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Abstract

An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction
images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore
required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a
motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by
evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while
paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and
frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block
matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s

with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Digital subtraction angiography (DSA) is the standard modal-
ity for visualizing human vasculature. This is achieved by ac-
quiring a sequence of 2D digital X-ray projection images, ac-
companied by the injection of contrast medium into the vessels
of interest. This sequence consists of a few contrast-free image
(mask images) and mainly contrast-enhanced images (contrast
images). In a successive step, one selected mask image is sub-
tracted from each of the contrast images, so that the background
structures are ideally masked out and only the vessels of interest
are displayed.

Obviously the background structures can only be removed
completely when they are aligned perfectly and have equal gray-
level distributions. However, differences between images of a
time sequence are often unavoidable, with patient motion being
the most important reason. Consequently, the subtraction im-
ages contain artifacts which could impact their diagnostic value
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considerably. Therefore, retrospective solutions [1—4] such as
image registration are required, which retrieve a geometrical
transformation accounting for the mismatches caused by patient
motion. The aim is to bring the mask and the contrast image in
optimal spatial alignment prior to the subtraction.

In order to correct complex motions, motion compensation
approaches must adapt to local deformations. Moreover, DSA is
being increasingly applied in intervention, which requires fast
and automatic methods. However, due to the computational com-
plexity of related techniques, this requirement has been hardly
satisfied. In fact, on many today’s DSA systems, motion arti-
facts are still corrected by a simple global translation in x- or
y-direction (known as pixel shift), which yields seldom satisfac-
tory results.

The purpose of this paper is to find an automated, fast and
accurate solution to correct motion artifacts in DSA. At first,
we examine a method explicitly designed to correct local de-
formations in DSA images. In the remainder of this paper, this
method is referred as flexible pixel shift. Then, in search of a
faster computation, we implement a motion compensation algo-
rithm based on block matching on modern graphics hardware.
The comparison of these two implementations shows that both
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implementations are capable of detecting delicate local displace-
ments, as the hardware implementation performs much faster so
that it can be used as an interactive tool in clinical routine.

The utilization of graphics hardware (Graphics Processing
Units, GPU) for motion compensation and image processing
has become a field of active research in recent years. We explore
in this paper the possibility and applicability of GPUs for a block
matching algorithm with a histogram-based similarity measure.
In this context, we are the first one who have mapped an opti-
mizing search strategy for block matching on GPUs. More than
that, we propose an innovative method to create histograms with
vertex texture and frame buffer alpha blending, which has solved
one of the most difficult tasks in general-purposed computation
on GPUs.

In the following section, we characterize flexible pixel shift
and block matching at the algorithmic level. In Section 3, we de-
scribe the GPU-implementation in detail. The application results
on several data sets acquired from various anatomical regions
are presented in Section 4. The results of a preliminary clinical
evaluation are included as well. We finally end up with discus-
sion of the results and the conclusion.

2. Motion compensation techniques for DSA

As mentioned in Section 1, both flexible pixel shift and block
matching are capable of detecting local motions in DSA. To this
end, the displacement of a point is determined by moving it in
its local neighborhood and searching for the maximal similarity.
The difference between these two approaches is, flexible pixel
shift moves only the point of interest with the given displacement
vector while the location of the neighborhood with respect to the
entire image is fixed; the displacements of the remaining points
within the neighborhood are obtained via bilinear interpolation
(Fig. 1(a)). Block matching assumes uniform displacement of
all the points within the neighborhood, thus the whole block is
moved rigidly with the given displacement vector (Fig. 1(b)).

Block matching, also referred as template matching, has been
widely applied to detect motion in video images. Its application
in DSA can be found in [1,4,2].

Theoretically, flexible pixel shift is expected to yield more
accurate estimates for the displacement of a single point, be-
cause the best match is calculated exactly by moving that point
alone. With block matching, the displacement of a control point
is approximately determined by the displacement of the entire
block. In cases of delicate motions, this approximation works
only when the block is small enough. However, smaller blocks
contain little statistical information and may lead to unreliable
matching scores. On the other hand, patient motion involving
exactly one point as flexible pixel shift assumes, occurs seldom
in the real world. Instead, more pixels in the neighborhood are
often involved.

