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Abstract

 

—Active reconstruction of 3D surfaces deals with the control of camera viewpoints to minimize error
and uncertainty in the reconstructed shape of an object. In this paper we develop a mathematical relationship
between the setup and focal lengths of a stereo camera system and the corresponding error in 3D reconstruction
of a given surface. We explicitly model the noise in the image plane, which can be interpreted as pixel noise or
as uncertainty in the localization of corresponding point features. The results can be used to plan sensor posi-
tioning, e.g., using information theoretic concepts for optimal sensor data selection.
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INTRODUCTION

In the past, more and more areas in computer vision
gained advantages from active processing strategies,
which means that the sensor data is acquired in an
active, purposeful way. Examples are viewpoint selec-
tion for object recognition [1], actively control of the
focal length during object tracking [2], and sequential
sensor data selection for state estimation in general [4].

Besides these areas, up to now only a few
approaches are known that suggest active sensor data
selection for 3D reconstruction of surfaces and objects,
for example, for range image data [5]. Obviously, for
reconstructing the surface of an unknown object, the
viewpoints of the recorded images strongly influence
the resulting accuracy and robustness of the reconstruc-
tion. This observation is true, independent of the chosen
approach for 3D reconstruction (stereo, factorization
method, trifocal tensor). The quality mainly depends on
the surface normal, the ex- and intrinsic parameters of
the camera, and noise. So the question arises: is it pos-
sible to come up with a relationship between the
selected views and the error and uncertainty of the
reconstructed surface of an object? The long-term ben-
efit of such an approach consists in the possibility of
applying information theoretic methods for sequential
sensor data selection [4] to 3D reconstruction as well.
Towards that goal, in this paper we investigate the influ-
ence of the parameters of a stereo camera system on the
error in reconstruction of a surface, explicitly taking
into account the noise in the image acquisition and fea-
ture extraction process. To the best of our knowledge,
such an investigation has not been done before.
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The paper is structured as follows: first, we describe
the setup for 3D reconstruction using triangulation in a
normalized stereo camera system. Then we present a
mathematical development of the reconstruction error
in a simple 2D model, taking explicitly into account
noise in a one dimensional image plane. We map the
problem of optimal stereo positioning to an optimiza-
tion problem. This will be analyzed first, to get the opti-
mal focal length and the optimal baseline (translation in

 

x

 

 direction) in a normalized 2D stereo system. Further
we gradually generalize this model, firstly by rotations,
and secondly by translation in 

 

x

 

 and 

 

z

 

 directions. In this
simple case we can perform a partial analytical analy-
sis, but there are visibility assumptions which cannot be
fulfilled in real stereo systems. Therefore, we further
generalize to a 3D model with visibility constraints. In
this model, we cannot perform an analytical analysis;
therefore, we optimize the modifiable parameters by a
Monte Carlo simulation. The results will be compared
with the analytical results of the simple case. We
present experimental results and compare them with the
theoretical predictions, and conclude this paper with
prospects for future study.

PROBLEM OF 3D RECONSTRUCTION
USING A NORMALIZED STEREO SYSTEM

First, we explain what we understand by a normal-
ized stereo system: it consists of two cameras that share
a common orientation. Translation is possible only in
the 

 

x

 

 direction (cf. Fig. 1). The points 

 

O

 

l

 

 and 

 

O

 

r

 

 are the
optical centers. Each camera has its own coordinate
system, with the 

 

x

 

 and 

 

z

 

 axes indexed by “l” for left
camera and “r” for right camera. 

 

t

 

lx

 

 and 

 

t

 

rx

 

 are the trans-
lations of the cameras from the world coordinate sys-
tem. The norm

(1)t  := tlx trx– tlx trx–=
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is called the baseline. For the triangulation, we have to
know all camera parameters, i.e., the adjustable param-
eters (translation, focal length, and in the model with-
out normalization the rotations [11]), the constant
parameters (principal point, lens distortion, size of the
pixels in millimeters in horizontal and vertical direc-
tions, the angle between the image axes [11, 12]), and
the image coordinates. For real world data, distur-
bances occur, which results in a triangulation error. We
analyze if there is a configuration of adjustable param-
eters for which the error is minimal.

