk+1/2) following

equations (23) and (24). More specifically, we compute

g′(λi, uj+1/2, vk+1/2) %
g(λi + ε%λ, αi,j+1/2,k+1/2) − g(λi − ε%λ, αi,j+1/2,k+1/2)

2ε%λ
(25)
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where the two terms in the numerator are each obtained using (24) with bilinear interpolation
in (u, v). The half-pixel shift in u and v is another feature that distinguishes the new scheme
from the direct scheme. We apply this shift so that the scheme closely resembles a difference
between consecutive detector samples when ε tends to zero and a(λ) is far from the object.
We found through experimental evaluations that this shift indeed carries with it a significant
gain in resolution.

At this stage, the new scheme is not yet completely explained, as no specific definition
was given for b(λ, α), which we called the point-of-interest. We would like to picture b(λ, α)

as the center of mass of the object density along the line of direction α through a(λ). This
would in some ways optimize the accuracy of (24). However, such a definition is not practical
since the object density is a priori unknown. To handle this issue, an axis, say L, around
which the object is known to be globally centered is selected. Then, b(λ, α) is defined as the
point on the line of direction α through a(λ) that is closest to L. If x0 defines an arbitrary
point on L and n is the direction of L, then it can be shown that

b(λ, α) = a(λ) +
(x0 − a(λ)) · (α − (α · n)n)

1 − (α · n)2
α. (26)

3. Evaluation in fan-beam geometry

We have performed evaluations in fan-beam geometry using a convex curve for the source
trajectory. The object was always inside the convex hull of this trajectory. Consequently,
each line passing through the object intersected the source trajectory exactly twice, so that the
redundancy in the data could be easily handled through giving a weight of 1/2 to each line
integral. We considered three specific trajectories: a circle, an ellipse-shaped trajectory, and a
square-shaped trajectory. And we considered two mathematical phantoms: the Shepp–Logan
phantom and the FORBILD thorax phantom. For the Shepp–Logan phantom, every fan-beam
data sample was computed as a simple line integral. For the thorax phantom, every fan-beam
data sample was obtained using a combination of line integrals to model physical resolution-
degradating factors, as detailed in section 3.6. In either case, analytic formulas were used for
the computation of line integrals.

3.1. Data acquisition geometry

The source position a(λ) was defined with λ varying in a given domain called &. The object
was globally centered on the axis orthogonal to the source-trajectory plane through the origin,
and this axis was chosen as L for the computation of b(λ, α) in equation (26). Furthermore,
D was assumed to be independent of λ, and vectors eu(λ) and ew(λ) were selected as follows:






eu(λ) = a′(λ)

‖a′(λ)‖

ew(λ) =
a(λ) −

(
a(λ) · eu(λ)

)
eu(λ)∥∥a(λ) −

(
a(λ) · eu(λ)

)
eu(λ)

∥∥ .

(27)

In this particular geometry, the data are gm(λ, u), and from equation (15)

g′
m(λ, u) =

(
∂gm

∂λ

)
(λ, u) +

u2 + D2

D
eu(λ) · e′

w(λ)

(
∂gm

∂u

)
(λ, u). (28)
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3.2. The reconstruction formula

For reconstruction, we used the fan-beam filtered-backprojection (FBP) formula that was
suggested in Noo et al (2002). This formula yields the following regularized version of f (x):

f̂ (x) = 1
4π

∫

&

dλ
(a(λ) − x) · ew(λ)

∫ ∞

−∞
duhH(u∗(λ, x) − u)

Dg′
m(λ, u)√

D2 + u2
(29)

where

u∗(λ, x) = −D
(x − a(λ)) · eu(λ)

(x − a(λ)) · ew(λ)
(30)

and where hH(u) is an apodized version of the Hilbert transform kernel, namely

hH(u) =
∫ 1

2%u

− 1
2%u

−i sign(ν) ei2πνt dt = 1 − cos(πu/%u)

πu
. (31)

By construction, f̂ (x) converges toward f (x) in L2 norm (i.e., in the root mean square
difference) when %u converges toward zero, provided f (x) is a square-integrable function.

