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Abstract. In this paper we present a fully automated approach to seg-
mentation of the caudate nuclei in 3-D magnetic resonance images. It
is based on the technique of probabilistic boosting trees. As a strategy
for supervised learning it is capable to derive a discriminative model for
the distinction of object and non-object voxels from expert annotated
imaging data and rather rough anatomical prior knowledge provided by
a probabilistic anatomical atlas. Training the model involves successively
selecting and combining features that best separate the available training
samples, i.e., image voxels, and grouping the resulting boosted classifiers
in a tree structure. Most of the features used are taken from an intra-axial
2-D context surrounding the voxel of interest and its transformation to
a particular set of Haar-like features. The final segmentation is obtained
after post-processing the preliminary result by a fast marching approach
whose two speed images are seeded at the inner and outer bounds of the
object detected. This allows for adaptation to local edges close to the
initially detected object’s boundary. A detailed quantitative evaluation
critically reveals strengths and weaknesses of the proposed method.

1 Introduction

Fully automated segmentation tools both for pathologic as wells as non-pathologic
structures within the human brain serve as valuable components of clinical de-
cision support systems. Proper and reliable segmentation results are considered
critical for the automatic extraction of quantitative or more abstract findings
that are diagnostically relevant like, for example, the segmented objects’ volume
or their relative location, respectively. Those semantic features are, in a second
step, easily combined with other findings emerging from different examinations
a patient undergoes during diagnostics to form the input to integrated decision
support systems.

In the context of brain tissue classification within magnetic resonance (MR)
volume sequences segmentation of particular anatomical entities states a chal-
lenging problem for fully automated approaches: the distinction of deep gray
matter structures, like the caudate nuclei, and cortical gray matter based on
observed intensities only, is virtually impossible. Prior knowledge about the
anatomical composition of the human brain has to be integrated to guide the
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Fig. 1. The proposed segmentation framework.

segmentation process. Furthermore, segmentation methods need to be robust
with regard to the characteristic artifacts of the MR imaging modality: Rician
noise, partial volume effects, and intensity inhomogeneities.

The contribution of this work is a fully automated knowledge-based method
for delineation of both the right as well as the left caudate nuclei in 3-D brain MR
images that allows for fast and convenient segmentation of those two anatomical
structures. Our method consists of four major steps: First, the whole brain is
extracted from its surroundings with the Brain Extraction Tool (BET) [1]. Then,
in a pre-processing step, the observed intensities within the area that is detected
to be part of the brain itself are normalized to have zero mean and unit variance.
Subsequently, two probabilistic boosting trees (PBT) [2] are used in a similar
manner to [3] to classify individual voxels of the input data into foreground and
background with respect to the right and the left caudate nucleus. This step
also incorporates spatial knowledge about the typical location of the caudate
nuclei in brain MR scans taken from a probabilistic anatomical atlas. Finally,
a twofold fast marching approach that is seeded at the inner and outer bounds
of the detected objects is adopted as a post-processing step to better adapt to
local object edges apparent in the image. The inner and outer bound of the
object necessary for this operation are determined by means of mathematical
morphology. Experimental results on several previously unseen real-world data
sets demonstrate strengths and weaknesses of the proposed method. The overall
system block diagram is depicted in Fig. 1.

2 Methods

2.1 Probabilistic Boosting Tree

Our method’s main component PBT recursively groups boosted ensembles of
weak classifiers to a tree structure during learning from expert annotated data.
We have chosen Real AdaBoost [4] to be the boosting strategy within each
tree node. In this case learning a PBT resembles building a multivariate binary
regression tree as the final strong classifier

H(x) =
T∑

t=1

ht(x) (1)

20



generated within each inner node for a feature vector x through a combina-
tion of real-valued contributions ht(x) of T ∈ N weak classifiers asymptotically
approaches the additive logistic regression model [4]:

H(x) ≈ 1
2

ln
p(y = +1|x)
p(y = −1|x)

(2)

where y ∈ {+1,−1 } denotes the classification outcome. Therefore, at each inner
node v of the resulting PBT with boosted strong classifier Hv there are current
approximations of the posterior probabilities

qv(y = +1|x) =
e2Hv(x)

1 + e2Hv(x)
(3)

and

qv(y = −1|x) =
e−2Hv(x)

1 + e−2Hv(x)
. (4)

While training the classifier, those probabilities are used to successively split
the set of training data relative to the prior probability pv(y = +1) associated
with the current training (sub-)set into two new subsets. The soft thresholding
parameter ε > 0 sees to pass on training samples x that are close to the current
node’s decision boundary, i.e., if qv(y = +1|x) ∈ [(1−ε)pv(y = +1); (1+ε)pv(y =
+1)], to both of the resulting subsets and associated subtrees. This differs from
the original formulation in [2] that did not explicitly take into account disparities
of positive and negative examples within the training (sub-)sets available at
each tree node. Apart from that [2] contains a detailed discussion of the overall
learning procedure.

