Fast GPU-Based CT Reconstruction
using the Common Unified Device Architecture (CUDA)

Joachim Hornegger!

Holger Scherl!, Benjamin Keck!, Markus Kowarschik?,

SIEMENS

I Institute of Pattern Recognition (LME), Universitat Erlangen-Nirnberg, Martensstr. 3, D-91058 Erlangen, Germany; {scherl, keck, hornegger}@informatik.uni-erlangen.de

2 Siemens AG, Medical Solutions, CO Division, Medical Electronics, Imaging, and IT Solutions, P.O.Box 3260, D-91050 Erlangen, Germany; markus.kowarschik@siemens.com

Motivation

 FDK method [1] Is the state-of-the-art re-
construction approach in cone-beam CT

* High computational complexity

* Prohibits its use for many medical applica-
tions without hardware acceleration

 Modern GPUs offer an iImmense computing
power (>345 Gflops)

e Innovative implementation of the FDK al-
gorithm on graphics accelerator hardware
from NVIDIA using CUDA

Method

The FDK method can be divided into three
steps.:

e Generate weighted projection data (cosine
welighting)

 Ramp-filter the projections row-wise

e Back-project the filtered projection data into
the volume

For short-scan reconstructions sinogram
weighting, e.g. Parker weighting, has to be
applied.

Implementation

* Pipelined approach
* Reconstruction Toolkit (RTK) [2]

* Pipeline stages for filtering and back-
projection share the same thread of execu-
tion

Filtering

 FFT-based convolution
e Usage of the CUFFT library from NVIDIA

* Process several projection rows simultane-
ously in one kernel

e Supports different convolution lengths

Back-Projection

 \Voxel-based back-projection [3]

e Use of projection matrices in order to deal
with non-ideal geometry

* Choose a grid configuration (Figure 2)

 Incremental implementation approach in y-
direction

e Optimize register usage (Figure 3)

— \\ \
volume —__ O\ X-ray

Figure 1. Perspective geometry of the C-arm device (the v-
axis and z-axis are not necessarily parallel) together with the
parallelization strategy of our back-projection implementation
on the GPU using CUDA (the x-z plane is divided in several
blocks to specify a grid configuration, and each thread of a
corresponding block processes all voxels in y-direction).

8.20

N
o)
o

N
o
o

N
N
o

Back-projection time [s]
£

N
o
o

32x8 64x1 64x2 64x4 128x1 128x2

Grid configuration

Figure 2. Execution time for different grid configurations.

I

Multiprocessor
warp occupancy
—_— —
N oo

b

0 4 8 12 16 20 24 28 32
Registers per thread
Figure 3. Dependency of the multiprocessor warp occupancy

on the register usage!. Our CUDA implementation uses only
10 reqisters.

Experimental Setup

e Host system equipped with Intel Xeon pro-
cessor (2.8 GHz, 4 GB main memory)

*NVIDIA GeForce 8800 GTX GPU (345.6
Gflops?, 128 stream processors, 1.35 GHz,
one multiply-add operation per clock cycle
per Stream processor)

e Best runtime out of five measurements

e Dataset consists of 414 projection images
e Projection size is 1024 x 1024 pixels
\Volume dimension is 512° voxels

lFigure created using the CUDA Occupancy Calculator v1.2 (.xIs) from Nvidia
21 Gflops = 1 Giga floating point operations per second

* \VVolume geometry chosen such that all vox-
els are contained inside the FOV

Results

* Execution time using our CUDA implemen-
tation on an NVIDIA GeForce 8800 GTX
board

Bilinear interpolation mode Is as fast as
nearest neighbor interpolation because of
special hardware support on the GPU

e Comparison to our optimized Cell imple-
mentation [4]

* Most important for on-the-fly-reconstruction
IS the number of processed projections per
second (pps)

Time [S] pps fps

Filtering
NVIDIA GeForce 8800 GTX (CUDA) 3.00 138.00
Cell processor 3.2 GHz (CBEA) 0.82 503.03

Back-projection

NVIDIA GeForce 8800 GTX (CUDA, NN/LI)
Cell processor 3.2 GHz (CBEA, NN)

Cell processor 3.2 GHz (CBEA, LI)

Data transfer (load projections / store volume)
NVIDIA GeForce 8800 GTX (CUDA) 1.07/0.89
Cell processor 3.2 GHz (CBEA) 0.00/0.00

Overall execution (filtering, back-projection and data tra nsfer)

NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 12.02 34.44 42.60
Cell processor 3.2 GHz (CBEA, NN) 13.60 30.44 37.64
Cell processor 3.2 GHz (CBEA, LlI) 24.04 17.22 21.30

7.06 58.64 72.52
11.85 34.94 43.21
20.99 19.73 24.40

Table 1: Execution time of filtering and back-projection using
nearest neighbor (NN) and bilinear interpolation (LI).

Conclusions

* Highly optimized implementation on NVIDIA
GPUs using CUDA

* Twice as fast compared to our optimized im-
plementation on the Cell processor [4]

* All required computations are hidden be-
hind the scan-time of the used C-arm de-
vice

e On-the-fly-reconstruction

Acknowledgments

This work was supported by Siemens Medi-
cal Solutions, CO Division, Medical Electron-
Ics, Imaging, and IT Solutions.

The trademarks within this publication are
those of the respective owners.

References

[1] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algo-
rithm. J. Opt. Soc. Amer., A1(6):612—619, 1984.

[2] H. Scherl, S. Hoppe, M. Kowarschik, and J. Hornegger. Design and im-
plementation of the software architecture for a 3-D reconstruction system
In medical imaging, 2008. submitted to IEEE International Conference on
Software Engineering.

[3] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and
W. Seissler. Enhanced 3-D-reconstruction algorithm for C-arm systems
suitable for interventional procedures. IEEE Transactions on Medical Imag-

Ing, 19(5):391-403, 2000.

[4] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and
J. Hornegger. Implementation of the FDK algorithm for cone-beam CT on
the Cell Broadband Engine Architecture. In J. Hsieh and M. Flynn, editors,
Proceedings of SPIE, volume 6510, San Diego, February 2007.