The implementation of (29) was performed using the fast Fourier transform (FFT) to
compute the convolution in u, and using the trapezoidal rule (Johnson and Riess 1982) with
linear interpolation in u for discretization of the backprojection integral (i.e., the integral in
λ). When computing the convolution in u, the samples were shifted by (%u)/2 in u; doing so
was previously shown to be useful in terms of resolution and aliasing errors (Noo et al 2003).

3.3. The circular trajectory

The first trajectory we considered was a circle of radius R = 300 mm centered on the origin.
We selected λ as the polar angle, and thus a(λ) = [R cos λ,R sin λ] with & = [0, 2π).
From (27), this choice yields eu(λ) = [− sin λ, cos λ] and ew(λ) = [cos λ, sin λ], so that
equation (28) becomes

g′
m(λ, u) =

(
∂gm

∂λ

)
(λ, u) +

u2 + D2

D

(
∂gm

∂u

)
(λ, u). (32)

Reconstructions of the conventional Shepp–Logan phantom (Kak and Slaney 1988) were
performed in this geometry, from 501 projections defined with %λ = 2π/501,%u = 1 mm
and D = 300 mm, and using ε = 0.001 for the new scheme. Figure 3 shows the reconstruction
of the whole phantom on a grid of 512 × 512 square pixels of side 0.4 mm, while figure 4
shows a profile through a reconstruction that was zoomed on the three little ellipses in the
lower part of the phantom. The pixel width for the zoom was 0.1 mm, and the profile was
taken along the line going through the center of the ellipses. We see that in this geometry
(i) the direct scheme causes a dramatic loss in resolution compared to the other schemes, (ii)
the split chain-rule scheme offers some improvement over the blended chain-rule scheme,
and (iii) for the selected ε, the new scheme performs as well as the split chain-rule scheme
without doubling the computational effort. The impact of ε on resolution is illustrated later, in
section 3.6.

3.4. The ellipse-shaped trajectory

The second trajectory we considered was an ellipse centered on the origin, with half-axes
A = 360 mm and B = 240 mm. We selected λ as the pseudo-polar angle, so that
a(λ) = [A cos λ,B sin λ] with & = [0, 2π). Consequently, from (27),{

eu(λ) = η(λ)[−A sin λ,B cos λ]

ew(λ) = η(λ)[B cos λ,A sin λ]
(33)
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Figure 3. Reconstruction of the Shepp–Logan phantom from fan-beam data on the circular source
trajectory. (Top left) The direct scheme. (Top right) The split chain-rule scheme. (Bottom left)
The blended chain-rule scheme. (Bottom right) The new scheme with ε = 0.001. The grayscale
is compressed on the interval [1.012, 1.032].
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Figure 4. Reconstruction of the Shepp–Logan phantom from fan-beam data on the circular source
trajectory. Plot along the line y = −13 cm. (Top left) The direct scheme. (Top right) The split
chain-rule scheme. (Bottom left) The blended chain-rule scheme. (Bottom right) The new scheme
with ε = 0.125.
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Figure 5. Reconstruction of the Shepp–Logan phantom from fan-beam data on the ellipse-shaped
source trajectory. (Top left) The direct scheme. (Top right) The split chain-rule scheme. (Bottom
left) The blended chain-rule scheme. (Bottom right) The new scheme with ε = 0.125. The
grayscale is compressed on the interval [1.012, 1.032].

and

g′
m(λ, u) =

(
∂gm

∂λ

)
(λ, u) +

u2 + D2

D
ABη2(λ)

(
∂gm

∂u

)
(λ, u), (34)

where

η(λ) = 1/
√

A2 sin2 λ + B2 cos2 λ. (35)

Note that these equations reduce to those for the circle trajectory when substituting R for both
A and B.

