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bstract

An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction
mages. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore
equired. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a
otion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by

valuating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while
aralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and
rame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block
atching performs much faster: the displacements of two 1024 × 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s

ith sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

Digital subtraction angiography (DSA) is the standard modal-
ty for visualizing human vasculature. This is achieved by ac-
uiring a sequence of 2D digital X-ray projection images, ac-
ompanied by the injection of contrast medium into the vessels
f interest. This sequence consists of a few contrast-free image
mask images) and mainly contrast-enhanced images (contrast
mages). In a successive step, one selected mask image is sub-
racted from each of the contrast images, so that the background
tructures are ideally masked out and only the vessels of interest
re displayed.

Obviously the background structures can only be removed
ompletely when they are aligned perfectly and have equal gray-
evel distributions. However, differences between images of a

ime sequence are often unavoidable, with patient motion being
he most important reason. Consequently, the subtraction im-
ges contain artifacts which could impact their diagnostic value
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onsiderably. Therefore, retrospective solutions [1–4] such as
mage registration are required, which retrieve a geometrical
ransformation accounting for the mismatches caused by patient

otion. The aim is to bring the mask and the contrast image in
ptimal spatial alignment prior to the subtraction.

In order to correct complex motions, motion compensation
pproaches must adapt to local deformations. Moreover, DSA is
eing increasingly applied in intervention, which requires fast
nd automatic methods. However, due to the computational com-
lexity of related techniques, this requirement has been hardly
atisfied. In fact, on many today’s DSA systems, motion arti-
acts are still corrected by a simple global translation in x- or
-direction (known as pixel shift), which yields seldom satisfac-
ory results.

The purpose of this paper is to find an automated, fast and
ccurate solution to correct motion artifacts in DSA. At first,
e examine a method explicitly designed to correct local de-

ormations in DSA images. In the remainder of this paper, this

ethod is referred as flexible pixel shift. Then, in search of a

aster computation, we implement a motion compensation algo-
ithm based on block matching on modern graphics hardware.
he comparison of these two implementations shows that both

mailto:deuerling.zheng@t-online.de
dx.doi.org/10.1016/j.compmedimag.2006.05.008
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mplementations are capable of detecting delicate local displace-
ents, as the hardware implementation performs much faster so

hat it can be used as an interactive tool in clinical routine.
The utilization of graphics hardware (Graphics Processing

nits, GPU) for motion compensation and image processing
as become a field of active research in recent years. We explore
n this paper the possibility and applicability of GPUs for a block

atching algorithm with a histogram-based similarity measure.
n this context, we are the first one who have mapped an opti-
izing search strategy for block matching on GPUs. More than

hat, we propose an innovative method to create histograms with
ertex texture and frame buffer alpha blending, which has solved
ne of the most difficult tasks in general-purposed computation
n GPUs.

In the following section, we characterize flexible pixel shift
nd block matching at the algorithmic level. In Section 3, we de-
cribe the GPU-implementation in detail. The application results
n several data sets acquired from various anatomical regions
re presented in Section 4. The results of a preliminary clinical
valuation are included as well. We finally end up with discus-
ion of the results and the conclusion.

. Motion compensation techniques for DSA

As mentioned in Section 1, both flexible pixel shift and block
atching are capable of detecting local motions in DSA. To this

nd, the displacement of a point is determined by moving it in
ts local neighborhood and searching for the maximal similarity.
he difference between these two approaches is, flexible pixel
hift moves only the point of interest with the given displacement
ector while the location of the neighborhood with respect to the
ntire image is fixed; the displacements of the remaining points

ithin the neighborhood are obtained via bilinear interpolation

Fig. 1(a)). Block matching assumes uniform displacement of
ll the points within the neighborhood, thus the whole block is
oved rigidly with the given displacement vector (Fig. 1(b)).

