
On-the-fly-Reconstruction in Exact Cone-Beam CT
using the Cell Broadband Engine Architecture

Holger Scherl, Stefan Hoppe, Frank Dennerlein, Günter Lauritsch, Wieland Eckert,
Markus Kowarschik, and Joachim Hornegger

Abstract—In medical imaging a high image quality is re-
quired. Exact cone-beam reconstruction algorithms, e.g. the M-
line method, provide excellent image quality without any cone
artifacts. Although the M-line approach is still of a filtered back-
projection style, it has an increased computational complexity
as it requires additional computations for the filtering of the
projection images, e.g. derivative computation and filtering along
oblique lines in the projection. In order to enable this new
reconstruction methodology in standard clinical scenarios we
implemented a highly performance optimized version on the
Cell Broadband Engine Architecture (CBEA). Our software
framework allows to compute the filtering and back-projection
in parallel to the data acquisition, making it possible to doan
on-the-fly-reconstruction. The achieved results demonstrate that
M-line reconstructions with our optimized Cell-based implemen-
tation are finished immediately after the last projection image
has been acquired by the scanning device.

Index Terms—Reconstruction, Computed Tomography, M-line
Method, Cone-Beam CT, Cell Processor, Cell Broadband Engine
Architecture

I. I NTRODUCTION

The theoretically exact M-line based reconstruction
method [1] totally resolves the problem of cone artifacts. In
the state-of-the-art FDK [2] the occurring cone artifacts may
cover small object details complicating their distinction. The
M-line approach could by applied for C-arm CT [3]. Due
to its requirement of a complete cone-beam data acquisition,
the source trajectory has to be extended to a short-scan
circle-plus-arc acquisition. With respect to computationtimes,
however, the improved image quality does not come for free.
In addition to the computation of a differentiated projection
image filtering is done along oblique lines. Thus, especially the
filtering of projections incurs much more computations to be
performed by the image reconstruction hardware. In this work,
we evaluate the performance of exact reconstruction methods
by means of the M-line approach on the Cell processor.

The novel CBEA [4], [5] introduced by IBM, Toshiba, and
Sony is a general-purpose processor consisting of a Power
Processor Element (PPE) together with eight Synergistic Pro-
cessing Elements (SPEs) offering a theoretical performance

H. Scherl, S. Hoppe and J. Hornegger are with the Friedrich-Alexander-
Universität Erlangen-Nürnberg, Department of ComputerScience, Institute of
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlangen, Germany.

F. Dennerlein is with the University of Utah, Department of Radiology
(UCAIR), 729 Arapeen Drive, Salt Lake City, UT 84108, USA.

G. Lauritsch and W. Eckert are with Siemens Medical Solutions, AX
Division, P.O.Box 1266, D-91294 Forchheim, Germany.

M. Kowarschik is with Siemens Medical Solutions, CO Division, P.O.Box
3260, D-91050 Erlangen, Germany.

of 204.8 Gflops1(3.2 GHz, 8 SPEs, 4 floating point multiply-
and-add per clock cycle) on a single chip. The PPE manages
the SPEs as resources for computationally intensive tasks.The
SPEs have only a small memory each (local store, 256 KB)
and are connected to each other and to the main memory
via a fast bus system, the Element Interconnect Bus (EIB).
The data transfer between SPEs and main memory is not
done automatically as is the case for conventional processor
architectures, but is under complete control of the programmer,
who can thus optimize data flow without any side effects of
cache replacement strategies.

In the following we consider the parallelized implementa-
tion and optimization of the M-line method and demonstrate
an on-the-fly-reconstruction while projection data are acquired.
Our implementation supports the case of a non-ideal data
acquisition and can thus reconstruct data sets from real C-
arm CT scanners. We also compare the achieved results with
our optimized CBEA implementation of the FDK method [6].