Testing with this trajectory was performed with the Shepp–Logan phantom, using the
same reconstruction grid and the same values for %λ,%u and D as for the circular trajectory4,
and using ε = 0.125 for the new scheme. The results are displayed in figures 5 and 6. We
observe here that both the direct scheme and the blended chain-rule scheme performs poorly,
with the result by the latter being worse due possibly to a problem of resolution differences
between the two terms in (34). The split chain-rule scheme performs much better but not as
well as the new scheme, as it also suffers some resolution matching problems, as can be seen
around the boundaries of each object that form the phantom.

4 The source–detector distance was thus independent of λ.
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Figure 6. Reconstruction of the Shepp–Logan phantom from fan-beam data on the ellipse-shaped
source trajectory. Plot along the line x = 0 cm. (Top left) The direct scheme. (Top left) The split
chain-rule scheme. (Bottom left) The blended chain-rule scheme. (Bottom right) The new scheme
with ε = 0.125.

3.5. The square-shaped trajectory

The third and last trajectory we considered was a square of side 2R = 480 mm, which we
parametrized as follows:

a(λ) =






[R, λ − R] if λ ∈ [0, 2R)

[3R − λ,R] if λ ∈ [2R, 4R)

[−R, 5R − λ] if λ ∈ [4R, 6R)

[λ − 7R,−R] if λ ∈ [6R, 8R).

(36)

Thus, λ plays the role of a coordinate along each side of the square, and the source follows
this square clockwise with initial position at [R,−R]. In this parametrization, vectors eu(λ)

and ew(λ) are independent of λ along each side of the square, so

g′
m(λ, u) =

(
∂gm

∂λ

)
(λ, u). (37)

Reconstructions using this trajectory were performed using the Shepp–Logan phantom as
in the two previous cases. A total of 125 projections uniformly distributed along each side of
the square was used with%u = 1 mm, D = 300 mm and ε = 0.125. Figures 7 and 8 show that
in this case the split chain-rule scheme performs poorly compared to the new scheme. Note
that, due to the form of (37), the split chain-rule scheme reduces here to the direct scheme,
while the blended chain-rule scheme can only perform worse because of the averaging step
that is embedded in it.
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Figure 7. Reconstruction of the Shepp–Logan phantom from fan-beam data on the square-shaped
source trajectory. (Left) The split chain-rule scheme. (Right) The new scheme with ε = 0.125.
The grayscale is compressed on the interval [1.012, 1.032].
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Figure 8. Reconstruction of the Shepp–Logan phantom from fan-beam data on the square-shaped
source trajectory. Plot along the line y = −13 mm. (Left) The split chain-rule scheme. (Right)
The new scheme with ε = 0.125.

3.6. Impact of ε on resolution and noise

In this section, the impact of ε on resolution and noise is illustrated using the FORBILD
thorax phantom. We simulated 501 projections of this phantom on the circular trajectory of
section 3.3 with R = 570 mm, D = 1040 mm, %λ = 2π/501 and %u = 1 mm. For this
simulation, we added the resolution-degradating effects of continuous x-ray emission, anode
angle, finite focal spot size and finite detector size, so as to show at the same time that the
new scheme is robust to these effects. The focal spot was divided into 3 × 3 subsources, each
detector pixel was divided into 3 × 3 subpixels, and each projection was obtained through a
combination of five subprojections uniformly distributed over the interval %λ. In total, each
value of gm(λ, u) was thus obtained as an (exponential) average of 405 line integrals. The
focal spot size was 1.2 cm × 0.9 cm and the anode angle was 7◦.