In practice, block matching performs much faster than flexi-
ble pixel shift. The reason is the large number of bilinear interpo-
lations which are necessary in flexible pixel shift even when the
similarity is evaluated with integer displacements. On the con-
trary, bilinear interpolation is only computed in block matching
in two cases: (1) when searching the displacements with sub-
pixel precision (will be illustrated in Section 2.3), and (2) as
displacements are only explicitly computed on selected control
points, the displacement vector field of the entire image is ob-
tained via interpolation, otherwise artifacts could occur at the
block edges. In spite of the differences mentioned above, these
two approaches share common properties in many aspects which
are discussed in the following.

2.1. Similarity measure

Both flexible pixel shift and block matching evaluate a
similarity measure which determines the degree of corre-
spondence between region of interests. A distinct property
of DSA is the inflow of contrast medium into the vessels
of interest, which causes significant local variation of the

(x+dx, y+dy)

(a) Flexible pixel shift

(b) Block matching

Fig. 1. (a) Only the point of interest is moved, the position of its neighborhood with respect to the entire image is fixed. The displacements of the remaining points
in the neighborhood are obtained by bilinear interpolation. (b) The displacement of a point is estimated by moving a surrounding window rigidly in the local search

area and optimizing a certain similarity function.
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gray level distribution. Most similarity measures proposed so
far, assume constant gray level distribution and are conse-
quently not suited for DSA. A robust similarity measure against
this gray level variation must take statistical information into
account.

If the structures in two images are perfectly aligned, the sub-
traction image contains ideally only two different groups of in-
tensity values, one for the background and one for the contrast
enhanced vessels. This leads to two peaks in the probability
density function of the gray values in the subtraction image.
Accordingly, the gray value distribution of a block, which is a
subset of the subtraction image, will contain either two peaks if
vessels are present, or one peak if it consists only of background
structures. The amount of the distribution dispersion correlates
thus tightly with the structural misalignment.

Generally, a measure quantifying the dispersion should sat-
isfy the following two requirements: (1) it assumes its extremum
when the distribution is totally “flat”, i.e., all the entries give the
equal contribution; (2) it weights more clustering than disper-
sion. A well-known example is the Shannon entropy

Ment(d) = — > p(i) log p(i), (1)

where d € Z? denotes a given displacement vector and p(i) de-
notes the probability distribution of the intensities in the sub-
traction image. The most straightforward way to resemble the
probability density function is to create a normalized histogram
H (i) in which each entry is divided by the total number of entries
L HG =1).

A generalized form of the Shannon entropy is the weighted
sum of the normalized histogram entries

where f : Ry — R is a weighting function. Buzug and Weese
[1] have proven that any differentiable, strictly convex or strictly
concave function can be a suitable weighting function such that
M(d) satisfies the above requirements. Further, they suggested
that the energy of the histogram

1
Menp(d) = > H(i) 3)

i=—1

is the most appropriate measure due to its relatively lower com-
putational cost while the computation accuracy is retained. Note
that Mgup is to be maximized, whereas, MgNT is to be mini-
mized.

2.2. Search strategy

The similarity measure M (d) in Eqs. (1)—(3) is a function of
the displacement d. The optimal alignment is found by search-
ing for the extremal M(d). The robustness of the full search
is self-evident, because all the 2w + 1)2 positions within the
search area are examined, w denoting the number of pixels in
both search directions (Fig. 2(a)). It is however not a feasible ap-
proach due to high computational cost. A much more efficient
strategy is the conjugate direction search which is carried out
successively in n linearly independent conjugate directions, n
being the number of variables in the objective function [5]. Fig.
2(b) shows how the search is carried out in case n = 2.

The complexity of conjugate direction search with a step size
of one pixel can be easily derived: in the best case where the dis-
placement is minimal, d = (0, 0), only five positions (the start-
ing position itself and its four neighbors) must be examined. In
the worst case where the displacement is maximal, d = (w, w),

! (2w + 3) positions must be examined. Thus, the complexity is
M) = Z SHQD), (2)  reduced from O(x?) by full search to O(x) and O(1) by conjugate
i=—1I direction search.
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Fig. 2. (a) Full search: w denotes the search range. (b) Conjugate direction search: search starts along the x-axis. The starting point is compared with its two horizontal
neighbors. Then go to the direction of the point which has the best match. Search continues along the x-axis until no improvement of the match score can be achieved.
Then repeat the search along the y-axis. The optimum found along the y-axis is the global optimum.
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(a)

(c)

Fig. 3. Sub-pixel precision: (a) original subtraction image, showing artifacts (highlighted with arrows); (b) block matching with integer precision, most artifacts
remain unchanged; (c) block matching with sub-pixel precision, artifacts are removed.