s
s
o
o

ig. 1. (a) Only the point of interest is moved, the position of its neighborhood with
n the neighborhood are obtained by bilinear interpolation. (b) The displacement of a
rea and optimizing a certain similarity function.
l Imaging and Graphics 30 (2006) 279–289

lock matching, also referred as template matching, has been
idely applied to detect motion in video images. Its application

n DSA can be found in [1,4,2].
Theoretically, flexible pixel shift is expected to yield more

ccurate estimates for the displacement of a single point, be-
ause the best match is calculated exactly by moving that point
lone. With block matching, the displacement of a control point
s approximately determined by the displacement of the entire
lock. In cases of delicate motions, this approximation works
nly when the block is small enough. However, smaller blocks
ontain little statistical information and may lead to unreliable
atching scores. On the other hand, patient motion involving

xactly one point as flexible pixel shift assumes, occurs seldom
n the real world. Instead, more pixels in the neighborhood are
ften involved.

In practice, block matching performs much faster than flexi-
le pixel shift. The reason is the large number of bilinear interpo-
ations which are necessary in flexible pixel shift even when the
imilarity is evaluated with integer displacements. On the con-
rary, bilinear interpolation is only computed in block matching
n two cases: (1) when searching the displacements with sub-
ixel precision (will be illustrated in Section 2.3), and (2) as
isplacements are only explicitly computed on selected control
oints, the displacement vector field of the entire image is ob-
ained via interpolation, otherwise artifacts could occur at the
lock edges. In spite of the differences mentioned above, these
wo approaches share common properties in many aspects which
re discussed in the following.

.1. Similarity measure

Both flexible pixel shift and block matching evaluate a

imilarity measure which determines the degree of corre-
pondence between region of interests. A distinct property
f DSA is the inflow of contrast medium into the vessels
f interest, which causes significant local variation of the

respect to the entire image is fixed. The displacements of the remaining points
point is estimated by moving a surrounding window rigidly in the local search
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ray level distribution. Most similarity measures proposed so
ar, assume constant gray level distribution and are conse-
uently not suited for DSA. A robust similarity measure against
his gray level variation must take statistical information into
ccount.

If the structures in two images are perfectly aligned, the sub-
raction image contains ideally only two different groups of in-
ensity values, one for the background and one for the contrast
nhanced vessels. This leads to two peaks in the probability
ensity function of the gray values in the subtraction image.
ccordingly, the gray value distribution of a block, which is a

ubset of the subtraction image, will contain either two peaks if
essels are present, or one peak if it consists only of background
tructures. The amount of the distribution dispersion correlates
hus tightly with the structural misalignment.

Generally, a measure quantifying the dispersion should sat-
sfy the following two requirements: (1) it assumes its extremum
hen the distribution is totally “flat”, i.e., all the entries give the

qual contribution; (2) it weights more clustering than disper-
ion. A well-known example is the Shannon entropy

ENT(d) = −
∑

i

p(i) log p(i), (1)

here d ∈ Z2 denotes a given displacement vector and p(i) de-
otes the probability distribution of the intensities in the sub-
raction image. The most straightforward way to resemble the
robability density function is to create a normalized histogram
(i) in which each entry is divided by the total number of entries∑I

i=−I H(i) = 1).
A generalized form of the Shannon entropy is the weighted
um of the normalized histogram entries

(d) =
I∑

i=−I

f (H(i)), (2)

t
(
r
d

ig. 2. (a) Full search: w denotes the search range. (b) Conjugate direction search: sear
eighbors. Then go to the direction of the point which has the best match. Search conti
hen repeat the search along the y-axis. The optimum found along the y-axis is the g
l Imaging and Graphics 30 (2006) 279–289 281

here f : R+ → R is a weighting function. Buzug and Weese
1] have proven that any differentiable, strictly convex or strictly
oncave function can be a suitable weighting function such that

(d) satisfies the above requirements. Further, they suggested
hat the energy of the histogram

EHD(d) =
I∑

i=−I

H2(i) (3)

s the most appropriate measure due to its relatively lower com-
utational cost while the computation accuracy is retained. Note
hat MEHD is to be maximized, whereas, MENT is to be mini-
ized.