Reconstructions were performed on a grid of 420 × 450 square pixels of side 0.5 mm.
Since the phantom is almost symmetrical in x, these reconstructions were focused on the
region x ! 0. Figure 9 shows the results obtained with Poisson noise added to the data, using
the new scheme with four different values of ε and also using the direct scheme and the two



5406 F Noo et al

Figure 9. Reconstruction of the FORBILD thorax phantom from noisy fan-beam data on a circular
source trajectory. From left to right on the top row: groundtruth and reconstructions with the
direct scheme, the blended chain-rule scheme and the split chain-rule scheme. From left to right
on the bottom row: reconstructions with the new scheme, using ε = 0.24, ε = 0.12, ε = 0.05 and
ε = 0.0001. The grayscale is compressed on the interval [−60, 60] HU.

chain-rule schemes. The four values of ε were 0.24, 0.12, 0.05 and 0.0001. The Poison noise
addition was based on an emission of 150 000 photons per ray and a value of 0.0183 mm−1

for the tissue attenuation coefficient.
In figure 9, a small bright point can be seen within the lung. This bright point corresponds

to a cylinder of diameter 2 mm that was inserted at position x = −170 mm and y = 0 mm
to evaluate resolution. For each differentiation scheme, a noise-free reconstruction focused
on this cylinder was performed with a fine pixel size (0.005 mm), so that the full width at
half maximum (FWHM) of the cylinder reconstruction could be accurately evaluated in 51
angular directions, which were uniformly distributed over 360◦. The mean and the standard
deviation of this FWHM over the 51 directions are shown in figure 10 as a function of a noise
figure-of-merit that was defined as an ensemble average of the root-mean-squared error in a
2 mm wide annulus region 5 mm away from the cylinder center. The ensemble average was
obtained from 30 different noise realizations, using the same noise addition model as for the
images in figure 9.

Figures 9 and 10 together show (at least, for this particular study) that (i) the new scheme
is robust to resolution-degradating factors, (ii) the new scheme allows significant changes in
resolution and noise properties by varying ε, (iii) there exists a threshold value below which
reducing ε mostly increases noise without changing resolution, (iv) the new scheme yields a
fairly isotropic resolution across the whole range of possible values for ε, (v) the new scheme
can perform better than the other three schemes in terms of the chosen noise and resolution
figures-of-merit.

Figures 9 and 10 also show that the new scheme allows stable use of small values of ε
if desired. However, care must be taken regarding finite numerical machine precision. In
this experiment, we observed that using ε smaller than 10−9 was not practical. However,
differences in image quality were found to be marginal beyond ε = 0.0001. For example, the
maximum difference in the pixel values was below 0.33 HU between using ε = 0.0001 and
ε = 10−8.
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Figure 10. Resolution (FWHM) versus noise (RMSE) for the application of the new scheme with
various values of ε (see the circles and the indicated values of ε), for the application of the blended
chain-rule scheme (see the square) and for the application of the split chain-rule scheme (see the
star). For each point, the standard deviation bars indicate the amount of anisotropy in resolution.

4. Evaluation in cone-beam geometry

We have performed evaluations in CB geometry using the union of two curves for the source
trajectory: a circle of radius R and a segment of line attached orthogonally to this circle. This
source trajectory was suggested by Zeng and Gullberg (1992) and has been used many times
in CB tomography; see e.g., Kudo and Saito (1994), Kudo and Saito (1998), Noo et al (1998),
Katsevich (2004b) and Johnson et al (1998) for some application examples and associated
reconstruction algorithms. A single parameter λ could be used to parametrize the source
trajectory. However, this would unduly complicate the notation. Hence, we use different
parameters to describe each component of the source trajectory: λC for the circle and λL for
the line. In this geometry, it is natural to picture the object as being globally centered on the
axis orthogonal to the circle through its center; for application of the new scheme, we selected
this axis, which is called the z-axis below, to define the point-of-interest b(λ, α) from (26).

4.1. Circle data geometry

The circle was centered on the z-axis in the plane of equation z = z0, and the source position
on this circle was denoted as

a(λC) = [R cos λC, R sin λC, z0] (38)

with λC ∈ [0, 2π). Thus, λC is the polar angle in the (x, y)-plane. We assumed D(λC) was
independent of λC, and we selected eu(λC) along the tangent to the circle and ev(λC) along
the z-axis. Hence,






eu(λC) = [−sin λC, cos λC, 0]
ev(λC) = [0, 0, 1]
ew(λC) = [cos λC, sin λC, 0].