MODELING OF THE ERROR

There are many ways to model the disturbances and
measure the error. Here we will assume that there is an
error in one image plane (Fig. 1): the image coordinate
of the projection of point 

 

P

 

 is disturbed by the value 

 

ε

 

1

 

,
e.g., caused by a nonaccurate solution of the correspon-
dence problem. Hence, we select points in one image.
These points are treated as being exact. Then we search
for the corresponding points in the second image with a
point-tracking algorithm [3, 10]. Thus, errors are
assumed to occur only in the second image. We do not
specify a statistical distribution of the error, but we
model the maximal error, i.e., the worst case. Minimi-
zation of the error function means minimization of tri-
angulation error if the maximal error occurs. Further
on, the other parameters are assumed to be error free.
For simplicity, all 

 

y

 

 coordinates are set to zero, because
in the plane, the lines cannot be skewed. We define the
maximal error in the 

 

x

 

 direction to be 

 

±ε

 

1

 

 (cf. Fig. 1).
We define the error 

 

e

 

 as

(2)

where 

 

P

 

1

 

 and 

 

P

 

2

 

 are the triangulated points for the
error +

 

ε

 

1

 

 and –

 

ε

 

1

 

, respectively.

e P1 P2–
2
,=

 

An optimal 3D reconstruction means that we have to
minimize the error function 

 

e

 

 with respect to the free,
adjustable parameters of our stereo camera system. For
this, we have to derive the error function, i.e., to calcu-
late the coordinates of point 

 

P

 

1

 

, which is the intersec-
tion of the lines of sight 

 

r

 

 from the right camera system
and the disturbed 

 

l

 

l

 

 from the left (cf. Fig. 1). The linear
equation for 

 

r

 

 in the world coordinate system is

(3)

where (

 

x

 

P

 

,  0,  

 

z

 

P

 

) are the coordinates of 

 

P

 

 the world
coordinate system. With respect to the equations on
perspective projection with focal length 

 

f

 

l

 

, we can see
that the linear equation for 

 

l

 

l

 

 is

(4)

From equations (3) and (4) we calculate 

 

P

 

1

 

:

(5)

The coordinates for point 

 

P

 

2

 

 can be calculated in the
same way. Thus, for 

 

e

 

 we get

(6)

OPTIMIZATION OF FOCAL LENGTH
In our normalized stereo system, we can control

focal length as well as translations in 

 

x

 

 direction to
improve the 3D reconstruction, i.e., to minimize the
error function. If we modify any other parameter, the
stereo system is no longer normalized. If we ignore the
visibility, i.e., assuming infinite image planes, we can
analyze all parameters separately. First, we analyze the
influence of the focal length. Therefore, we differenti-
ate 

 

e

 

 with respect to the focal length 

 

f

 

l

 

:

(7)

We can show that for 

 

f

 

l

 

 ∈

 

] 0, 

 

z

 

P

 

ε

 

1

 

/(t

 

lx

 

 – 

 

t

 

rx

 

)[, the point

 

P

 

1

 

 lies behind the cameras. So the relevant interval for
the focal length is 

 

f

 

l

 

 

 

∈

 

]

 

z

 

P

 

ε

 

1

 

/(

 

t

 

lx

 

 – 

 

t

 

rx

 

), 

 

∞

 

[. For 

 

f

 

l

 

 > 

 

z

 

P

 

ε

 

1

 

/(

 

t

 

lx

 

 –

 

t

 

rx

 

), the first derivative is negative; i.e., the error func-
tion 

 

e

 

 is strictly monotonically decreasing and there is
no minimum. We conclude that for a real camera sys-
tem, the focal length should be chosen as large as pos-

r : xw

trx xP–
zP

----------------zw– trx,+=

ll : xw –
tlx xP–

zP

----------------
ε1

f l
----+⎝ ⎠

⎛ ⎞ zw tlx.+=

P1

tlx trx–( )zp f l

tlx trx–( ) f l ε1zP–
-----------------------------------------

–
tlx trx–( ) trx xP–( ) f l

tlx trx–( ) f l ε1zP–
----------------------------------------------- trx+⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

e
4 f 1

2ε1
2
zP

2
trx tlx–( )2

trx xP–( )2
zP

2
+( )

trx tlx–( )2
f 1

2 ε1
2
zP

2
–( )

2
-----------------------------------------------------------------------------------.=

∂e
∂ f l

-------

=  
zP

2 ε1
2

trx tlx–( )
2

trx xP–( )2
zP

2
+( ) trx tlx–( )2

f 1
2

zP
2 ε1

2
+( )

0.125 f 1
1–

trx tlx–( )2
f 1

2
zP

2 ε1
2

–( )
3

–
--------------------------------------------------------------------------------------------------------------------------.

z1O1

Or

trx

xwtlx

zw

+ ε1

r

P
P1

P2

zr

l2

l1

Fig. 1. Norm. Stereo system with errors by triangulation.
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sible, so that the object is just in the image, to improve
the 3D reconstruction. This is also true for more than
one point because the error function is then the sum of
all errors (6) and the sum of monotonically decreasing
functions is monotonically decreasing.