II. RECONSTRUCTIONALGORITHM

The task in image reconstruction is to recover the density
of an objectf(x) under examination provided a set of line
integrals

g(λ, θ) =

∫

∞

0

f(a(λ) + tθ)dt, (1)

where λ denotes the source trajectory parameter,a(λ) de-
scribes the corresponding source position andθ the direction
of the line. If we assume a flat panel detector located at a
distanceD from the current source position, each detector
value at coordinates(u, v)T refers to a line integral with line
direction

θ(u, v) = (ueu + vev − Dew) /
√

u2 + v2 + D2. (2)

Here, the detector coordinates are identified by two unit
normal vectorseu and ev and the coordinate origin(0, 0)T

is the orthogonal projection ofa(λ) onto the detector. The
vector ew = eu × ev points from the detector towards the
source position. To reconstruct a pointx inside the support
of the object with the M-line approach, the following steps
are applied successively. The computations are performed for
each trajectory segmentq, with λ−

q ≤ λ ≤ λ+
q , and

then all contributions are accumulated according to Formula
C (32) of [1]. Because other exact cone-beam reconstruction
algorithms, as e.g. [7], can be implemented in a similar way,
M-line specific steps are marked as such in the following. As

11 Gflops = 1 Giga floating point operations per second



can be seen only the rebinning steps had to be modified in
order to account for other filtering directions.

Step 1 - Filtering: Each projectiong(λ, θ(u, v)) is mod-
ified into a filtered projectiongF (λ, u, v) according to the
following steps:

F1 - Derivative: Compute the derivative ofg(λ, θ(u, v))
with respect toλ along a constant viewing directionθ

g1(λ, u, v) =
∂

∂λ
g(λ, θ(u, v))

∣

∣

∣

∣

θ=fix
, (3)

with θ defined in (2). This derivative is computed similar to
formula (87) of [8].

F2 - Cosine Weighting:Weight the data according to

g2(λ, u, v) =
D

√
u2 + v2 + D2

g1(λ, u, v). (4)

F3 - Forward Rebinning (M-line specific):Perform a
forward rebinning from detector coordinates(u, v) to filter
line coordinates(u, s), wheres identifies the slope of the filter
line, according to

g3(λ, u, s) = g2(λ, u, v(u, s)), (5)

where

v(u, s) = s(u − uM ) + vM . (6)

Here, all filter lines converge to the common point(uM , vM )T .
Consequently, each filter line is uniquely identified by its slope
and the mapping is reversible.

F4 - Hilbert Filtering: Perform a Hilbert transform with
respect tou by computing

g4(λ, u, s) =

∫ +∞

−∞

1

π(u − u′)
g3(λ, u′, s)du′. (7)

F5 - Backward Rebinning (M-line specific):In order
to achieve a computational more efficient back-projection,
we avoid the direct back-projection from the rebinned grid.
Instead we perform a backward rebinning from filter line
coordinates(u, s) to detector coordinates(u, v), according to

g5(λ, u, v) = g4(λ, u, s(u, v)), (8)

where

s(u, v) =
v − vM

u − uM

. (9)

F6 - π-Weighting: Performπ weighting according to

gF (λ, u, v) = m(λ, u, v)g5(λ, u, v). (10)

The functionm(λ, u, v) takes only values of one and zero and
should be understood as a 2-D weighting mask that accounts
for a correct handling of the back-projection segment for each
point x. It can be precomputed once after C-arm geometry
calibration as shown in [3] (Section VI).

Step 2 - Back-projection:Back-project the filtered pro-
jection gF (λ, u, v) into the image space to obtainf at each
point x = (x, y, z) according to

f(x) = −
1

2π

∫ λ+
q

λ
−

q

1

(x − a(λ))ew

gF (λ, u(λ, x), v(λ, x))dλ,

(11)
whereu andv are the detector coordinates ofx given by

u(λ, x) = −D
(x − a(λ))eu

(x − a(λ))ew

(12)

v(λ, x) = −D
(x − a(λ))ev

(x − a(λ))ew

. (13)