(39)
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For this particular geometry, the data are gm(λC, u, v), and from equations (15) and (39)

g′
m(λC, u, v) =

(
∂gm

∂λC

)
(λC, u, v) +

u2 + D2

D

(
∂gm

∂u

)
(λC, u, v) +

uv

D

(
∂gm

∂v

)
(λC, u, v).

(40)

4.2. Line data geometry

The line segment intersects the circle at x = [−R, 0, z0] and the source position on this line
segment was denoted as

a(λL) = [−R, 0, λL] (41)

with λL ∈ [zB, zT]. Thus, λL is a Cartesian coordinate, and the z-extent of the line segment
is controlled by two parameters, zB and zT, that give the z coordinate of the first and the last
source positions on it.

The distance D(λL) was assumed to be independent of λL, as in the circle case. Also, we
selected eu(λL) and ev(λL) to be identical to the expression of vectors eu(λC) and ev(λC) at
λC = π . Thus,






eu(λL) = [0,−1, 0]
ev(λL) = [0, 0, 1]
ew(λL) = [−1, 0, 0].

(42)

In this geometry, the data on the line segment are gm(λL, u, v), and from equations (15) and
(42)

g′
m(λL, u, v) =

(
∂gm

∂λL

)
(λL, u, v). (43)

Observe that in our notation there is no way to know if a(0) is a point on the circle or the
line. To avoid this ambiguity, an index L could be attached to g′

m(λL, u, v) and a(λL), thus
writing for example aL(λL) instead of a(λL) for the source position on the line. However,
since we never need to discuss the data or the source position at a specific λL, we omit this
notation burden. Hereafter, if λL is seen as a variable of some function, it should be understood
that this function refers to the line data, and the same with λC.

4.3. The reconstruction formula

For reconstruction, we decided to apply the general reconstruction scheme of Katsevich
(2003), using the weighting function Kudo and Saito suggested in Kudo and Saito (1994)
and Kudo and Saito (1998) for handling the redundancies in the 3D Radon domain. This
approach provides a theoretically-exact reconstruction technique that combines the efficiency
of Katsevich’s scheme to Kudo and Saito’s allowance of truncation in v, thus permitting
accurate reconstruction of a portion of a long object in z with x-ray exposure mostly limited
to this portion.

The reconstruction formula we obtained yields a regularized version f̂ (x) of f (x)

according to the following equation:

f̂ (x) = 1
4π

∫ 2π

0

gF(λC, u∗(λC, x), v∗(λC, x))

R − x · ew(λC)
dλC

+
1

4πD

∫ zT

zB

gF(λL, u∗(λL, x), v∗(λL, x))

R − x · ew(λL)
dλL (44)



View-dependent differentiation of CT data 5409

u=0

eu

ev

projection
of circle

detector object

backprojection
region

v1,4

v1,3

v1,2

v1,1

v1,0

Figure 11. Filtering lines for a source position along the line segment of the CB trajectory in
section 4. These lines are tangent to the projection of the circle and parametrized by their
intersection v1 with the axis u = 0 and by the sign e of their slope (see section 4.3). Five filtering
lines are illustrated here for both e = 1 and e = −1.

where

u∗(λC, x) = −D
(x − a(λC)) · eu(λC)

(x − a(λC)) · ew(λC)
(45)

and

v∗(λC, x) = −D
(x − a(λC)) · ev(λC)

(x − a(λC)) · ew(λC)
, (46)

while u∗(λL, x) and v∗(λL, x) are obtained through substitution of λL for λC in these
expressions.

