
Fast GPU-Based CT Reconstruction
using the Common Unified Device Architecture (CUDA)

Holger Scherl1, Benjamin Keck1, Markus Kowarschik2,
Joachim Hornegger1

1 Institute of Pattern Recognition (LME), Universität Erlangen-Nürnberg, Martensstr. 3, D-91058 Erlangen, Germany; {scherl, keck, hornegger}@informatik.uni-erlangen.de
2 Siemens AG, Medical Solutions, CO Division, Medical Electronics, Imaging, and IT Solutions, P.O.Box 3260, D-91050 Erlangen, Germany; markus.kowarschik@siemens.com

Motivation

•FDK method [1] is the state-of-the-art re-
construction approach in cone-beam CT

•High computational complexity

•Prohibits its use for many medical applica-
tions without hardware acceleration

•Modern GPUs offer an immense computing
power (>345 Gflops)

• Innovative implementation of the FDK al-
gorithm on graphics accelerator hardware
from NVIDIA using CUDA

Method

The FDK method can be divided into three
steps:

•Generate weighted projection data (cosine
weighting)

•Ramp-filter the projections row-wise

•Back-project the filtered projection data into
the volume

For short-scan reconstructions sinogram
weighting, e.g. Parker weighting, has to be
applied.

Implementation

•Pipelined approach

•Reconstruction Toolkit (RTK) [2]

•Pipeline stages for filtering and back-
projection share the same thread of execu-
tion

Filtering

•FFT-based convolution

•Usage of the CUFFT library from NVIDIA

•Process several projection rows simultane-
ously in one kernel

•Supports different convolution lengths

Back-Projection

•Voxel-based back-projection [3]

•Use of projection matrices in order to deal
with non-ideal geometry

•Choose a grid configuration (Figure 2)

• Incremental implementation approach in y-
direction

•Optimize register usage (Figure 3)

detector

source
X-rayvolume

x

y

z

u

v

Figure 1: Perspective geometry of the C-arm device (the v-
axis and z-axis are not necessarily parallel) together with the
parallelization strategy of our back-projection implementation
on the GPU using CUDA (the x-z plane is divided in several
blocks to specify a grid configuration, and each thread of a
corresponding block processes all voxels in y-direction).

8.20

7.65

7.09
7.06

7.14

7.06

6.40

6.60

6.80

7.00

7.20

7.40

7.60

7.80

8.00

8.20

8.40

32x8 64x1 64x2 64x4 128x1 128x2

Grid configuration

B
a
c
k
-p

ro
je

c
ti

o
n

ti
m

e
[s

]

Figure 2: Execution time for different grid configurations.

0

6

12

18

24

0 4 8 12 16 20 24 28 32

Registers per thread

M
u

lt
ip

ro
c

e
s

s
o

r

w
a

rp
o

c
c

u
p

a
n

c
y

Figure 3: Dependency of the multiprocessor warp occupancy
on the register usage1. Our CUDA implementation uses only
10 registers.

Experimental Setup

•Host system equipped with Intel Xeon pro-
cessor (2.8 GHz, 4 GB main memory)

•NVIDIA GeForce 8800 GTX GPU (345.6
Gflops2, 128 stream processors, 1.35 GHz,
one multiply-add operation per clock cycle
per Stream processor)

•Best runtime out of five measurements
•Dataset consists of 414 projection images
•Projection size is 1024 × 1024 pixels
•Volume dimension is 512

3 voxels

•Volume geometry chosen such that all vox-
els are contained inside the FOV

Results

•Execution time using our CUDA implemen-
tation on an NVIDIA GeForce 8800 GTX
board

•Bilinear interpolation mode is as fast as
nearest neighbor interpolation because of
special hardware support on the GPU

•Comparison to our optimized Cell imple-
mentation [4]

•Most important for on-the-fly-reconstruction
is the number of processed projections per
second (pps)

Time [s] pps fps

Filtering
NVIDIA GeForce 8800 GTX (CUDA) 3.00 138.00
Cell processor 3.2 GHz (CBEA) 0.82 503.03

Back-projection
NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 7.06 58.64 72.52
Cell processor 3.2 GHz (CBEA, NN) 11.85 34.94 43.21
Cell processor 3.2 GHz (CBEA, LI) 20.99 19.73 24.40

Data transfer (load projections / store volume)
NVIDIA GeForce 8800 GTX (CUDA) 1.07 / 0.89
Cell processor 3.2 GHz (CBEA) 0.00 / 0.00

Overall execution (filtering, back-projection and data tra nsfer)
NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 12.02 34.44 42.60
Cell processor 3.2 GHz (CBEA, NN) 13.60 30.44 37.64
Cell processor 3.2 GHz (CBEA, LI) 24.04 17.22 21.30

Table 1: Execution time of filtering and back-projection using
nearest neighbor (NN) and bilinear interpolation (LI).

Conclusions

•Highly optimized implementation on NVIDIA
GPUs using CUDA

•Twice as fast compared to our optimized im-
plementation on the Cell processor [4]

•All required computations are hidden be-
hind the scan-time of the used C-arm de-
vice

•On-the-fly-reconstruction

Acknowledgments

This work was supported by Siemens Medi-
cal Solutions, CO Division, Medical Electron-
ics, Imaging, and IT Solutions.

The trademarks within this publication are
those of the respective owners.

References
[1] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algo-

rithm. J. Opt. Soc. Amer., A1(6):612–619, 1984.

[2] H. Scherl, S. Hoppe, M. Kowarschik, and J. Hornegger. Design and im-
plementation of the software architecture for a 3-D reconstruction system
in medical imaging, 2008. submitted to IEEE International Conference on
Software Engineering.

[3] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and
W. Seissler. Enhanced 3-D-reconstruction algorithm for C-arm systems
suitable for interventional procedures. IEEE Transactions on Medical Imag-
ing, 19(5):391–403, 2000.

[4] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and
J. Hornegger. Implementation of the FDK algorithm for cone-beam CT on
the Cell Broadband Engine Architecture. In J. Hsieh and M. Flynn, editors,
Proceedings of SPIE, volume 6510, San Diego, February 2007.

1Figure created using the CUDA Occupancy Calculator v1.2 (.xls) from Nvidia
21 Gflops = 1 Giga floating point operations per second