III. I MPLEMENTATION

We implemented the basic processing chain of the M-
line algorithm as a pipeline consisting of dedicated stages.
One pipeline stage is responsible for loading the projections
from the hard disk or over the network. As soon as a
projection is available it can be processed by the subsequent
pipeline stages. Our software framework extremely simplifies
the implementation of such a pipeline. All pipeline stages
are executed in parallel enabling on-the-fly-reconstructions in
real-time. The processing elements of the Cell processor are
utilized by dispatching the associated parallel processing of a
pipeline stage to a configurable number of SPEs. The PPE
acts as the dispatcher which divides the processing of the
considered pipeline stage into smaller tasks and assigns them
to the available processing units. To minimize the control
overhead we assign rather large tasks to the processing ele-
ments that further have to be divided into smaller tasks by the
processing elements themselves. We take special care to hide
any communication latencies via double buffering techniques
during the dispatching and computation process.

The only downside of our approach is that the mapping of
the available SPEs onto the pipeline stages is currently done
statically. This means that we have to decide how many SPEs
shall be used in each pipeline stage before program execution.
Assigning each filtering step (F1 to F6) a separate pipeline
stage and thus at least one SPE would result in not fully
utilized SPEs, which is a waste of computation resources.
Technically, we compiled all filtering steps in one pipeline
stage and one associated SPE program in order to circumvent
this problem. The dispatching PPE identifies each filtering task
via a special tag such that a filtering SPE can easily decide
which processing task should be executed. Fortunately, to-
gether with necessary data buffers the complete SPE program
fits into the local store, when temporary data buffers were
shared among the different filtering task implementations.The
PPE-side dispatching facility of the filtering pipeline stage
takes care of synchronization and load-balancing between
the individual filtering steps. Because of local store size
restrictions, the filtering and back-projection tasks, however,
had to be separated into two different pipeline stages and thus
also two different SPE programs.

An efficient implementation on the CBEA further requires
to choose a proper parallelization strategy for each part ofthe
algorithm that can deal with the limited local store size.



F1 and F2 - Derivative and Cosine Weighting:The
derivative computation is implemented in a row-based manner.
Several rows of the resulting derived projection are assigned to
an SPE at the same time. The SPE itself transfers the required
rows of each involved projection (our current approximation
of the derivative requires the considered projection together
with the previous and next projection) to its local store, before
performing the actual computations. Because the required
computations for the derivative and the cosine weighting
share a common factor we could easily combine the involved
computations in order to achieve more efficiency.

F3 - Forward Rebinning:The rebinning computations
could not be implemented in a line-based manner due to the
limited size of the local store. An efficient parallelization
strategy must further take into account that optimal sizes
for memory transfers on the Cell processor are multiples
of 128 bytes (32 single precision floating point values). We
therefore decided to partition the rebinned image into blocks
of 32×32 values. For each block the corresponding maximum
shadow in the projection image is obtained by applying the
rebinning equation to the four border values of a block (see
figure 1). Then we clip the resulting shadow with the detector
boundary and transfer the associated data from main memory
to the local store. After that the rebinning computations can
be applied on the chosen partition and the resulting values
can be transferred back to main memory. In order to avoid
communication overhead we let the dispatching PPE assign
several blocks to one SPE at the same time. The results are
saved to a temporary buffer allocated in main memory.

F4 - Hilbert Filtering: Again, we assign several pro-
jection rows to a filtering SPE at the same time. The SPE
processes simultaneously two rows by loading them into its
local store and performing the convolution based on the
fast Fourier transform (FFT) after adding the required zero-
padding. As we are dealing with real-valued input only we
can convolve two image rows simultaneously via computing
the complex 1D FFT followed by the multiplication of the
discrete Fourier transform (DFT) of the filter kernel and the
computation of the IFFT of the respective product. The DFT
of the spatial Hilbert kernel does only have imaginary parts,
which simplifies the complex multiplication.

F5 - Backward Rebinning:The backward rebinning step
is implemented using the parallelization strategy of the forward
rebinning step, in reversed order.

