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Abstract. In this paper we present a fully automated approach to mul-
tiple sclerosis lesion segmentation in multi-spectral brain MRI data. The
proposed segmentation framework is based on the recently introduced
probabilistic boosting trees, which is a strategy for supervised learn-
ing. Foreground and background voxels are distinguished by considering
a 2D context surrounding the voxel of interest and its transformation
to a large set of Haar-like features. This allows for building a discrim-
inative model that captures class specific characteristics despite of the
well-known drawbacks of MR imaging. Training the model itself involves
two major steps: successively selecting and combining features that best
separate the training data by means of boosting and inductively group-
ing the resulting boosted classifiers in a tree structure. By applying the
equivalence of boosting and additive logistic regression the approach is
capable to derive a discriminative model for voxel classification in terms
of posterior probabilities. The final segmentation is obtained after post-
processing the preliminary result by stochastic relaxation and a standard
zero level set segmentation approach. The applicability of the proposed
method is demonstrated by quantitative evaluation within a leave-one-
patient-out cross-validation.

1 Introduction

Quantitatively assessing disease progression is a major concern in the case of
multiple sclerosis (MS)—a common neuropathological disease of young adults
that primarily affects cerebral white matter within the human brain. One of
the indices characteristic for the progression of the disease is lesion volume.
However, manual quantitative measurements on volumetric magnetic resonance
(MR) images suffer from substantial intra- and inter-rater variability [1], such
that providing accurate and reliable automatic segmentation tools to facilitate
valid MS lesion quantification is of enormous interest. Therefore, we propose
a knowledge-driven approach for MS lesion segmentation in multi-spectral 3D
brain MRI data based on the recently introduced [2] probabilistic boosting trees
(PBT).

2 Methods

In order to distinguish foreground, i.e. lesion, and background, i.e. non-lesion,
voxels within multi-spectral (FLAIR, T1, T2) MR volumetric data (408×512×19



and 408× 512× 21) without contrast enhancement we build a PBT in a similar
manner to [3] to derive a discriminative model in terms of posterior probabilities
for individual voxels from manually segmented training data. Subsequently in
the segmentation process, the results obtained by PBT are refined by stochastic
relaxation [4] and a standard zero level set approach from the Insight Segmen-
tation and Registration Toolkit (ITK, www.itk.org). The latter uses anisotropic
diffusion filtering [5] on one of the input images to obtain a feature image guiding
evolution of the zero level set. As the axial resolution of the input data is low
we restrict our approach to operate on down-sampled 2D axial slices (256×256)
without taking into account inter-slice voxel neighborhood relations. The overall
processing pipeline is depicted in Fig. 1.

Fig. 1. The proposed segmentation framework.

The framework’s first step PBT recursively groups boosted ensembles of weak
classifiers to a tree structure during learning from annotated data. When Discrete
AdaBoost [6] is chosen as the boosting strategy this resembles building a binary
regression tree as the final boosted classifier

H(x) =
T∑

t=1

αtht(x) (1)

generated within each inner node for a feature vector x through a weighted
combination of T ∈ N weak classifiers ht(x) with individual weights αt, t ∈
{ 1, . . . , T }, asymptotically approaches the additive logistic regression model [7]:

H(x) ≈ 1
2

ln
p(y = 1|x)

p(y = −1|x)
(2)

where y ∈ {−1, 1 } denotes the classification outcome. Therefore, at each inner
node v of the resulting PBT with strong classifier Hv and outgoing arrows r−1

v



and r1
v associated with the possible classifications an approximation of the overall

posterior probability p̃v(y|x) can be computed via the recursive formula

p̃v(y|x) = p̃β(r−1
v )(y|x) · e−2Hv(x)

1 + e−2Hv(x)

+p̃β(r1
v)(y|x) · e2Hv(x)