.2. Search strategy

The similarity measure M(d) in Eqs. (1)–(3) is a function of
he displacement d. The optimal alignment is found by search-
ng for the extremal M(d). The robustness of the full search
s self-evident, because all the (2w + 1)2 positions within the
earch area are examined, w denoting the number of pixels in
oth search directions (Fig. 2(a)). It is however not a feasible ap-
roach due to high computational cost. A much more efficient
trategy is the conjugate direction search which is carried out
uccessively in n linearly independent conjugate directions, n
eing the number of variables in the objective function [5]. Fig.
(b) shows how the search is carried out in case n = 2.

The complexity of conjugate direction search with a step size
f one pixel can be easily derived: in the best case where the dis-
lacement is minimal, d = (0, 0), only five positions (the start-
ng position itself and its four neighbors) must be examined. In

he worst case where the displacement is maximal, d = (w, w),
2w + 3) positions must be examined. Thus, the complexity is
educed fromO(x2) by full search toO(x) andO(1) by conjugate
irection search.

ch starts along the x-axis. The starting point is compared with its two horizontal
nues along the x-axis until no improvement of the match score can be achieved.
lobal optimum.
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ig. 3. Sub-pixel precision: (a) original subtraction image, showing artifacts (
emain unchanged; (c) block matching with sub-pixel precision, artifacts are re

.3. Sub-pixel accuracy

Even sub-pixel misalignment can cause significant artifacts
n subtraction images. Therefore, the motion artifacts should be
orrected with sub-pixel precision. An example is shown in Fig.
. As digital images contain only information about the pixels lo-
ating at integer positions, interpolation is necessary. There exist
ainly two approaches to perform the interpolation: (1) interpo-

ating the similarity values calculated at integer displacements,
nd (2) computing the similarity values directly while shifting
n image for non-integer displacements. The first approach re-
uires the construction and analytical solution of a continuous
ivariate function, whereas, the latter approach can be achieved
y bilinear interpolation which is a built-in operation on the GPU
nd can be carried out in real time. Clearly, the latter approach
s preferred in our case.

It has been reported that a sub-pixel precision of 1/10 pixel
s sufficient for angiography images [6,2]. For the sake of effi-
iency, the search is usually carried out hierarchically, i.e., at
rst with integer precision, then with sub-pixel precision only in

he neighborhood where the optimal integer displacement was
ound. The complexity can be derived likewise as with integer
recision: nine positions in the best case (the starting point it-
elf, its four neighbors with integer precision and four neighbors
ith sub-pixel precision) and 2(wint + wsub + 2) + 1 positions

n worst case, wint and wsub being the search range for integer
nd sub-pixel precision respectively.

. Hardware implementation

.1. Programmable graphics hardware

The data parallelism in typical image processing algorithms
akes them well suited for the parallel pipelined architecture of

he GPUs. An efficient mapping of such algorithms onto graph-

cs hardware can thus lead to considerable performance gains
7–11].

A crucial aspect concerning image processing on the graph-
cs hardware is the texture memory and its associated access

p
e
o
m

ghted with arrows); (b) block matching with integer precision, most artifacts
.

perations. Textures are bitmaps of pixel colors, which are de-
igned to give 3D objects realistic visual complexity with little
eometric data. For the purpose of image processing the input
mages are usually loaded as textures onto the graphics card and
he results, the manipulated images, are written into textures as
ell.
Originally, textures were only bound to the pixel shader stage

nd random reading access to the texture memory (gathering) is
llowed, which encourages the use of textures as a general read-
nly memory, with texture coordinates as the memory address.
n fact, textures are widely used as general lookup tables to store
nformation other than pixel colors.