During classification the values for qv(y = +1|x) are used to guide tree
traversing and combined propagation of posteriors in order to get final approxi-
mations p̃v(y|x) of the true posterior probabilities pv(y|x) at each tree node v:
For outgoing arrows r−1

v and r1
v associated with the possible classifications the

approximation p̃v(y|x) can be computed via the recursive formula

p̃v(y|x) =


p̃β(r−1

v )(y|x) : qv(+1) < (1− ε)pv(+1)
p̃β(r+1

v )(y|x) : qv(+1) ≥ (1− ε)pv(+1)∑
i p̃β(ri

v)(y|x) · qv(i|x) : otherwise
(5)

where β(r) denotes the vertex where arrow r ends.

2.2 Discriminative Features

In order to adequately capture discriminative knowledge about image voxels the
features used in our method origin from two categories:
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Fig. 2. From left to right, a sagittal, coronal and axial slice from a a subject in the
adults BWH group (top), one in the elderly UNC group (middle) and one in the
pediatric UNC group (bottom). The outline of the reference standard segmentation is
in red, the outline of the segmentation of the method described in this paper is in blue.

The by far largest fraction of feature values in the feature vector xi asso-
ciated with a given image voxel i state 2-D Haar-like features [5] computed on
an intra-axial 2-D context surrounding the voxel of interest. They are derived
from a subset of the extended set of Haar-like feature prototypes by [6] and are
represented only implicitly in memory by so-called (Rotated) Integral Images.
This allows for fast re-computation of the features with respect to a given voxel
when they are actually assessed. Mainly due to combinatorial complexity we did
not consider 3-D Haar-like features and furthermore restricted on 2-D Haar-like
features whose centers are aligned with the center of the context considered.
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All Dataset Overlap Err Volume Diff. Abs. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

UNC Ped 10 70.8 56 8.4 0 4.2 0 6.6 6 23.6 30 18
UNC Ped 14 89.8 44 -52.2 42 7.1 0 9.0 0 22.6 34 24
UNC Ped 15 47.3 70 -7.5 63 2.0 32 3.2 42 12.2 64 54
UNC Ped 19 69.9 56 -51.9 26 4.7 0 9.9 0 46.6 14 20
UNC Ped 30 64.4 60 -11.8 8 4.8 0 10.5 0 43.8 13 16
UNC Eld 01 83.2 48 183.8 0 15.5 0 24.0 0 66.4 0 10
UNC Eld 12 83.7 47 175.2 0 17.4 0 25.6 0 70.6 0 9
UNC Eld 13 82.4 48 130.3 0 29.7 0 39.3 0 77.3 0 10
UNC Eld 20 88.5 44 178.1 0 27.5 0 36.8 0 87.1 0 9
UNC Eld 26 84.5 47 235.0 0 17.3 0 25.5 0 71.6 0 10
BWH PNL 16 46.3 71 -10.4 70 1.9 30 4.6 18 33.6 2 38
BWH PNL 17 31.6 80 -8.3 86 1.3 54 4.1 26 34.6 6 50
BWH PNL 18 58.8 63 -37.1 39 3.2 0 6.1 0 26.1 24 25
BWH PNL 19 48.2 70 -41.4 28 2.5 20 5.5 13 34.2 6 28
BWH PNL 20 47.3 70 41.8 26 1.7 38 3.6 34 33.3 5 35
BWH PNL 21 36.5 77 -21.8 62 2.3 14 6.5 0 38.9 0 30
BWH PNL 22 50.7 68 -22.3 61 2.3 14 5.2 6 35.2 2 30
BWH PNL 23 33.5 79 10.2 67 1.0 64 2.3 60 17.0 50 64
BWH PNL 24 27.2 83 -4.1 75 0.6 78 1.3 77 11.2 67 76
BWH PNL 25 58.7 63 -5.5 79 4.3 0 8.3 0 37.0 0 28
BWH PNL 26 49.0 69 -38.2 39 2.2 31 4.2 28 23.0 32 40
BWH PNL 27 26.0 84 -8.4 86 1.5 44 5.0 11 34.1 0 45
BWH PNL 28 37.6 76 2.5 74 2.6 5 6.7 0 31.3 8 33
BWH PNL 29 43.6 72 -6.3 50 1.9 30 3.8 34 21.8 36 44
Average All 56.6 64 26.6 41 6.6 19 10.7 15 38.9 16 31
Average UNC Ped 68.4 57 -23.0 28 4.6 6 7.8 10 29.7 31 26
Average UNC Eld 84.5 47 180.5 0 21.5 0 30.2 0 74.6 0 9
Average BWH PNL 42.5 73 -10.7 60 2.1 30 4.8 22 29.4 17 40

