Look-up Table-Based Simulation of Scintillation Detectors in Computed Tomography

Michael Balda1, Stefan Wirth2, Daniel Niederlöhrner2, Björn Heismann1,2, Joachim Hornegger1
1 Friedrich-Alexander University, Erlangen, Germany
2 Siemens AG, Healthcare Sector, Forchheim, Germany

Introduction

- Scintillation detectors are the current state of the art technology for CT systems
- CT detectors are constantly improved in terms of coverage, resolution and signal quality
- **Purpose:** Designing a new CT detector requires precise knowledge on its detection properties. Evaluating these mostly relies on simulation data, as building prototypes is very expensive
- **Problem:** Full scale Monte-Carlo simulations of particle interactions within the detector are very time consuming: Simulating the measurement process of a CT scan is not feasible on current computers
- **Solution:** Look-up table (LUT) based simulation of the measurement process from the detection of incoming X-ray photons to the electronic output signal of the detector. It is capable of simulating whole CT scans within hours at almost the same precision as a full-scale particle interaction simulation.

Detector Layout

Figure 1 shows the basic layout of a CT scintillation detector:
- The scintillator material converts X-rays into optical photons
- The reflector and the septa prevent optical photons from reaching other detector pixels or leaving the detector
- The photo diode converts optical photons into an electrical signal

Simulation

Simulated effects that influence the detector performance:
- X-ray photon detection probability depends on photon energy, scintillator material and pixel geometry
- X-ray interactions deflect or create X-ray photons on different paths that may interact within other pixels (X-ray cross talk)
- Depending on their original position, optical photons may penetrate septa and reach other pixels or get lost (optical cross-talk)
- Detection of optical photons may be delayed (afterglow)
- Two pre-computed LUTs are needed for each detector geometry:
 - energy dependent X-ray photon interaction data [1]
 - position dependent detection probability distributions of optical photons (see Fig. 3. [2])

Results

- **Comparison:** 2D noise power spectrum (NPS) of proposed simulation and fully single-X-ray-photon based Monte-Carlo simulation (see Fig. 4)
- Simulated response of a 512x512 pixel Gd2O2S detector to a low-flux flat-field (Kerma 1.58e-5 Gy)
- Mean deviation on whole 16x16-NPS: 3.04%
- **Computation time:** 8:15 minutes for this case (approx. 200 times less than a single X-ray photon based approach)

Conclusions

- The Simulation covers important detector characteristics that influence signal quality
- The simulation results are very similar to those of a full scale photon-interaction simulation at much shorter simulation time
- Evaluation of a proposed detector design by simulation is feasible
 - Characteristics like NPS or detective quantum efficiency can be provided
 - Whole CT scans can be simulated with appropriate input sinograms

References