As gathering in the pixel shader is rather fast, the random writ-
ng access to the texture memory (scattering) was not supported,
ecause the pixel positions are determined by the hard-wired ras-
erizer and can not be changed in the later stages on the pipeline
ny more. The realization of scattering in the pixel shader would
hange the pipeline architecture substantially. This inflexibility
ad limited GPUs to be used more generally.

Fortunately, a new feature has been recently added to the
raphics processor, vertex texturing, which enables texture fetch
n the vertex shader stage and therewith allows the scatter-
ng. This feature is incorporated in Shader Model 3.0 and sup-
orted on GeForce 6 Series. It is possible now to implement
lgorithms where gathering and scattering are both required,
.g., sorting and histogram computation. This is also the key
eature we utilize to implement the histogram-based similarity
easures.

.2. Implementation

Block matching is an algorithm which fits the architecture
f parallel processors very well: the blocks are processed with
he same operations and independently from each other, poten-
ial performance gains can thus be achieved by parallelizing the

rocessing. As Kelly and Kokaram [12] have shown, it is more
fficient to shift all the blocks within the entire frame simultane-
usly and calculate the correspondence on a block basis. They
apped a full search block matching on the graphics hardware
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tion are listed in Table 1. The input images are given as 16-bit
unsigned short, which are loaded into a 16-bit fixed-point
Yu Deuerling-Zheng et al. / Computerized M

y passing the displacement vector as a global parameter to the
PU.
However, full search is computationally very intensive and

sually not feasible for interactive application. In order to take
dvantage of optimizing search strategies, each block must be
oved with an individual displacement vector while all the

locks are moved simultaneously. Our solution is to store the
ndividual displacement vectors in a texture which is used as a
ookup table. In order to avoid data transfer between CPU and
PU, this texture is stored on the GPU.
To further enhance the efficiency, we determine the displace-

ents (explicitly by means of block matching) only on selected
ontrol points defined by a regular grid. As shown in [2], a block
f 51 × 51 pixels yields a good compromise between compu-
ational cost and statistical reliability. In order to take all the
ixels into account, we define the blocks size as 64 × 64 pix-
ls. The DSA images have usually the dimension of 512 × 512
r 1024 × 1024, which ensures an exact decomposition of the
nput image into blocks.

As illustrated in Section 2, the displacement of a control point
s found by moving the respective block rigidly within the search
pace, i.e., all the pixels within the block are assumed to have
he same displacement. When this displacement is then mapped
niformly to all the pixels within that block to construct the fi-
al displacement vector field, artifacts at the edges between the
locks are likely introduced. To avoid this problem, the displace-
ents of the remaining points (non-control points) are obtained

y bilinear interpolation. A problem hereby is, while the blocks
re an exact partition of the image, the resulting displacement
ector field does not cover the entire image, because the control
oints locate within the blocks. This problem is solved by ex-
ending the current grid by one cell in both x- and y-directions
nd setting the displacement of the points on the borders to zero;
he points between are then interpolated.

The whole sequence is processed by fixing the mask image
nd registering the contrast image one after another with respect
o the mask image. Essentially, the motion compensation for an
mage pair is carried out with the following steps:

. Initialize a set of displacement vectors and similarity
scores R = {(di, si)}, i = 1, 2, . . . , N, N being the number
of blocks.

. Find the optimal displacement vectors following conjugate
direction search.
a. Calculate the difference image from the mask and contrast

images, whereby the i-th block (of the mask image) is
shifted with the corresponding displacement vector di.

b. Maximize the similarity score si = MENT(di) (Eq. (1)).
. Construct the final displacement vector field F (dk), k =

1, 2, . . . , M, M being the number of pixels. Obtain the mo-
tion compensated subtraction image by warping the mask
image with F.
.2.1. Histogram of differences
A histogram of an image or a portion of the image is usually

mplemented as an array, with the pixel intensities as the array

f
p

l Imaging and Graphics 30 (2006) 279–289 283

ndices. The input image is read pixel by pixel, and the corre-
ponding array element is incremented. Thereby both random
eading access and random writing access to the memory are
ecessary within one shader program. As illustrated in Section
.1, this was not realized until the appearance of vertex textur-
ng. Therefore, filling histogram was one of the toughest tasks
f the general-purpose computation using graphics hardware.