2.3. Sub-pixel accuracy

Even sub-pixel misalignment can cause significant artifacts
in subtraction images. Therefore, the motion artifacts should be
corrected with sub-pixel precision. An example is shown in Fig.
3. Asdigital images contain only information about the pixels lo-
cating at integer positions, interpolation is necessary. There exist
mainly two approaches to perform the interpolation: (1) interpo-
lating the similarity values calculated at integer displacements,
and (2) computing the similarity values directly while shifting
an image for non-integer displacements. The first approach re-
quires the construction and analytical solution of a continuous
bivariate function, whereas, the latter approach can be achieved
by bilinear interpolation which is a built-in operation on the GPU
and can be carried out in real time. Clearly, the latter approach
is preferred in our case.

It has been reported that a sub-pixel precision of 1/10 pixel
is sufficient for angiography images [6,2]. For the sake of effi-
ciency, the search is usually carried out hierarchically, i.e., at
first with integer precision, then with sub-pixel precision only in
the neighborhood where the optimal integer displacement was
found. The complexity can be derived likewise as with integer
precision: nine positions in the best case (the starting point it-
self, its four neighbors with integer precision and four neighbors
with sub-pixel precision) and 2(wip; + wgyp + 2) + 1 positions
in worst case, wiy and wgyp being the search range for integer
and sub-pixel precision respectively.

3. Hardware implementation
3.1. Programmable graphics hardware

The data parallelism in typical image processing algorithms
makes them well suited for the parallel pipelined architecture of
the GPUs. An efficient mapping of such algorithms onto graph-
ics hardware can thus lead to considerable performance gains
[7-11].

A crucial aspect concerning image processing on the graph-
ics hardware is the texture memory and its associated access

operations. Textures are bitmaps of pixel colors, which are de-
signed to give 3D objects realistic visual complexity with little
geometric data. For the purpose of image processing the input
images are usually loaded as textures onto the graphics card and
the results, the manipulated images, are written into textures as
well.

Originally, textures were only bound to the pixel shader stage
and random reading access to the texture memory (gathering) is
allowed, which encourages the use of textures as a general read-
only memory, with texture coordinates as the memory address.
In fact, textures are widely used as general lookup tables to store
information other than pixel colors.

As gathering in the pixel shader is rather fast, the random writ-
ing access to the texture memory (scattering) was not supported,
because the pixel positions are determined by the hard-wired ras-
terizer and can not be changed in the later stages on the pipeline
any more. The realization of scattering in the pixel shader would
change the pipeline architecture substantially. This inflexibility
had limited GPUs to be used more generally.

Fortunately, a new feature has been recently added to the
graphics processor, vertex texturing, which enables texture fetch
in the vertex shader stage and therewith allows the scatter-
ing. This feature is incorporated in Shader Model 3.0 and sup-
ported on GeForce 6 Series. It is possible now to implement
algorithms where gathering and scattering are both required,
e.g., sorting and histogram computation. This is also the key
feature we utilize to implement the histogram-based similarity
measures.

3.2. Implementation

Block matching is an algorithm which fits the architecture
of parallel processors very well: the blocks are processed with
the same operations and independently from each other, poten-
tial performance gains can thus be achieved by parallelizing the
processing. As Kelly and Kokaram [12] have shown, it is more
efficient to shift all the blocks within the entire frame simultane-
ously and calculate the correspondence on a block basis. They
mapped a full search block matching on the graphics hardware
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by passing the displacement vector as a global parameter to the
GPU.

However, full search is computationally very intensive and
usually not feasible for interactive application. In order to take
advantage of optimizing search strategies, each block must be
moved with an individual displacement vector while all the
blocks are moved simultaneously. Our solution is to store the
individual displacement vectors in a texture which is used as a
lookup table. In order to avoid data transfer between CPU and
GPU, this texture is stored on the GPU.