The filtered circle data, gF(λC, u, v), in equation (44) are given by

gF(λC, u, v) =
∫ ∞

−∞
duhH

(
u∗(λ, x) − u

) Dg′
m(λC, u, v)√

D2 + u2 + v2
, (47)

where hH(u) is the Hilbert filter given in (31). Comparing equations (44) and (47) together
with formula (29), which was given in section 3.2 for fan-beam reconstruction, the first term
in (44) appears clearly as a 3D extension of (29) following the principles of the FDK algorithm
(Feldkamp et al 1984). Note that this extension was suggested by Yu and Wang (2004).

The filtered line data, gF(λL, u, v), in equation (44) may be described in various
ways. Here, we give a step-by-step description that is somewhat lengthy but reflects our
implementation.

Step 1. Apply a length-correction factor to get

gW(λL, u, v) = Dg′
m(λL, u, v)√

u2 + v2 + D2
. (48)

Step 2. Apply a Hilbert transform along lines in the detector plane that are tangent to the
projection of the circle component of the source trajectory. These filtering lines can be
parametrized by their intersection v1 with the axis u = 0; see figure 11. The result of this
step is

gT(λL, u, v1, e) =
∫ ∞

−∞
hH(u − u′)gW (λL, u′, v1 + cu′) du′ (49)

with

c = e
2
D

√
η(v1 + η), η = D

2R
(λL − z0). (50)
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Figure 12. Cone-beam reconstruction is tested using a version of FORBILD head phantom with
no ears and added disks. (Left) Slice x = 0.0 mm through the phantom; the z-axis is horizontal
and the broken vertical line indicates the position of the circle scan. (Right) Plot along the line
y = −0.1875 mm through the slice displayed on the left.

In this expression, e is meant to take only two values: +1 and −1. The value of e
defines thus the sign of the slope of the tangent line along which filtering is performed.
Equation (49) applies to any value of v1 such that η(v1 + η) " 0.

Step 3. Obtain gF(λL, u, v) as the difference of Hilbert transforms of gW(λL, u, v) along
the two lines that are tangent to the projection of the circle through (u, v):

if v/η > −(1 + u2/D2)

gF(λL, u, v) = gT

(
λL, u, v − c+u,

c+

|c+|

)
− gT

(
λL, u, v − c−u,

c−

|c−|

)
(51)

else gF(λL, u, v) = 0

where

c± = − 2η
D2

u ± 2
D

√
η2

D2
u2 + η(v + η). (52)

Note that variable e in gT allows accounting for the fact that the two tangent lines through
(u, v) are not always of opposite slope sign, that is c+ and c− can have the same sign or
opposite signs depending on the specific value of (u, v).

As in the fan-beam case, f̂ (x) converges toward f (x) in L2 norm when %u converges
toward zero and f (x) is a square-integrable function.

The implementation of (49) was performed using linear interpolation in v followed by an
FFT-based convolution, the computation of gF from gT in (51) was performed using bilinear
interpolation, and the backprojection integral in (44) was implemented using the trapezoidal
rule with bilinear interpolation in (u, v). Also, the variable v1 in gT was sampled with a step
%v, and the FFT-based convolution was applied with a half-pixel shift.

4.4. Results

The reconstruction formula was tested on CB data of the FORBILD head phantom with no
ears, to which we added four disks of height 6 mm, diameter 60 mm, and centered on the
z-axis at z = 45, 57, 69, 81 mm. There was thus a gap of 6 mm separating any two successive
disks. Figure 12 shows the slice x = 0 through the phantom and a profile through this slice.
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Figure 13. Reconstruction of slice x = 0 mm through the FORBILD head phantom with added
disks and no ears. In these images, the z-axis is horizontal. (Top row) Reconstructions using the
split chain-rule scheme. (Bottom row) Reconstructions using the new scheme with ε = 0.0001.
In each case, the left image is the result from using the circle-scan data only, while the right image
corresponds to using both the circle-scan and the line-scan data. The grayscale is compressed on
the interval [1.02, 1.08].