Our solution is illustrated as following: by projecting a 3D
cene onto a 2D plane, more vertices may be mapped to the
ame position, with both color and depth information contained
n a fragment. The final color of a pixel on the screen is the

ixture of all the fragments which are supposed to display at
he same position (alpha-blending). If all the input fragments
ave the same intensity and the alpha-blending function is set as
dditive, the frequency of the fragments can be retrieved from
he final intensity of the output pixel.

To this end, the difference image P is bound as a texture
o the vertex shader in order to scatter the pixels in P by their
ntensities. At first, a set V of vertices is firstly defined, with the
ardinality of V being equal to the number of pixels in P. Then,
e fetch for each vertex v in V the corresponding pixel1 p from
and change the position of v according to the intensity of p.

n particular, the intensity value and the block index of p are
ombined to build the x- and y-coordinates of v. As a result, the
ixels in P are scattered not only with their intensity values, but
lso with their block indices. Herewith the histograms for all the
locks are filled in parallel within one rendering pass.

.2.2. Similarity function
As illustrated in Section 2, the histogram based similarity

unction is a weighted sum over the histogram entries (Eqs. (1)–
3)), which are stored in a texture. To sum up the values in a
exture, the so called sum-reduce-operation is applied. Sum-
eduction is similar as progressive down-sampling of the texture
ver multiple passes, where in each pass a local sum of n × n

ixels of the source texture is written into one pixel of the target
exture. The image is “reduced” by a factor of n along each axis
ith each pass. For a image of N × N pixels, logn N passes are

equired. The global sum is finally written into a single pixel.
s reading from and writing into the same texture is not allowed
ithin one rendering pass, at lease two textures are necessary.
fter each pass these two textures are alternated (ping-pong
uffering).

.2.3. Precision of the computation
As graphics hardware of earlier generation supports only

xed-point arithmetic, the new superscalar architecture of
eForce 6 Series provides full 32-bit floating point accuracy,
hich enables computation with high precision in a much
roader range. The texture formats used in the implementa-
ormat directly. To store the difference image, a 32-bit floating-
oint format is used, because this texture will be bound to the

1 More accurately, an element of a texture is referred to as a texel.
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Table 1
Texture formats used in the implementation

Usage Size Precision Dimension

Input image 1024 × 1024 16-bit fixed-point 1
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Table 3
The image sequences used in the experiment and the corresponding computation
time to process the sequences

Type Number of
images (N)

Computation time (s)

Integer Sub-pixel

6800 GT 6800 6800 GT 6800

Head 21 7.20 8.86 10.23 13.26
Hand 20 6.89 8.76 8.98 11.10
Shoulder 18 6.28 9.17 8.74 11.95
Abdomen 39 12.74 15.12 17.79 22.06

Note that in each sequence the first image is the mask image and the remainder
a
n

a
E
t
i
b
i
i
p
r

o
i

(

(

c
l
i
t

5

Difference image 1024 × 1024 32-bit floating-point 1
Histogram 1024 × 256 16-bit floating-point 4
Displacement vector 16 × 16 32-bit floating-point 4

ertex shader. Vertex textures are required at a minimum to sup-
ort 32-bit floats, in order to handle large world and view spaces.
he histogram is stored in a 16-bit floating-point format (half)
hich is the only available floating format supporting alpha-
lending. The texture storing the displacement vectors and sim-
larity scores is of 32-bit floating point format, so that the highest
recision for the evaluation is guaranteed.