OPTIMIZATION OF BASELINE
(TRANSLATIONS IN x DIRECTION)

To minimize the error e, the gradient of e has to be
zero with respect to the translations tlx and trx, which are
given in a fixed world coordinate system. We get a non-
linear system of equations with fifth-degree polynomi-
als. This system of equations is generally not solvable
by radicals [7], so we try to find a minimum by numer-
ical optimization.

We search for a minimum with gradient descent
method. In Fig. 2 we plotted (tlx trx), shown by different
symbols for different initializations, and iterated 1000
times.

We observe that the translation trx converges to a
value near to zero and tlx becomes larger in each step.
The trajectories converge to an asymptote. It seems to
be the same asymptote for all tested initializations for
different values of zP , fl or εl; only for xP ≠ 0 it is shifted
by xP .

An already well-known result is that a larger base-
line is better than a smaller one. In general, for tlx 
∞, e becomes zero:

(8)

However, not only the length of the baseline is rele-
vant for reconstruction: e.g., for tlx = –trx = 100, e = 28.8
and for tlx = 110, trx = –10, e = 2.6, although in the first
case the baseline is twice as large. Further on, an infi-
nite baseline does not imply that e is zero:

(9)

So we conclude that in addition to the baseline, the
position between cameras and points is also an impor-
tant factor for 3D reconstruction.

e
tlx ∞→
lim 0.=

e
trx ∞→
lim 4ε1

2
zP

2
/ f l

2
.=

If we want to reconstruct more than one point, the
error is the sum of e for the coordinates of different Pi.
The problem is more complex, because each error for
one point depends on its coordinates (xPi, 0, zPi). We can
see in Eq. (6) that zPi has a strong influence on the value
of e. Thus, points with large z components result in a
large error and they therefore have more influence on
the minimization procedure.

OPTIMIZATION OF ROTATION
We now want to generalize the model of the normal-

ized stereo camera system, successively considering
rotations which can be realized in practice using pan-
and-tilt cameras. In our 2D model there is one rotation
parameter for each camera. Therefore, we introduce a
rotation about the y axis which is perpendicular to the
x–z plane in Fig. 1. If the error is only in one camera,
the rotation of the other is irrelevant. So we consider
only rotation of the left camera by an angle α. Then, the
error function is

(10)e
4ε1

2
a tlx xP–( ) αsin zP αcos–( )4

trx xP–( )2
zP

2
+( )

a
2

b c+( )2
–( )

2
--------------------------------------------------------------------------------------------------------------------,=

where

(11)

a trx tlx–( )2
f l

2
zP

2
,=

b ε1 zP αcos xP αsin+( )2
,(=

c ε1 tlx trx+( ) xP αsin
2

zP α αsincos+( )–=

+ tlxtrx αsin
2 ).

Differentiation of Eq. (10) with respect to α and
computation of the zero crossings is possible. Due to
lack of space, we have to omit the complicated deriva-
tion. We investigate the solution for fl = 1, P = (0 0 15),
ε1 = 1/2, tlx = 5, trx = –5. For α = 0 this is equivalent to
the configuration of Fig. 3. There are two minima in α1

= –1.89 and α2 = 1.25 (values in radian). For α1, P1 is
behind the camera. So the left camera must be rotated

–4

–8

–12

–16

–20

20 40 60 80 100 120 140

t rx

t lx

Fig. 2. Trajectories for translations: The initializations for
(tlx, trx) for the cross symbol is (20, –20), for the box it is
(20, –5) and for circle it is (100, –10), under the assump-
tions fl = 1, P = (0 15), ε1 = 1/2.
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counter clockwise by about 71°. Thus the camera
should not be rotated toward, but turned away, while the
object is in the image. The configuration with the
rotated left camera by about 71° is shown in Fig. 3. One
can see that the resulting triangulation error is less than
in the start configuration (cf. Fig. 3), but we can also see
that the configuration needs a large image plane if we
do not want to lose the image point from the field of
view. We will consider this problem in the generalized
model introduced below.

Minimization by camera rotation for more than one
point is similar to the case of translation: large values of
zP result in a large e. Therefore, points at a larger dis-
tance have more influence on the minimization proce-
dure and will bias the optimal solution for the rotation
angle.

OPTIMIZATION OF THE TRANSLATION
IN THE x AND z DIRECTIONS

Before we start our analysis for the completely gen-
eralized model, we want to look again at the translation
of the normalized stereo system, but now we also con-
sider translations in z direction. We have shown in the
above section that a large baseline decreases the result-
ing triangulation error. Now we want to investigate
whether the error also decreases if we modify the dis-

tance between the camera and the 3D point of the scene.
The error function e in this case is

(12)

where

(13)

and the four translation parameters tlx, trx, tlz, and trz are
as shown in Fig. 4.