To further enhance the efficiency, we determine the displace-
ments (explicitly by means of block matching) only on selected
control points defined by a regular grid. As shown in [2], a block
of 51 x 51 pixels yields a good compromise between compu-
tational cost and statistical reliability. In order to take all the
pixels into account, we define the blocks size as 64 x 64 pix-
els. The DSA images have usually the dimension of 512 x 512
or 1024 x 1024, which ensures an exact decomposition of the
input image into blocks.

As illustrated in Section 2, the displacement of a control point
is found by moving the respective block rigidly within the search
space, i.e., all the pixels within the block are assumed to have
the same displacement. When this displacement is then mapped
uniformly to all the pixels within that block to construct the fi-
nal displacement vector field, artifacts at the edges between the
blocks are likely introduced. To avoid this problem, the displace-
ments of the remaining points (non-control points) are obtained
by bilinear interpolation. A problem hereby is, while the blocks
are an exact partition of the image, the resulting displacement
vector field does not cover the entire image, because the control
points locate within the blocks. This problem is solved by ex-
tending the current grid by one cell in both x- and y-directions
and setting the displacement of the points on the borders to zero;
the points between are then interpolated.

The whole sequence is processed by fixing the mask image
and registering the contrast image one after another with respect
to the mask image. Essentially, the motion compensation for an
image pair is carried out with the following steps:

1. Initialize a set of displacement vectors and similarity
scores R = {(d;, s;)}, i =1,2,..., N, N being the number
of blocks.

2. Find the optimal displacement vectors following conjugate
direction search.

a. Calculate the difference image from the mask and contrast
images, whereby the i-th block (of the mask image) is
shifted with the corresponding displacement vector d;.

b. Maximize the similarity score s; = MgnT(d;) (Eq. (1)).

3. Construct the final displacement vector field F(dg), k =
1,2,..., M, M being the number of pixels. Obtain the mo-
tion compensated subtraction image by warping the mask
image with F.

3.2.1. Histogram of differences
A histogram of an image or a portion of the image is usually
implemented as an array, with the pixel intensities as the array

indices. The input image is read pixel by pixel, and the corre-
sponding array element is incremented. Thereby both random
reading access and random writing access to the memory are
necessary within one shader program. As illustrated in Section
3.1, this was not realized until the appearance of vertex textur-
ing. Therefore, filling histogram was one of the toughest tasks
of the general-purpose computation using graphics hardware.

Our solution is illustrated as following: by projecting a 3D
scene onto a 2D plane, more vertices may be mapped to the
same position, with both color and depth information contained
in a fragment. The final color of a pixel on the screen is the
mixture of all the fragments which are supposed to display at
the same position (alpha-blending). If all the input fragments
have the same intensity and the alpha-blending function is set as
additive, the frequency of the fragments can be retrieved from
the final intensity of the output pixel.

To this end, the difference image P is bound as a texture
to the vertex shader in order to scatter the pixels in P by their
intensities. At first, a set V of vertices is firstly defined, with the
cardinality of V being equal to the number of pixels in P. Then,
we fetch for each vertex v in V the corresponding pixel' p from
P and change the position of v according to the intensity of p.
In particular, the intensity value and the block index of p are
combined to build the x- and y-coordinates of v. As a result, the
pixels in P are scattered not only with their intensity values, but
also with their block indices. Herewith the histograms for all the
blocks are filled in parallel within one rendering pass.

3.2.2. Similarity function

As illustrated in Section 2, the histogram based similarity
function is a weighted sum over the histogram entries (Egs. (1)—
(3)), which are stored in a texture. To sum up the values in a
texture, the so called sum-reduce-operation is applied. Sum-
reduction is similar as progressive down-sampling of the texture
over multiple passes, where in each pass a local sum of n x n
pixels of the source texture is written into one pixel of the target
texture. The image is “reduced” by a factor of n along each axis
with each pass. For aimage of N x N pixels, log, N passes are
required. The global sum is finally written into a single pixel.
As reading from and writing into the same texture is not allowed
within one rendering pass, at lease two textures are necessary.
After each pass these two textures are alternated (ping-pong
buffering).