Table 1. Results of the comparison metrics and corresponding scores for all test cases
averaged for the left and right segmentation. The summary rows at the end of the table
display the overall average across all test cases, as well as grouped for the three testing
groups.

The second category of features consists of the three voxel indices in patient
space and the voxel’s probability to be part of the caudate nuclei. The latter is
taken from a probabilistic anatomical atlas [7] which is roughly registered with
the current patient data set by aligning orientations and image centers. This
approach might seem brute force on the first sight, yet boosting asks for weak
classifiers, i.e., individual features in our case. Further, there are certain quality
standards for medical image acquisition such that the image region where the
anatomical object that is about to be segmented appears in the final image
underlies at least rough regularities.
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2.3 Segmentation Refinement

As depicted in Fig. 1 the segmentation obtained from PBT needs to be smoothed
to get an acceptable final result. In our approach this is done by means of an
adversarially seeded fast marching approach: Two speed images are computed
assigning detection times to every voxel relative to two sets of seed points. For
that the current volume is interpreted as a graph where each voxel becomes a
node with connectivity to its six spatially nearest neighbors. The resulting edges
between voxels i and j are assigned edge weights

wij = e‖xi−xj‖1 (6)

where xi and xj denote intensity values of a median filtered version (index radii
rx = 1, ry = 1, and rz = 1) of the initial data. Starting with zero detection time
for the seed points the voxels’ detection times are determined by computing
shortest paths following the graph edges from the set of seed voxels to the voxels
of interest. One set of seed points is obtained by smoothing the current segmen-
tation with a binary median filter with index radii rx = 3, ry = 3, and rz = 3
from the Insight Segmentation and Registration Toolkit (ITK, www.itk.org).
After morphological erosion this gives a first estimate of voxels that are likely
to be inside of the object to segment. The second set of seed points is obtained
by morphologically dilating the current segmentation and selecting those voxels
that still remain part of the background, which gives an estimation of voxels
outside of the object of interest that are not too close to the object boundaries.
An adaptation to local image characteristics (edges and homogeneous regions)
of the initial segmentation is then achieved through assigning each voxel to that
region, i.e., foreground or background, for whoever’s seeds it is detected first.
Finally the resulting segmentation is again subject to binary median filtering
with slightly smaller index radii rx = 2, ry = 2, and rz = 2.

2.4 Processing Pipeline

The whole procedure used for segmentation of either the left or the right caudate
nucleus within a given MR volume data set is described in Algorithm 1.

Algorithm 1: Left/right caudate nucleus segmentation
Input: MR volume
Output: Binary voxel classification
Brain extraction;1.1

Re-sampling of input image to resolution suitable for PBT classifier;1.2

Normalization;1.3

PBT binary voxel classification;1.4

Re-sampling of classification to original image resolution;1.5

Adversarial fast marching;1.6

Binary median filtering;1.7
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Correl UNC Ped UNC Eld BWH PNL Total
Left 0.4183 0.5532 0.5223 0.4980
Right 0.1763 0.1045 0.0456 0.1088
Average 0.2973 0.3289 0.2840 0.3034

Table 2. Pearson correlation for the volume measurements in the three testing groups
as well as in total. This coefficient captures how well the volumetric measurements
correlate with those of the reference segmentations.

3 Material and Experimental Setting

For training and evaluation of the proposed method several volumetric T1-
weighted MR brain scans of varying spatial resolution and size from multiple
sources were used. The vast majority of data (29 scans) has been provided by
the Psychiatry Neuroimaging Laboratory (PNL) at the Brigham and Women’s
Hospital (BWH), Boston. They all are accompanied by expert annotations. The
other 20 data sets arose from several studies carried out mainly at the University
of North Carolina’s (UNC) Neuroimaging Laboratory (NIAL), Chapel Hill. The
studies contain a pediatric study, a Parkinson’s Disease study, and a test/re-test
study. For the latter no ground-truth was available. The training data for both
the classifiers for the right and the left caudate nucleus were taken from the
data sets provided by the BWH PNL (serial numbers 1–8). In this paper our
method is first of all quantitatively evaluated on the BWH PNL scans 16–29,
which are all considered to be routine scans, 5 of the pediatric scans, and 5 scans
of patients older than 55 years. (See Tabs. 1-3) Additionally, our algorithm was
tested on 10 datasets of the same young healthy person acquired within 60 days
on 5 different scanners. (See Tab. 4) The coefficient of variation of the volumetric
measurements is an indicator on how stable the method operates in a test/re-
test situation including scanner variability. We refer to [8] and [9] for details on
the used evaluation measures and scoring system.