Notice that if the translation in the z direction is
zero, we get the same error function e as in Eq. (6).

Furthermore, e depends of course on the focal
length (of the left camera), the error εl, and on the coor-
dinates of the 3D point P = (xP 0 zP). Following the
same argumentation as in the above section, we cannot
search for the minimum of the error function e analyti-
cally by searching for the zero of the derivative of e.

Therefore, we analyze the influence of the transla-
tion in the x and z directions by again using the gradient
descent method.

We start with different initializations of the four
translation parameters tlx, trx, tlz, and trz, and iterate 1000
times. We plotted (tlx, tlz) and (trx, trz) in Fig. 5, shown
by different symbols for different initializations. There
is a major difference to the above-mentioned case, in
which there was optimization only in the x direction:
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Fig. 3. The error of the start configuration (above) was decreased significantly by rotation of the left camera system (below),
although the error ε1 on the image plane is still the same.
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translation in the x direction changes quite slowly, even
for the left camera, but translation in the z direction of
the left camera is very large. Further on, the translations
of the left camera are larger than of the right.

The left camera moves in the z direction very close
to the 3D point, while the baseline remains quite con-
stant if we compare it with the case in which only the
baseline can be modified. This effect happens even if
the baseline is small in the initialization (cf. Fig. 5, box
symbol).

The right camera moves in the x direction again to
the value of xP (which is zero in Fig. 5). This is the same
behavior as in the former case. In the z direction it
moves slightly away from point P. The movement in the
x and z directions can be explained, because it keeps the
angle between the lines of sights of left and right cam-
era from becoming too obtuse.

INTERIM REMARKS

We now make some remarks on the previous results:
Our model was not a full 3D model, because we

neglect the y direction. Further, we assume that there is
an error only in one camera (above it is always the left
one). We modeled this error as an interval of uncer-
tainty and analyzed the worst case scenario. The effects
of each modifiable parameter were analyzed to give an
idea of the influence of each parameter, which were
focal length, baseline (translation only in the x direc-
tion), rotation, and translation in the x and z directions.
Of course, we cannot assume that optimizing the
parameters separately we will obtain a global optimum
for all parameters. Also, if we optimize one parameter
after the other, we get a problem that up to now we have
discussed only in brief: the problem of visibility,

because the image plane is not infinite, or points lie
behind the camera. For example, if we rotate the cam-
era to turn away, we may need a very large image plane
(cf. Fig. 3). If we increase the baseline in the configura-
tion of Fig. 3, the point lies even behind the camera. Of
course such configurations are not suitable for 3D
reconstruction. The advantage of this analysis is that we
can verify the results by plotting the configurations, and
we can measure the length of the line P1 P2. So we have

z1

+ ε1

l1

l2
P

P2

P1

r

O1tlz

tlx

trx

trz

xw

zw

Or

zr

Fig. 4. Translation in x and z directions for the left and right
camera system.
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Fig. 5. Upper: trajectories of the left camera for different
initializations (tlx, tlz): cross (20, 0); box (–2, 0), circle
(20, 5).
Lower: trajectories of the right camera for the initializa-
tions:
(trx, trz): cross (–20, 0); box (2, 0), circle (–20, 5)

The other under the assumptions are fl = 1, P = (0 15), ε1 =
1/2.
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verified the surprising result that turning the camera
away from the object can reduce the triangulation error.
Additionally, it allows us to derive analytical results for
rotation and focal length.

GENERALIZED MODEL

In the following part of this paper we will generalize
our model: Firstly we assume that we have a projection
from 3D space to the 2D image planes of the left and
right camera. Secondly, on the image planes the coordi-
nates are disturbed by additive normally distributed
noise, i.e.,

(14)

where xl is the x coordinate of the projected point P on
the image plane of the left camera; xlεylε, xrε and yrε are
the disturbed point coordinates; and

(15)

are independent normally distributed values.

Since we are now considering the 3D case, we usu-
ally get skewed lines of sight, which we have to take
care of during triangulation. As a consequence we get
very complicated integrals if we calculate the expected
value of the coordinates of the triangulated point. Thus,
we decided to use Monte Carlo simulation for our fur-
ther analysis.

Thirdly, we assume that the image planes are square
with side length s. Finally, we now use n points Pi , (i =
1, …, n).