The 32-bit floating-point formats on GPUs follow the IEEE
tandard which is known as m23e8 format. This precision is usu-
lly sufficient for processing medical images which use 10–14
its for a pixel. The 16-bit half format on GPUs has 10 bits
or mantissa and 5 bits for exponent (m10e5). The number of
antissa bits dictates the precision. With 10 mantissa bits and
hidden bit, the half-format can only precisely represent 211

quidistant numbers, e.g., integers. The blocks in our implemen-
ation have the size of 64 × 64 pixels. In extreme cases that all
he pixels within a block have the same intensity value, the his-
ogram entry of this value is 212 which can not be represented
xactly with the half-format. However, this could only occur at
he image corners where no structural information is available,
ence the overall precision is not affected. By creating histogram
or a larger block, more consideration concerning the precision
s necessary.

The pixel depth of our input images is 12 bits, i.e., theoreti-
ally there exist 213 different intensity values after the subtrac-
ion. This necessitates 8192 bins to hold the possible histogram
ntries (by a bin size of 1). Luckily, the differences between the
ask and the contrast images are mostly in a very narrow range

round zero. In fact, we found out that 1024 bins are already
ufficient to compute the histogram in our case. The texture for
he histogram is thus of size 1024 × 256, storing histograms for
56 blocks with 1024 bins for each histogram.

. Experimental results

We tested our implementation on two graphics cards of the

vidia GeForce 6800 Series: 6800 and 6800 GT. The main fea-

ures of these two cards are listed in Table 2.
We applied our implementation on four data sets: shoulder,

ead, abdomen and hand. All data sets were acquired with an

able 2
VIDIA GeForce 6800 product lineup specifications

Key Features GeForce 6800 GT GeForce 6800

No. of pixel processors 16 12
No. of vertex processors 6 5
Memory type/amount GDDR3/256 MB GDDR/128 MB
GPU speed 350 MHz 325 MHz
RAM speed 1000 MHz 700 MHz

d
a
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r
l

l
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t

re the contrast images, thus (N − 1) image pairs are processed, N being the
umber of images in each sequence.

ngiography unit (AXIOM-Artis, Siemens Medical Solutions).
ach data set consists of a sequence of 1024 × 1024 images with

he first image as the mask image and the remainder as contrast
mages. The pixel depth is 12 bits while 16 bits are allocated. The
lock size is 64 × 64 pixels, accordingly an image is partitioned
nto 16 × 16 blocks. The displacement is computed with both
nteger (search step = 1 pixel) and sub-pixel (search step = 1/10
ixel) precision, where the search range is ±10 and ±0.5 pixels,
espectively.

Figs. 4–7 show the results of applying our implementations
n the four given data sets. Each of these figures consists of four
mages, labeled with (a)–(d) and arranged as following:

(a) original subtraction image,
b) block matching with integer precision (implemented on

GPU),
(c) block matching with sub-pixel precision (implemented on

GPU),
d) flexible pixel shift (implemented on CPU).

The number of images in each sequence, the corresponding
omputation time required to process the whole sequence are
isted in Table 3. The computation time includes reading the
mage sequence from the main memory and transferring it to
he GPU.

. Clinical evaluation

To evaluate the effectiveness of our implementations, two ra-
iologists were asked to rating the images in Figs. 4–7. To avoid
ny bias in the ratings, the images were presented to the radiolo-
ists in a completely blinded manner: the type of the correction
as kept unknown to the observers and the evaluation was car-

ied out independently by the two radiologists. The ratings are
isted in Table 4.