The PBT voxel classifiers were built from approximately one million ran-
domly selected training samples, i.e., voxels inside the head of the patients, uni-
formly distributed over all the input slices of the training scans. The scans were
re-sampled to a voxel spacing of 1.0mm×1.0mm×2.0mm and size 256×192×128,
which was mainly due to hardware limitations that our implementation currently
faces. Since 2-D contexts of voxels that are very close to each other are likely to
be very similar only every second voxel in each of the three spatial dimensions
was considered for random selection. The maximum number of features selected
by AdaBoost in each tree node were increased level-wise beginning with 2 at
the trees’ root node. The maximum depth of the trees learned was restricted
to 10 and soft thresholding was turned off. The 2-D voxel context chosen for
computing the 1,908 Haar-like features used per individual voxel sample was of
size 61×61 centered at the voxel of interest.
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Test/Re-Test UNC 03 UNC 04 UNC 09 UNC 11 UNC 17 UNC 18 UNC 21 UNC 22 UNC 24 UNC 25 Mean Stdev COV
[mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [%]

Left 0 1301 0 0 1825 10692000 0 1060 1158 0 1069734 3380920 316.1
Right 2121 2160 512 671 4030 104 962 2783 2409 0 1575 1324 84.1
Total - - - 200.1

Table 3. The volumetric measurements of the 10 data sets of the same young adult
acquired on 5 different scanners within 60 days. The coefficient of variation (COV =
standard deviation / average, last column) indicates the stability of the algorithm in
a test/re-test situation including scanner variability.

It takes about 2–3 minutes to process one of the MRI volumes in a non-
optimized C++ implementation of our segmentation method on a Fujitsu Siemens
Computers notebook equipped with an Intel Pentium M 2.0 GHz processor and
2 GB of memory. Most of the computational cost is due to post-processing the
initial segmentation result obtained by the PBT. With the same hardware as
above building one classifier takes about 6 hours.

4 Results and Discussion

From the performance scores given in Tab. 1 it can be clearly recognized that
our algorithm suffers from significant over fitting mainly due to scanner specific
contrast characteristics. This may also eclipse potential over fitting to sub-group
dependent anatomical characteristics: segmentation results are, with minor ex-
ceptions, only acceptable for those data sets that come from the same routine
study as the training data. This can also be seen by examining individual seg-
mentations obtained by our method on representative scans from each of the data
sub-groups as in Fig. 2. As one of the results of this problem the performance of
our method in a test/re-test situation is poor. (See Tab. 3) The reliability of our
method when used for volumetric measurements can be estimated from figures
in Tab. 2. Due to the very low segmentation performance on the pediatric and
the elderly patient datasets associated correlation measures are not very expres-
sive. The observable positive association between volume measurements for the
left caudate nuclei in the routine data set is caused by, to some extent, regular
under-segmentation provided by our algorithm. However, there is little associa-
tion for the segmentations of the right caudate nuclei as our method seems to
arbitrarily over- and under-segment the object of interest in equal manner.

5 Conclusion

In this paper we have presented a fully automatic approach to segmentation of
the left and right caudate nuclei in 3-D MR images. The novelty of the pro-
posed method lies both in composition and pipelining of different previously
published methods as well as in the specific field of application. Experimental
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results show that acceptable results can be obtained very fast and without any
user-interaction if it has been possible to train the classifier on images that are
acquired with the same MR scanner and associated settings as those images that
are about to be segmented. The problem of over fitting to scanner and acquisi-
tion protocol dependent contrast characteristics currently present in the method
could possibly be weakened by the integration of more reliable MR inter-scan
intensity standardization approaches into the framework. Once the PBT shape
detection step has been improved this way, more sophisticated approaches to
refine the initial segmentation could be utilized. This may make the presented
knowledge-based PBT-approach for fast fully automatic segmentation of the
caudate nuclei a valuable tool in clinical practice.
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