MODELING OF THE ERROR

Similar to the simple model, we have to calculate an
error function e, which measures the triangulation error
of the n points Pi, given the intrinsic and extrinsic
parameters and specific values of ε1, ε2, ε3, ε4:

(16)

where Pi is the real 3D point,  is the reconstructed
point, f is the focal length, t is the translation vector, R
is the rotation matrix, subscript “l” denotes the left
camera, and subscript “r” denotes the right camera.

We could use Eq. (16) if we know the specific values
for the noise parameters ε1, ε2, ε3, ε4. However, we want
to model the error if the noise parameters ε1, ε2, ε3, ε4
are normally distributed. Therefore, we calculate the

xlε xl ε1, ylε+ yl ε2,+= =

xrε xr ε3, yrε+ xr ε4+= =

ε1 ε2 ε3 ε4 N 0 σ2,( )∼, , ,

e f l f r tl tr Rl Rr ε1 ε2 ε3 ε4, , , , , , , , ,( ) 1
n
--- Pi Pi*–

i 1=

n

∑=

Pi*

expected error  of Eq. (16) by a Monte Carlo simula-
tion with m samples and get

(17)

where ε1j, ε2j, ε3j, ε4j are m samples drawn from a nor-
mal distribution with zero mean and variance σ2. We
further assume that the variance σ2 is independent of
the intrinsic and extrinsic parameters.

To find the global minimum of Eq. (17), we have to
solve a minimization problem with 14 parameters (the
focal length, three translation and three rotation param-
eters for each camera) and some constraints (the 3D
points have to lie in front of the camera, and their pro-
jections must be in the image plane, which we defined
above as a finite square). We solve this optimization
problem with boundary conditions by a sequential qua-
dratic programming (SQP) method [6, 8, 9] as imple-
mented in the Matlab optimization toolbox.

In order to see how this generalized model relates to
the simple model, we first want to analyze the same
cases of modifiable parameters, i.e., focal length, base-
line (translation in the x and y directions), rotation, and
translation in x, y, and z direction. And last but not least,
we want to analyze the optimization process, if all
parameters are modified simultaneously.

The premises for the following Monte Carlo simula-
tions are as follows: 25 points, which lie in a plane (as
on a calibration pattern), should be reconstructed. We
use this setting because we will verify our real experi-
ments largely on a calibration pattern, which has two
advantages: firstly, there are no self-occlusions of the
object and, secondly, we get ground truth data in real
experiments. The distance of each point to its neighbors
on our virtual calibration pattern is 20 mm. The plane
of the calibration pattern is parallel to the x–y plane of
the world coordinate system at a distance of 500 mm
and the z coordinate goes through the center of the pat-
tern. The initializations of the camera parameters are

(18)

where I is the identity matrix. This configuration is
illustrated in Fig. 6.

For the field of view constraint we assume a square
image plane with a side length of 30 mm. Furthermore,
we assume that the errors ε1, ε2, ε3, ε4 are independent
and normally distributed with zero mean and variance.

e

e
1
m
---- e f l f r tl tr Rl Rr ε1 j ε2 j ε3 j ε4 j, , , , , , , , ,( )

j 1=

m

∑=

=  
1

mn
------- Pi Pi

j( )
– ,

i 1=

n

∑
j 1=

m

∑

tl 300 0 0, ,( )T
,=

tr 300– 0 0, ,( )T
,=

Rl Rr I,= =

f l f r 10,= =
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σ2 = 0.2 mm2. We repeat the Monte Carlo simulation
20 times and give mean and the variance of the
expected error . The mean of the expected error in this
start configuration is  = 14.1, the variance var( ) =
1.7 × 10–3. Additionally, the computation time is given
for one Monte Carlo simulation of each case. The sim-
ulation was done on an Intel Pentium 4 computer with
3.0 GHz and 1 GB RAM. The computation time is pro-
portional to the number of 3D Points Pi.

OPTIMIZATION OF FOCAL LENGTH

We now optimize only the focal length by using an
SQP method to solve the minimization problem with
constraints. The algorithm increases the focal lengths

e
e e

of both cameras, and in our configuration we get the
optimal values

(19)

These are the largest possible focal lengths, so that
the calibration pattern is still completely in the image.
The expected triangulation error  decreases from  =
14.1 in the initial configuration to  = 3.2, with a vari-
ance of var( ) = 5.9 × 10–5.

We conclude that the larger the focal length, the
smaller the triangulation error  in the general case.
The observation in the 2D case, i.e., to use a focal
length which is as large as possible so that the object is
still completely visible, can be confirmed with this 3D
experiment. Of course, the focal length is also bounded
by the physical limits of the cameras.

The computation time in this case is about 2 min.