A reliable statistical analysis was not carried out due to the
imited sample size. However, the total score in Table 4 indi-
ates that by given a larger sample, the block matching with

oth integer and sub-pixel precision could improve the image
uality significantly and their effects are comparable with those
f flexible pixel shift. With sub-pixel precision we have shown
hat our approach can correct weak artifacts accurately (Fig. 3).
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ig. 4. Digital subtraction angiogram of the right upper arm with injection in
highlighted with solid arrows and ellipse). These are reduced considerably by
lexible pixel shift (d) yields comparable results. The arrows in (d) show the ar

n the other hand, these artifacts do not impact the diagnostic
alue of the subtraction images that much. Sometimes, radiolo-
ists prefer weak artifacts so that they can be used as landmarks.

t is worth noting that processing with only integer precision
s much faster (3 frames/s) than that with sub-pixel precision
2 frames/s), which encourages its wide application as an inter-
ctive tool in the clinical routine.

b
p

able 4
esult of clinical evaluation

Shoulder (Fig. 4) Head (Fig. 5)

Original subtraction (4, 3) (4, 4)
CPU (1, 1) (1, 1)
GPU integer (3, 2) (3, 3)
GPU subpixel (2, 4) (2, 2)

he ratings of two independent radiologists are presented as (r, s), where r and s stand
cores 1–4, with 1 being the best and 4 being the worst image quality.
ubclavian artery. The original subtraction image (a) contains strong artifacts
matching with integer precision (b) and further with sub-pixel precision (c).
at the boundary between the actual exposure area and the homogeneous area.

. Discussion

.1. Motion compensation accuracy
The relatively stronger artifacts (Figs. 4 and 5) caused mainly
y the displacements of bones are removed considerably by ap-
lying all the implementations, whereas, the relatively weaker

Abdomen (Fig. 6) Hand (Fig. 7) Total

(3, 2) (4, 3) 27
(4, 4) (1, 2) 15
(2, 1) (3, 1) 18
(1, 3) (2, 4) 20

for the first and the second radiologist, respectively. The images are rated with
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Fig. 5. Cerebral DSA, venous phase. The original subtraction image (a) contains strong artifacts caused by the displacements of independent moving structures:
the solid arrows point to the artifacts caused by movement of the skull and the cervical spine, the stippled arrow point to the artifacts caused by movement of the
c oves t
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w
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lavicula. Block matching with both integer (b) and sub-pixel precision (c) rem
he clavicula are still present. Flexible pixel shift (d) yields similar results. The a
he homogeneous area.

rtifacts (Fig. 3) remain by block matching with integer pre-
ision. In Figs. 5 and 6, the artifacts are only partly removed,
ith both block matching and flexible pixel shift. This is be-

ause the artifacts are caused by the displacement of structures
hich are overlapped to each other, e.g., the clavicula and the

ervical spine in Fig. 5 and the intestines and the lumbar spine in
ig. 6. The correction of the displacement of one structure could
ossibly introduce misalignment of other structures, which was
eported in [4,2] as well. This is also the major limitation of a

D motion compensation algorithm for projection images.

The images in the data sets head, hand and shoulder are ac-
uired with using blinds2 that are attached directly in front of

2 These are referred as a virtual collimator by some vendors.

fl
i
h
c
t
n

he artifacts caused by the skull and the spine considerably, but those caused by
s in (b) show the artifacts at the boundary between the actual exposure area and

he X-ray tube to reduce the radiation dose. Accordingly, the
ontrast at these areas is very low in both the input and the sub-
raction images. The displacements found in these flat areas are
ften rather large, because there is not enough structural infor-
ation to yield an unique match. This is a well-known problem

f block matching and was observed by Kelly and Kokaram [12]
s well. Consequently, artifacts can be observed at the border be-
ween the actual exposure area and the areas where the blinds
re placed. These artifacts are also observed in the results of the
exible pixel shift (Fig. 4). Our suggestion to solve this problem

s to incorporate an user defined region of interest, such that the

omogeneous regions, where no vessels of interests are present,
an be excluded. Note that these regions make up to 50% area of
he entire image, which indicates further reduction of the actual
ecessary computation time.
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ig. 6. Abdominal DSA with injection in superior mesenteric artery. The origi
hese are reduced partly by block matching with both integer (b) and sub-pixel

.2. Performance analysis

As flexible pixel shift needs 6–8 s to process two 1024 × 1024
mages, our GPU-implementation of block matching performs
ne magnitude faster. In the latter case, a speedup of approx-
mately 15–30% can be observed between the results on 6800
T and on 6800 (Table 3). In the following, we will only discuss

he performance analysis concerning the GPU-implementation
nd refer to the results achieved on 6800 GT.