F6 - π-Weighting: For each projection the associatedπ-
weighting mask has to be initialized, e.g. by loading it fromthe
hard disk. In our current implementation we assumed that we
have enough bandwidth available for loading the mask images.
While most of the mask values have the same value (one or
zero), a very simple compression scheme, e.g. based on run-
length encoding would easily remove any possible bandwidth
limitations. Theπ-weighting step itself is easily parallelized
because it is nothing else than an element-wise multiplication
of two 2D arrays.

Step 2 - Back-projection:Since we moved all required
M-line specific operations out of the back-projection loop,it
was possible to use the same implementation approach for the
back-projection as in our highly optimized Cell-based FDK
implementation. For further details we refer the reader to [6].

Processing task Time [s] Percentage [%]

Derivative/Cosine Weighting 6.40 21.5
Forward rebinning 6.64 22.3
Hilbert Filtering 10.00 33.7

Backward rebinning 5.88 19.8
π-weighting 0.79 2.7

Total 29.71 100.00

TABLE I
PERFORMANCE RESULTS OF THE COMPLETE FILTERING WITHIN THE

M-LINE APPROACH USING ONESPE.

IV. RESULTS

We evaluated the performance of our implementation on a
Blade server board based on the Cell architecture. The board
comprises two Cell processors running at 3.2 GHz each as well
as 1 GB of main memory split across the two chips. The exe-
cution time of our M-line implementation was measured using
a data set consisting of600 projection images of1024×1024
pixels each. The number of projection images were500 on the
short-scan circle,50 on the upper arc segment and also50 on
the lower arc segment. The average number of filter lines per
projection image was 1071. To achieve computation times that
are not affected of field-of-view (FOV) handling strategieswe
back-projected the cone-beam projections under consideration
into a volume that is completely inside the FOV. Therefore,
we used a volume consisting of512× 512× 352 voxels with
a voxel size of0.313 mm3. During our measurements we
removed any outliers by taking only the best runtime out of
five measurements. Care was taken to exclude any influence
of other significant PPE or SPE workload of the system.
After the correctness of the implementation was verified, we
performed the measurements without doing the I/O transfers
for loading the projection and mask images from the hard disk
or over the network. This was necessary in order to achieve
runtime measurements that were not affected by I/O bandwidth
limitations of our current Cell Blade evaluation system.

In order to measure the execution time of each filtering step
separately, we instrumented our code with SPE decrementer
statements (performance counter on SPE side). Table I lists
the execution time for filtering all600 acquired projection
images of the complete acquisition using one SPE. We took
special care to avoid the influence from any other workload.
The Hilbert filtering amounts for more than 33 % of the overall
filtering computations. While it is implemented in the same
way as the filtering of our Cell-based FDK implementation [6]
the computing time of filtering increases by a factor of three
in the exact approach. Due to the random memory accesses
during forward and backward rebinning, the corresponding
computations are the most expensive ones. Usually there are
more filter lines than rows in the projection images. Becauseof
this reason the forward rebinning accounts for more processing
time in comparison to the backward rebinning,

During the validation of the performance of the over-
all pipeline execution (simultaneous, parallel executionof
filtering and back-projection in a pipeline) we used the
gettimeofday function on the PPE. This ensures that all
overhead during program execution (e.g., starting the SPE
threads) are included in the measurements. Table II shows



replacements
u

u

v

s

s

object

detector border

M-point

back-projection
region

Fig. 1. Principle of forward rebinning. The colored box of the rebinned filter lines (left) correspond to the bold filter lines in the colored box of the projection
(right). It is only required to rebin filter lines going through the back-projection region (see F6 for a definition).