3.2.3. Precision of the computation

As graphics hardware of earlier generation supports only
fixed-point arithmetic, the new superscalar architecture of
GeForce 6 Series provides full 32-bit floating point accuracy,
which enables computation with high precision in a much
broader range. The texture formats used in the implementa-
tion are listed in Table 1. The input images are given as 16-bit
unsigned short, which are loaded into a 16-bit fixed-point
format directly. To store the difference image, a 32-bit floating-
point format is used, because this texture will be bound to the

I More accurately, an element of a texture is referred to as a texel.
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Table 1

Texture formats used in the implementation

Usage Size Precision Dimension
Input image 1024 x 1024 16-bit fixed-point 1
Difference image 1024 x 1024 32-bit floating-point 1
Histogram 1024 x 256 16-bit floating-point 4
Displacement vector 16 x 16 32-bit floating-point 4

vertex shader. Vertex textures are required at a minimum to sup-
port 32-bit floats, in order to handle large world and view spaces.
The histogram is stored in a 16-bit floating-point format (half)
which is the only available floating format supporting alpha-
blending. The texture storing the displacement vectors and sim-
ilarity scores is of 32-bit floating point format, so that the highest
precision for the evaluation is guaranteed.

The 32-bit floating-point formats on GPUs follow the IEEE
standard which is known as m23e8 format. This precision is usu-
ally sufficient for processing medical images which use 10-14
bits for a pixel. The 16-bit half format on GPUs has 10 bits
for mantissa and 5 bits for exponent (m10e5). The number of
mantissa bits dictates the precision. With 10 mantissa bits and
1 hidden bit, the hal f-format can only precisely represent 2!
equidistant numbers, e.g., integers. The blocks in our implemen-
tation have the size of 64 x 64 pixels. In extreme cases that all
the pixels within a block have the same intensity value, the his-
togram entry of this value is 2!2 which can not be represented
exactly with the hal £-format. However, this could only occur at
the image corners where no structural information is available,
hence the overall precision is not affected. By creating histogram
for a larger block, more consideration concerning the precision
is necessary.

The pixel depth of our input images is 12 bits, i.e., theoreti-
cally there exist 2!3 different intensity values after the subtrac-
tion. This necessitates 8192 bins to hold the possible histogram
entries (by a bin size of 1). Luckily, the differences between the
mask and the contrast images are mostly in a very narrow range
around zero. In fact, we found out that 1024 bins are already
sufficient to compute the histogram in our case. The texture for
the histogram is thus of size 1024 x 256, storing histograms for
256 blocks with 1024 bins for each histogram.

4. Experimental results

We tested our implementation on two graphics cards of the
Nvidia GeForce 6800 Series: 6800 and 6800 GT. The main fea-
tures of these two cards are listed in Table 2.

We applied our implementation on four data sets: shoulder,
head, abdomen and hand. All data sets were acquired with an

Table 2

NVIDIA GeForce 6800 product lineup specifications

Key Features GeForce 6800 GT GeForce 6800
No. of pixel processors 16 12

No. of vertex processors 6 5

Memory type/amount GDDR3/256 MB GDDR/128 MB
GPU speed 350 MHz 325 MHz

RAM speed 1000 MHz 700 MHz

Table 3
The image sequences used in the experiment and the corresponding computation
time to process the sequences

Type Number of Computation time (s)
images (N)

Integer Sub-pixel

6800 GT 6800 6800 GT 6800
Head 21 7.20 8.86 10.23 13.26
Hand 20 6.89 8.76 8.98 11.10
Shoulder 18 6.28 9.17 8.74 11.95
Abdomen 39 12.74 15.12 17.79 22.06

Note that in each sequence the first image is the mask image and the remainder
are the contrast images, thus (N — 1) image pairs are processed, N being the
number of images in each sequence.

angiography unit (AXIOM-Artis, Siemens Medical Solutions).
Each data set consists of a sequence of 1024 x 1024 images with
the first image as the mask image and the remainder as contrast
images. The pixel depth is 12 bits while 16 bits are allocated. The
block size is 64 x 64 pixels, accordingly an image is partitioned
into 16 x 16 blocks. The displacement is computed with both
integer (search step = 1 pixel) and sub-pixel (search step = 1/10
pixel) precision, where the search range is £10 and £0.5 pixels,
respectively.

Figs. 4-7 show the results of applying our implementations
on the four given data sets. Each of these figures consists of four
images, labeled with (a)—(d) and arranged as following:

(a) original subtraction image,

(b) block matching with integer precision (implemented on
GPU),

(c) block matching with sub-pixel precision (implemented on
GPU),

(d) flexible pixel shift (implemented on CPU).