OPTIMIZATION OF BASELINE
(TRANSLATION IN x AND y DIRECTIONS)

In the simple case, the result was that the camera
with errors on its image plane should be moved along
the x axis away from the object to increase the baseline,
while the camera without error should be moved close
to the z axis (in the special configuration).

Since we have now errors on both image planes, we
assume that both cameras behave like the left one in the
simple case and indeed we get the optimal solution for
the translation vectors

(20)

The error is  = 9.25, and its variance is var( ) =
6.7 × 10–4 at the end of the optimization process. The

f l f r 44.1.= =

e e
e

e

e

tl 1460 12 0, ,( )T tr 1460– 10– 0, ,( )T
.= =

e e

Fig. 6. Initial configuration for the Monte Carlo simula-
tions. The pyramids represent the cameras: the tip is the
optical center; the base is the image plane. The white lines
are the axes of the world coordinate system.
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Fig. 7. End configuration after optimization of baseline with the Monte Carlo simulation.
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end configuration is shown in Fig. 7. The computation
time in this case is about 8 min.

We notice that the baseline was increased (in the x
direction), until at least one point of the calibration pat-
tern lies at the edge of our image plane. We now discuss
why the baseline was not further increased in the y
direction either. To answer this question, we start with
another initialization of the translation vectors:

(21)

In this case we get the optimal translation vectors:

(22)

The error decreases from the initialization with  =
12.0 to  = 9.1 in the end position. So we see that the
error of the different initializations (18) and (21) is
quite large, but at the end position (20) and (22), it is
quite small. We assume that the error function is quite
flat in this region, so the numeric algorithm does not
optimize in the y direction.

We can verify this optimization result by starting
with

(23)

Indeed, we get the optimal solution at

(24)

and the error is  = 9.25. So this process is symmetric,
too (if we ignore the slight asymmetry because of
numerical inaccuracy).

So here we conclude that a larger baseline is better
than a smaller one and the camera should be translated
symmetrically to the object.

tl 300 300 0, ,( )T tr 300– 300– 0, ,( )T
.= =

tl = 1460 1460 0, ,( )T tr = 1460– 1460– 0, ,( )T
.

e
e

tl 0 300 0, ,( )T tr 0 300– 0, ,( )T
.= =

tl = 11 1460 0, ,( )T tr = 13– 1460– 0, ,( )T
,

e

OPTIMIZATION OF ROTATION

If we optimize the rotation angles, we still get a
result similar to the simple case. Like the optimization
of translation, again we have both cameras with noise
at the image plane and therefore we get a symmetric
result. The optimal rotation angles (cardan angles) are

(25)

where α is the rotation about the z axis, β about the y
axis, γ about the x axis, and the subscripts “l” and “r”
denote the left and right cameras, respectively. Figure 8
shows the configuration with the points on the calibra-
tion pattern and the rotated cameras.

Here again the result shows that the camera should
turn away and not towards the object as in the simple
case. The rotation about the z axis has no influence on
the expected error , because this causes only a rota-
tion of the image in the image plane. The error was
reduced to  = 2.7; the variance of  is var( ) = 1.6 ×
10–3. The computation time is about 18 min.

OPTIMIZATION OF TRANSLATION
(IN THE x, y, AND z DIRECTIONS)

We know from the simple case that the camera with
noise in the image plane should be translated as close to
the object as possible. Here in the generalized case we
get similar results for the translation vectors:

(26)

The slightly asymmetric solution is caused by
numerical inaccuracy. The error of this configuration is

 = 0.60, and its variance is var( ) = 7.9 × 10–4. The
computation time is 33 min. We can see again that the
prediction of the simple model, i.e., reducing distance
to the object, is true in the generalized case, too.

OPTIMIZATION OF ALL PARAMETERS

Last but not least, we analyze the simultaneous opti-
mization of all modifiable camera parameters. If we
start with the initial configuration (see above) we get an
error of  = 0.64. This must obviously be a local mini-
mum and not a global one, because if we optimize only
the translations, we get a value of  = 0.60.

Therefore, we start from the end positions of the
above results ((19), (20), (25), (26)). If we start from the
end position of the optimization of the translation

αl αr 0.77– 44°,–≈= =

βl βr– 0.73 42°,≈= =

γ l γ r– 0.01– 0.8°,–≈= =

e

e e e

tl 30.6 3.3 476.2, ,( )T
=

tr 28.7– 1.0– 477.1, ,( )T
.=

e e

e

e

Fig. 8. End configuration, if we optimize the rotations in the
generalized model. The cameras were turned away from
and not towards the calibration pattern.
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(Eq. (26)) we get an error of  = 0.48 (variance: var( )
= 9.4 × 10–2), and the optimal parameters are

(27)

However, we get the same error if we start the optimi-
zation of all parameters at the end position of the opti-
mization of the baseline (20), although we get slightly
different end positions:

(28)

Further, we can see that the function in this area is
quite flat, because the solutions (27) and (28) are not so
far away from each other and the error is approximately
equal. Therefore, the numerical optimization process
stops here.