1 + e2Hv(x)
(3)

where β(r) denotes the node where arrow r ends. At leaf nodes a hard clas-
sification p̃v(y = −1|x) = 1 and p̃v(y = 1|x) = 0 or p̃v(y = −1|x) = 0 and
p̃v(y = 1|x) = 1 is returned.
For the purpose of classification it is tried to capture the structural variability
of foreground and background voxels by not only considering multi-spectral in-
tensity and gradient values but also, additionally, 17,472 Haar-like features [8]
computed on a 15 × 15 square centered at the voxel of interest. Those features
derived from a subset of the extended set of Haar-like feature prototypes [9] are
represented implicitly in memory by so-called “Integral Images”. This allows for
fast re-computation of the features with respect to a given voxel when actually
assessed.
For a given voxel i the posterior probabilities p(yi = 1|xi) and p(yi = −1|xi)
obtained by PBT that determine the segmentation are smoothed by stochastic
relaxation independently from the initial features used by PBT itself. For this
purpose the segmentation y is assumed to form a Markov random field (MRF)
with individual spatial priors

p(yi) = p(yi|yNi) = e−
β
2

P
j∈Ni

Vij(yi,ȳj) (4)

where Vij(yi, ȳj) denotes the two-elemented clique potential of the classification
yi at voxel i and the mean classification ȳj of a neighboring voxel j. In this
notation d(i, j) denotes the Euclidian distance. In our implementation we use 10
iterations of an algorithm similar to iterated conditional modes (ICM) [10] doing
mean field-like approximation to the true posteriors p(yi). The neighborhood Ni

considered for each individual voxel i is an intra-slice 8-neighborhood.

3 Material and Experimental Setting

For evaluation of the proposed method there were 6 manually segmented multi-
spectral MRI scans (FLAIR, T1, T2) of sizes 408× 512× 21 and 408× 512× 19
available. It takes less than five minutes to process one of the MRI volumes
in a non-optimized C++ implementation of our segmentation framework on a
Fujitsu Siemens Computers notebook equipped with an Intel Pentium M 2.0
GHz processor and 2 GB of memory. In fact, processing may be significantly
accelerated as soon as traversation of the learned PBT is properly restricted
by soft thresholding as originally proposed in [3]. Though, we currently rely
on complete traversation. The leave-one-patient-out approach was used to train
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Fig. 2. Segmentation results obtained by leave-one-out validation. The first row shows
selected slices of the FLAIR sequences of five different data sets. The second row shows
the associated segmentation result

Table 1. Performance indices obtained by leave-one-out validation for all of the ex-
amined data sets.

Dice Pearson Sens. Spec. PPV NPV

1 0.7338 0.7356 0.8014 0.9989 0.6767 0.9994
2 0.7509 0.7575 0.6578 0.9995 0.8746 0.9984
3 0.5602 0.5601 0.5220 0.9987 0.6044 0.9981
4 0.8570 0.8581 0.9371 0.9967 0.7895 0.9992
5 0.0000 -0.0001 0.0000 0.9995 0.0000 0.9998
6 0.4912 0.5067 0.3929 0.9997 0.6550 0.9990

six different classifiers from approximately 70,000 randomly selected training
samples, i.e. voxels inside the head of the patients, uniformly distributed over
all the input slices. The maximum number of features selected by AdaBoost
in each tree node were increased level-wise beginning with 1 at the root node.
The maximum depth of the trees learned was restricted to 10. For stochastic
relaxation β = 1.2 was chosen for empirical reasons. The settings for anisotropic
diffusion filtering and Laplacian zero level set segmentation were adopted from
ITK’s introductory example. With the hardware and implementation mentioned
above the duration of building one classification tree is about 12 hours.

4 Results

As can be seen from the quantitative results in Tab. 1 three of the six classifiers
reach a Dice coefficient of more than 70% on their test data set, two reach
about 50% and one fails with 0% due to the lack of significant MS lesions in the
associated data volume. However, for a fully automated approach volumetric



overlap of more than 50% can be considered a remarkable achievement. Figure
2 gives a visual impression of the segmentation results obtained.

5 Conclusion

The method for segmentation of MS lesions in multi-spectral 3D brain MRI
data discussed in this paper makes use of structural information by additionally
taking into account the context of a voxel for the purpose of classification. The
presented results show that by doing so supervised techniques like PBT can
be employed for MRI tissue classification even though they are usually—when
relying on individual voxel intensities only—considered inappropriate due to
the typically large inter-scan variations. This encourages further investigation
of medical image segmentation approaches based on boosting weak classifiers in
the sense of features from large sets of feature candidates. Future work involves
further assessment and refinement of the proposed method and investigation of
alternative structural features that can be used in the context of boosting.
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