The number of images in each sequence, the corresponding
computation time required to process the whole sequence are
listed in Table 3. The computation time includes reading the
image sequence from the main memory and transferring it to
the GPU.

5. Clinical evaluation

To evaluate the effectiveness of our implementations, two ra-
diologists were asked to rating the images in Figs. 4-7. To avoid
any bias in the ratings, the images were presented to the radiolo-
gists in a completely blinded manner: the type of the correction
was kept unknown to the observers and the evaluation was car-
ried out independently by the two radiologists. The ratings are
listed in Table 4.

A reliable statistical analysis was not carried out due to the
limited sample size. However, the total score in Table 4 indi-
cates that by given a larger sample, the block matching with
both integer and sub-pixel precision could improve the image
quality significantly and their effects are comparable with those
of flexible pixel shift. With sub-pixel precision we have shown
that our approach can correct weak artifacts accurately (Fig. 3).
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(b)

(d)

Fig. 4. Digital subtraction angiogram of the right upper arm with injection in the subclavian artery. The original subtraction image (a) contains strong artifacts
(highlighted with solid arrows and ellipse). These are reduced considerably by block matching with integer precision (b) and further with sub-pixel precision (c).
Flexible pixel shift (d) yields comparable results. The arrows in (d) show the artifacts at the boundary between the actual exposure area and the homogeneous area.

On the other hand, these artifacts do not impact the diagnostic 6. Discussion
value of the subtraction images that much. Sometimes, radiolo-

gists prefer weak artifacts so that they can be used as landmarks. 6.1. Motion compensation accuracy
It is worth noting that processing with only integer precision
is much faster (3 frames/s) than that with sub-pixel precision The relatively stronger artifacts (Figs. 4 and 5) caused mainly
(2 frames/s), which encourages its wide application as an inter- by the displacements of bones are removed considerably by ap-
active tool in the clinical routine. plying all the implementations, whereas, the relatively weaker
Table 4
Result of clinical evaluation

Shoulder (Fig. 4) Head (Fig. 5) Abdomen (Fig. 6) Hand (Fig. 7) Total
Original subtraction 4,3) 4,4) (3,2 4, 3) 27
CPU (1,1) (1, 1) 4, 4) (1,2) 15
GPU integer 3,2) 3,3) 2,1 3,1 18
GPU subpixel (2,4) (2,2) (1,3) (2,4) 20

The ratings of two independent radiologists are presented as (r, ), where r and s stand for the first and the second radiologist, respectively. The images are rated with
scores 1—4, with 1 being the best and 4 being the worst image quality.
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(C)

(b)

Fig. 5. Cerebral DSA, venous phase. The original subtraction image (a) contains strong artifacts caused by the displacements of independent moving structures:
the solid arrows point to the artifacts caused by movement of the skull and the cervical spine, the stippled arrow point to the artifacts caused by movement of the
clavicula. Block matching with both integer (b) and sub-pixel precision (c) removes the artifacts caused by the skull and the spine considerably, but those caused by
the clavicula are still present. Flexible pixel shift (d) yields similar results. The arrows in (b) show the artifacts at the boundary between the actual exposure area and

the homogeneous area.

artifacts (Fig. 3) remain by block matching with integer pre-
cision. In Figs. 5 and 6, the artifacts are only partly removed,
with both block matching and flexible pixel shift. This is be-
cause the artifacts are caused by the displacement of structures
which are overlapped to each other, e.g., the clavicula and the
cervical spine in Fig. 5 and the intestines and the lumbar spine in
Fig. 6. The correction of the displacement of one structure could
possibly introduce misalignment of other structures, which was
reported in [4,2] as well. This is also the major limitation of a
2D motion compensation algorithm for projection images.

The images in the data sets head, hand and shoulder are ac-
quired with using blinds? that are attached directly in front of

2 These are referred as a virtual collimator by some vendors.

the X-ray tube to reduce the radiation dose. Accordingly, the
contrast at these areas is very low in both the input and the sub-
traction images. The displacements found in these flat areas are
often rather large, because there is not enough structural infor-
mation to yield an unique match. This is a well-known problem
of block matching and was observed by Kelly and Kokaram [12]
as well. Consequently, artifacts can be observed at the border be-
tween the actual exposure area and the areas where the blinds
are placed. These artifacts are also observed in the results of the
flexible pixel shift (Fig. 4). Our suggestion to solve this problem
is to incorporate an user defined region of interest, such that the
homogeneous regions, where no vessels of interests are present,
can be excluded. Note that these regions make up to 50% area of
the entire image, which indicates further reduction of the actual
necessary computation time.
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Fig. 6. Abdominal DSA with injection in superior mesenteric artery. The original subtraction image (a) contains moderate artifacts (highlighted with the ellipse).
These are reduced partly by block matching with both integer (b) and sub-pixel precision (c). Flexible pixel shift (d) removes less artifacts than GPU-registration.