The circle was placed in the plane z = −40 mm, and the circle data were simulated for
1160 source positions with %λC = 2π/1160 and R = 570 mm. The line data were simulated
for 85 source positions, starting at zB = −290 mm with %λL = 8 mm. In each case, the
detector grid was defined with %u = %v = 1.5 mm.

Figures 13 and 14 illustrate the performance of using the new scheme against that of using
the split chain-rule scheme. The high sampling in λC was chosen so that little difference in
the contribution from circle data (the first term in (44)) could be expected between the two
schemes, and all major differences in final image quality could be attributed to processing the
line data. Clearly, the new scheme was much better at taking advantage of the line scan data
to remove the artifacts in the reconstruction from the circle data, even though the sampling
step on the line was larger than the distance between the disks.

5. Discussion and conclusion

We have developed a new scheme to perform the view-dependent differentiation that must be
applied to the data in various analytical reconstruction algorithms in FB and CB tomography.
This scheme was tested against two other published schemes in a number of scenarios. The
test demonstrated a strong robustness to variations in data acquisition geometry and view
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Figure 14. Plots along the line y = −0.1875 mm through slice x = 0 mm of the reconstructions
from circle-plus-line CB data shown in figure 12. (Left) Using the split chain-rule scheme. (Right)
Using the new scheme with ε = 0.0001.

sampling, unlike for the other two schemes. The test also demonstrated that the new scheme
is stable in the presence of data noise.

We make no claim that our new scheme is optimal, as we could only compare its
performance to a limited number of alternative schemes. However, at limited computational
effort, the new scheme seems highly competitive. The ability to adjust resolution through the
selection of parameter ε is furthermore an attractive feature that has not been seen in other
schemes.

It could be argued for the fan-beam experiments with the ellipse and the square that the
definition of the data with coordinate u = 0 at the orthogonal projection of the source onto
the detector plane is not practical, and that better results could be obtained with the chain-rule
scheme if the origin u = 0 was selected along the line that connects the source position to
the origin. This could be possible and was not tested. However, the important point is that
the new scheme is robust to this issue; the new scheme does not require a parametrization
of data that fits best the needs of the differentiation step. Furthermore, in the circle-and-line
CB geometry, our choice for the origin of (u, v) is reasonable. The independence of the new
scheme on changes in geometry from one source position to another is important for C-arm
imaging, as discussed in Hoppe et al (2006).

As we have seen, the new scheme relies on a specific definition for the point-of-interest
b(λ, α). For large objects relative to the source trajectory, it could be advantageous to split
the object into a number of contiguous regions and use different definitions of b for each of
these regions. However, at this stage, we have not met any case where doing so appeared to
be needed. Furthermore, it is tempting to think the new scheme would perform even better if
the implementation involved shifting the position of the projections by (%λ)/2. This option
was tested and was found to provide no additional gain.

Performance in resolution using the new scheme against the alternative of using integration
by parts (Katsevich (2002), Chen (2003b), Katsevich et al (2006), Yang et al (2006)) was not
evaluated. It could be that integration by parts still allows reconstruction with higher resolution.
However, we believe that any difference is most likely marginal. This topic is currently under
investigation.

The CB reconstruction example gives a warning in terms of unduly blaming projection
sampling for limited resolution in the reconstruction, as the sampling along the line segment
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(%λL = 8 mm) could have easily been argued to be too coarse to resolve the disks, which had
a thickness of 6 mm and were separated from each other by gaps of 6 mm. In fact, it was the
chain-rule scheme that was deficient in taking advantage of the given sampling conditions.

To our knowledge, the reconstruction algorithm we suggested for circle-plus-line CB
reconstruction is original. However, as explained, its derivation is straightforward from
results by Kudo and Saito (1994, 1998), and by Katsevich (2003). The experiment results we
obtained from computer-simulated data appeared quite good when using the new scheme for
data differentiation, and it will be interesting to see in the future this algorithm in action on
real data.
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