Number of SPEs (filtering/back-projection)
using one Cell processor using two Cell processors

1/7 2/6 3/5 1/15 2/14 3/13 4/12

M-line (short-scan circle plus two arc segments)
Time [s] 33.25 30.05 35.24 31.20 17.38 14.64 15.61

pps 18.05 20.00 17.03 19.23 34.52 40.98 38.44
fps 10.59 11.71 9.99 11.28 20.25 24.04 22.55

FDK (short-scan circle only)
Time [s] 19.80 22.99 27.52 9.43 10.07 10.81

pps 25.15 21.66 18.10 52.81 49.45 46.07
fps 17.78 15.31 12.79 37.33 34.96 32.56

TABLE II
OVERALL PIPELINED EXECUTION OF THE FILTERING AND BACK-PROJECTION FOR THEM-LINE APPROACH AND THEFDK METHOD.

the achieved results for various configurations of used SPEs
for filtering and back-projection, respectively. For comparison
purposes we also computed FDK reconstructions with the
same SPE configuration using only the projection images from
the short-scan circle. We also give the number of projection
images that can be processed per second (pps). This number
is important because on-the-fly-reconstruction as demonstrated
in [6] can only be achieved when the reconstruction system
is able to process at least the same number of projections
per second than the scanning device can deliver. Recent C-
arm devices achieve rates of 30 pps for 1k images. For
convenience, we also calculated the number of512 × 512
image slices, that can be reconstructed in one second (frames
per second, fps) as this number is often used in research for
comparison purposes. One can see that, in contrast to the
FDK method, the reconstruction speed of the M-line method is
limited by the processing time of the SPEs used for the filtering
pipeline stage. Using only one Cell processor of our dual Cell
Blade two filtering SPEs and using both Cell processors even
three filtering SPEs are required in order to achieve optimal
performance. Otherwise the execution time is limited by the
back-projection performance, which is roughly comparableto
the one used in the FDK implementation. Both reconstruction
approaches, however, achieve on-the-fly-reconstruction using
both Cell processors.

V. CONCLUSIONS

We showed a parallelized and highly optimized implemen-
tation of an exact cone-beam reconstruction method on the
Cell processor. With our dual Cell Blade we can compute
an M-line reconstruction for a standard clinical scenario in

14.64 seconds (40.98 pps) using a short-scan circle plus two
arcs acquisition. This leverages high quality cone-beam CT
reconstructions on-the-fly, which means that we can hide all
required computations behind the scan-time of the used device.

We conclude that in flat-panel cone-beam CT (e.g., C-arm
devices), the CBEA is able to give advent to the exact cone-
beam reconstruction methods in practical scanning devices.

ACKNOWLEDGMENTS

This work was supported by Siemens AG, Medical Solu-
tions.

REFERENCES

[1] J. Pack and F. Noo, “Cone-beam reconstruction using 1D filtering along
the projection of M-lines,”Inverse Problems, vol. 21, no. 3, pp. 1105–
1120, 2005.

[2] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Amer., vol. A1, no. 6, pp. 612–619, 1984.

[3] S. Hoppe, F. Dennerlein, G. Lauritsch, J. Hornegger, andF. Noo, “Cone-
beam tomography from short-scan circle-plus-arc data measured on a C-
arm system,” inIEEE Nuclear Science Symposium Conference Record,
San Diego, 2006, pp. 2873–2877.

[4] Cell Broadband Engine Programming Handbook, 1st ed., IBM, 2006.
[5] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,
and K. Yazawa, “The design and implementation of a first-generation
CELL processor,” inIEEE Solid-State Circuits Conference, San Fran-
cisco, 2005, pp. 184–185.

[6] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and
J. Hornegger, “Implementation of the FDK algorithm for cone-beam CT
on the Cell Broadband Engine Architecture,” inProceedings of SPIE,
J. Hsieh and M. Flynn, Eds., vol. 6510, San Diego, February 2007.

[7] A. Katsevich, “Image reconstruction for the circle-and-arc trajectory,”
Physics in Medicine and Biology, vol. 50, no. 10, pp. 2249–2265, 2005.

[8] F. Noo and D. Heuscher, “Exact helical reconstruction using native cone-
beam geometries,”Physics in Medicine and Biology, vol. 48, no. 23, pp.
3787–3818, 2003.