In average it takes us 0.47–0.51 s to process two images
Table 3). In order to determine the performance bottleneck,
e first measured the time required to load an input image

1024 × 1024 × 16 bits) without any processing, which takes

pproximately 10 ms. A sharp dropdown of the frame rate can
e observed after filling the histograms of the difference image,
hich implies a bottleneck at this stage. As illustrated in Sec-

ions 3.1 and 3.2.1, both gathering and scattering are required

i
N
o
t

btraction image (a) contains moderate artifacts (highlighted with the ellipse).
sion (c). Flexible pixel shift (d) removes less artifacts than GPU-registration.

o fill a histogram and this is only possible in the vertex shader.
n the other hand, in the previous step the difference image
as generated in the pixel shader and then resides in the frame
uffer. Before the appearance of vertex texturing, reading data
rom the frame buffer back to the vertex shader was not possible
ithout going through the main memory, which could block the
ardware and lead to serious performance degradation.

By allowing bidirectional data transfer between vertex shader
nd pixel shader, vertex texturing enables almost all kinds of
eneral-purposed computations on the GPU and may change
PU-programming forever. However, texture fetch in the ver-

ex shader still generates latency and is much slower than that
n the pixel shader [13]. In our implementation, it takes approx-

mately 35 ms to fill the histogram for a 1024 × 1024 image.
o significant performance change could be observed whether
nly one histogram is filled for the entire image or all the his-
ograms are filled on a block basis in parallel. We measured the
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ig. 7. DSA of the hand. The original subtraction image (a) contains strong ar
ixel shift (d). The difference between integer (b) and sub-pixel precision (c) is

ime required to render the difference image using vertex tex-
ure, which turns out to be nearly the same as that required to
ll the histograms. Compared to pixel texturing (∼11 ms at the
omparable stage), vertex texturing (∼35 ms) is no doubt much
lower.

But the latency generated by vertex texturing is not the only
actor responsible for the bottleneck. The large amount of ver-
ices (1024 × 1024) used to fetch the pixels is an important
ssue as well. To render a scene, usually only a small num-
er of vertices are defined (e.g., the corner points of the trian-
les). The value of the pixels, for which no vertices are explic-
tly defined (e.g., the points within the triangles), is obtained
y means of interpolation at the rasterizer. Therefore, the num-

er of vertices is much smaller than that of pixels. Accordingly
uch fewer parallel vertex engines than pixel engines are avail-

ble on a GPU. For instance, there are 12–16 pixel pipelines
nd only 5–6 vertex pipelines on a GeForce 6800 GPU (Table

t
p
s

. These are reduced only partly by both block matching (b and c) and flexible
vident.

). We observed that processing 1024 × 1024 vertices without
ertex texturing (i.e., only the conventional vertex computation
uch as geometrical transformation) is achieved at ∼75 frames/s,
hich is similar to processing 512 × 512 vertices with vertex

exturing.

. Summary

In summary, both flexible pixel shift and block matching can
orrect motion artifacts in DSA effectively. The best results are
chieved in those cases where the moving structures are not
uperimposed in the original 3D scene. In other cases, the motion
rtifacts can be partly reduced.
The block matching implemented on the GPU turns out
o be one magnitude faster than the CPU-version of flexible
ixel shift. The processing of two 1024 × 1024 images with
ub-pixel precision is achieved at 2 frames/s, including load-
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Yu Deuerling-Zheng et al. / Computerized M

ng the images from the main memory and transferring them to
he graphics hardware. From the point of view of the medical
pplicants, the registration with integer precision is sufficient
n most cases. This can be carried out even faster (3 frames/s)
nd allows it to be used as an interactive tool in medical image
nalysis.
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