We see here that the optimal position of the camera
is very close to the object and in the above case the rota-
tion is now toward the object. This is because without
these rotations, the object is not completely in the
image. The reduction of the error by turning the cam-
eras away seems to have less influence than the transla-
tion of the cameras to the object.

Last but not least, we allude to the fact that modify-
ing the focal length or the translation in the z direction
does not have the same effect: an object becomes larger
in the image if we increase the focal length or if we
move the camera nearer to the object. However, in the
first case, the angle between the lines of sight does not
change, and in the second one, it becomes larger. Due
to the fact that the angle is important for the triangula-
tion result, we can explain why the focal length was
only increased slightly in results (27) and (28).

The computation time in these cases is about
100 min.

The results of the presented cases in the generalized
model are listed in Table 1. Of course, if we can modify
all parameters, we get the smallest error, but the highest
computation time. Further, increasing the baseline
decreases the error, but in the other cases the error is
much more reduced. Therefore, the modification of the
baseline is not as important as rotation, focal length, or
translation in the z direction. This is why the baseline
even decreases if we only optimize translation in all
directions. Only the decreasing baseline allows move-

e e

tl = 51 0 461, ,( )T tr = 42– 1– 477, ,( )T
,

αl αr 0 0°,≈= =

βl βr– 0.39– 22°,–≈= =

γ l γ r– 0.0– 0.8°,–≈= =

f l 30 f r 38,= =

tl = 50 0 450, ,( )T tr = 50– 0 450, ,( )T
,

αl αr 0 0°,≈= =

βl βr– 0.0 0°,≈= =

γ l γ r– 0.0 0°,≈= =

f l 37 f r 37.= =

ment of the camera to the object without losing the
object from the image.

EXPERIMENTAL RESULTS

In this section we present experimental results to
show the influence of the adjustable camera parameters
on the quality of the 3D reconstruction. We took images
of a calibration pattern and a cube (cf. Fig. 9). We cali-
brated the cameras with the calibration pattern and
reconstructed 49 points on it (experiment 1). In this
case we can quantify the triangulation results based on
ground truth data.

We did this in experiments with a calibration pattern
for all theoretically analyzed combinations of modifi-
able parameters like above [focal length, baseline
(translation in the x and y directions), rotation, transla-
tion (all directions), and all parameters].

In Tables 2 and 3 we present the results for modify-
ing the focal length and the baseline. Further we recon-
structed for these two cases all seven visible corners of
the cube (cf. Fig. 9) and calculated the edge lengths,
which we compared with the true value (experiment 2).

Table 1.  Results of the Monte Carlo simulation. Of course,
if all parameters are modifiable, we get the best error, but the
highest computation time

var( ) Computa-
tion time

Initial configuration 14.1 1.7 × 10–3 –

Focal length modifiable 3.2 5.9 × 10–5 2 min

Baseline modifiable 9.25 6.7 × 10–4 8 min

Rotation modifiable 2.7 1.6 × 10–3 18 min

Translation (x, y, z
direction) modifiable

0.60 7.9 × 10–4 33 min

All parameters 0.48 9.4 × 10–2 100 min

e e

Fig. 9. Typical experiment image.
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In Table 1, the first value in each cell is the mean differ-
ence between the real and reconstructed points in
experiment 1. The second value is the mean difference
of the measured edge lengths and the correct one (60
mm) in experiment 2. Table 3 lists more values for
experiment 1 with the calibration pattern.

In the theory sections, we showed that if translation
or focal length increases, the error decreases. So the
largest errors are in the top left of Table 1, and the
smallest ones are in the lower right; however, in exper-
iment 2 there are 2 outliers (for ||t || = 63, fl = 1487 and
||t || = 201, fl = 1155). A possible reason for these outliers
is that detection of the points not on the top side of the
cube is quite inaccurate. However, if we ignore the out-
liers, we can see that the error decreases if the focal
length increases (cf. columns of Table 2) or the baseline

increases (cf. rows of Table 2). This verifies the theoret-
ical results in practice.