6.2. Performance analysis

As flexible pixel shift needs 68 s to process two 1024 x 1024
images, our GPU-implementation of block matching performs
one magnitude faster. In the latter case, a speedup of approx-
imately 15-30% can be observed between the results on 6800
GT and on 6800 (Table 3). In the following, we will only discuss
the performance analysis concerning the GPU-implementation
and refer to the results achieved on 6800 GT.

In average it takes us 0.47-0.51s to process two images
(Table 3). In order to determine the performance bottleneck,
we first measured the time required to load an input image
(1024 x 1024 x 16 bits) without any processing, which takes
approximately 10 ms. A sharp dropdown of the frame rate can
be observed after filling the histograms of the difference image,
which implies a bottleneck at this stage. As illustrated in Sec-
tions 3.1 and 3.2.1, both gathering and scattering are required

to fill a histogram and this is only possible in the vertex shader.
On the other hand, in the previous step the difference image
was generated in the pixel shader and then resides in the frame
buffer. Before the appearance of vertex texturing, reading data
from the frame buffer back to the vertex shader was not possible
without going through the main memory, which could block the
hardware and lead to serious performance degradation.

By allowing bidirectional data transfer between vertex shader
and pixel shader, vertex texturing enables almost all kinds of
general-purposed computations on the GPU and may change
GPU-programming forever. However, texture fetch in the ver-
tex shader still generates latency and is much slower than that
in the pixel shader [13]. In our implementation, it takes approx-
imately 35 ms to fill the histogram for a 1024 x 1024 image.
No significant performance change could be observed whether
only one histogram is filled for the entire image or all the his-
tograms are filled on a block basis in parallel. We measured the
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(d)

(b)

Fig. 7. DSA of the hand. The original subtraction image (a) contains strong artifacts. These are reduced only partly by both block matching (b and c¢) and flexible
pixel shift (d). The difference between integer (b) and sub-pixel precision (c) is not evident.

time required to render the difference image using vertex tex-
ture, which turns out to be nearly the same as that required to
fill the histograms. Compared to pixel texturing (~11 ms at the
comparable stage), vertex texturing (~35 ms) is no doubt much
slower.

But the latency generated by vertex texturing is not the only
factor responsible for the bottleneck. The large amount of ver-
tices (1024 x 1024) used to fetch the pixels is an important
issue as well. To render a scene, usually only a small num-
ber of vertices are defined (e.g., the corner points of the trian-
gles). The value of the pixels, for which no vertices are explic-
itly defined (e.g., the points within the triangles), is obtained
by means of interpolation at the rasterizer. Therefore, the num-
ber of vertices is much smaller than that of pixels. Accordingly
much fewer parallel vertex engines than pixel engines are avail-
able on a GPU. For instance, there are 12—16 pixel pipelines
and only 5-6 vertex pipelines on a GeForce 6800 GPU (Table

2). We observed that processing 1024 x 1024 vertices without
vertex texturing (i.e., only the conventional vertex computation
such as geometrical transformation) is achieved at ~75 frames/s,
which is similar to processing 512 x 512 vertices with vertex
texturing.

7. Summary

In summary, both flexible pixel shift and block matching can
correct motion artifacts in DSA effectively. The best results are
achieved in those cases where the moving structures are not
superimposed in the original 3D scene. In other cases, the motion
artifacts can be partly reduced.

The block matching implemented on the GPU turns out
to be one magnitude faster than the CPU-version of flexible
pixel shift. The processing of two 1024 x 1024 images with
sub-pixel precision is achieved at 2 frames/s, including load-
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ing the images from the main memory and transferring them to
the graphics hardware. From the point of view of the medical
applicants, the registration with integer precision is sufficient
in most cases. This can be carried out even faster (3 frames/s)
and allows it to be used as an interactive tool in medical image
analysis.
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