Next we presented our results for the rotation
parameters. As in the above considerations, a rotation
about the z axis has no influence on the position of the
minimum, and the rotation about the x axis should be
small. Therefore, we took images only by rotating
around the y axis from –5° until 5° by steps of 1° for
each camera. The results are presented in Fig. 10. We
see that the rotation has a strong influence on the trian-
gulation error, and turning the camera away decreases
the error if we ignore the outliers. If we turn the camera
towards the object, the error first increases, but, of
course, the error decreases again if we turn in this direc-
tion more and more.

Now we want to present our results for the optimi-
zation of translation in x, y, and z directions. As we saw
in the theoretical investigations, translation in z direc-
tion is important in addition to one in the x or y direc-

Table 2.  Experimental results for modifying baseline and
focal length (focal length is in pixels, the other values in
mm). The first value in each cell is the mean difference
between the real and reconstructed points in experiment 1.
The second value is the mean difference of the measured
edge lengths and the correct one (60 mm) of the cube in
experiment 2

||t || = 51 ||t || = 63 ||t || = 201 ||t || = 326

f1 = 763 6.8/28 4.5/25 1.5/9.9 1.0/5.6
f1 = 1155 1.1/13 1.0/8.3 0.4/2.2 0.3/2.3
f1 = 1487 0.8/0.8 0.6/0.11 0.3/0.73 0.2/0.4

||t || = 35 ||t || = 67 ||t || = 105

f1 = 771 1.86 1.44 1.11
f1 = 1070 1.72 0.98 0.95
f1 = 2400 1.42 – –
f1 = 2900 0.78 – –

Table 3.  A further experimental result for modifying base-
line and focal length (focal length is in pixels, the other val-
ues in mm). The value in each cell is the mean difference
between the real and reconstructed points in experiment 1
(reconstruction of a calibration pattern). In cells without a
value, the calibration pattern was not completely visible

||t || = 35 ||t || = 67 ||t || = 105

f1 = 771 1.86 1.44 1.11

f1 = 1070 1.72 0.98 0.95

f1 = 2400 1.42 – –

f1 = 2900 0.78 – –
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0
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Fig. 10. The error function for different rotation angles for
left and right camera. Again, left camera is turned away by
–5° and the right one is turned away by +5°.
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Fig. 11. The error depends on the baseline in a symmetric
configuration and on the distance to the object. If the base-
line was increased, the error decreases and if the distance to
the object was decreased, the error is also decreasing. In the
case, where the calibration pattern is partly out of the image
we set the error function to zero, because correct camera
calibration and thus triangulation is not possible.
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tions, and the respective third direction has less influ-
ence. Therefore, we analyze the influence of the x and z
directions in symmetric cases. As we see in Fig. 11, the
error is reduced if we decrease the distance to the object
and/or we increase the baseline—neglecting outliers in
the results.

CONCLUSIONS

It is obvious that for 3D reconstruction not every
recorded view is equally useful. We used a stereo sys-
tem for our analysis and specified on which parameters
the 3D reconstruction depends. There are unchangeable
parameters and parameters controllable by an active
vision system. The main question was what configura-
tion of parameters results in a good triangulation.

First, in a simple 2D model we analyzed the influ-
ence of each parameter separately, where we can per-
form a partial analytical analysis. We were able to ana-
lytically prove that the error is strictly monotonically
decreasing if the focal length increases. We also
showed that a large baseline decreases the error, but the
error also depends on the position between points and
cameras. We further analyzed the effects of rotations.
The result was that the camera should not turn to the
object, but away from it. The last adjustable parameters
in the simple case were the translation in the x and z
directions. Here we could see that decreasing the dis-
tance between camera and object decreases the error
and that the effect of increasing the baseline was
smaller.

We generalized this simple model to a 3D model
with visibility constraints and we assume errors for
both cameras. In these cases we cannot perform analyt-
ical analysis. We performed a Monte Carlo evaluation
instead, but the results of the simple case are conferra-
ble to the generalized one if we optimize the parameters
separately. Further, in the generalized case, we opti-
mized all modifiable parameters simultaneously, but we
may get only local minima of the error function. In gen-
eral this cannot be avoided, but we can compare the
results with the analytical cases of the simple model
and try to find a good initialization for the nonlinear
optimization process.

The presented model could also be used for different
kinds of modifiable parameters for special uses. One
example of use is a system of two zoom cameras
mounted on a pan tilt unit. Such a system may be fixed
in a room or mounted on a mobile platform. In each of
these cases, we can define the modifiable parameters
and start the optimization process.

In our future work we will try to determine the next
best view if there are some already given images. Also
we want to include the problem of visibility in the sense
of self-occlusion of objects, which is a very important
constraint in real applications. With these results we

will be able to apply an already approved framework
for optimal sensor data acquisition to the problem of
active 3D reconstruction.
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