

Introduction

- differentiation of the 2 speech registers neutral and intimate
- 3 different types of speakers:
- mothers addressing their own children or an unknown adult
- women without own children addressing an imaginary child or adult
- children addressing a pet robot using both intimate and neutral speech

Data

1. Mothers addressing their own child or an unknown adult

- study of the Department of Psychology, University of Stirling:
- How do children follow instructions?
- From which age on are they able to do so?
- set of 6 instructions, partly ambiguous
- *Touch the horse with the spoon* (non-ambiguous)
- Touch the fish with the flower (non-ambiguous)
- Touch the dog with the flower (ambiguous)
- addressees:
- child-directed: their own child (at the age of 2;0-3;8) adult-directed: unknown adult
- 24 mothers (23 46 years old, \emptyset 35 years)
- 192 recordings: 24 mothers · 4 instructions · 2 addressees
- Ianguage: English

- 2. Non-mothers addressing an imaginary child or an imaginary adult
- \blacksquare parallel communication task with 24 non-mothers (age: 21 42, \varnothing 27)
- addresses:
- child-directed: imaginary child at the age of 2-3
- adult-directed: imaginary adult (friend or acquaintance)
- 3. Children interacting with the Sony robot Aibo
- subset of the AIBO Emotion Corpus (University of Erlangen-Nuremberg)
- 21 children (10 13 years old)
- Ianguage: German
- level of analysis:
- chunk level: 586 chunks *motherese*, 1998 chunks *neutral*
- word level (only the word *Aibo*): 220 words

Friedrich-Alexander-Universität Erlangen-Nürnberg

MOTHERS, ADULTS, CHILDREN, PETS – TOWARDS THE ACOUSTICS OF INTIMACY

Anton Batliner¹, Björn Schuller², Sonja Schaeffler³, Stefan Steidl¹

¹Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, Germany ²Institute for Human-Machine Communication, Technische Universität München, Germany ³Speech Science Research Center, Queen Margaret University Edinburgh, Great Britain

Features and Classification

Features

- typical acoustic low-level descriptors (LLD) on frame level
- applying functionals
- feature vectors on word, chunk, or file level

low-level-descriptors $(2 \cdot 37)$ functionals (19)

- $(\Delta) F_0$ mean, std. dev., centroid skewness, kurtosis (Δ) energy (Δ) envelope of the amplitude |zero-crossing-rate (Δ) formants 1-5: frequency quartile 1-3 quartile 1 - minimum (Δ) formants 1-5: amplitude (Δ) formants 1-5: bandwidth quartile 2 - quartile 1 (△) MFCC 1-16 quartile 3 - quartile 2 (Δ) HNR maximum - quartile 3 (Δ) jitter max., min, range (Δ) shimmer position of rel. max./min. pos. 95% roll-off-point
- 1,406 features: 2 · 37 LLD · 19 functionals

Most Important Feature Types

Feature Types

- Duration (222)
- **Energy** (64)
- **F**₀ (43)
- **Formants (480)**
- **MFCC** (512)
- Voice Quality (96)

Two Ways of Feature Selection

- .SVM-SFFS
- 50 features per split (3-fold cross-validation) reduction to < 11%
- 2. approach using eigenvectors
- 50 eigenvectors with the highest eigenvalues
- reduction to 5 eigenvalues using SVM-SFFS
- selection of 15 "original" features per eigenvector
- reduction to < 16%

Classification

Results

- 2-class problem: neutral vs. intimate
- 2 classifiers:
- SVM with linear kernel
- random forrests (RF)
- 3-fold cross-validation
- speaker independent
- normalization per speaker using the whole speaker context
- no explicit feature selection
- evaluation: F measure

- Tra Mo No No Мо **M**+ Aib Aib

- mothers

Surviving Feature Types

		D uration	Energy	Fo	Formants	MFCC	VQ
all	#	222	64	32	480	512	96
	%	15.8	4.6	2.3	34.1	26.4	6.8
feature selection	Mothers	15.1	3.6	6.4	36.7	31.8	7.5
	Non-mothers	17.2	1.9	5.1	20.1	55.2	0.7
	children (C hunks)	6.6	6.1	6.5	31.6	44.6	4.8
	children (Word)	15.4	2.9	2.9	23.2	51.5	4.2
	Ø	13.5	3.6	5.2	27.9	45.7	4.3

feature type is more important for this data set than for others feature type is less important for this data set than for others

Discussion

- no indication that age group or language are decisive factors
- segmental structure:
- higher impact of duration if segmental structure is constant (M, N, W)
- higher impact of energy and Δ features if segmental structure is variable (**C**) • F_0 less important if focus only on one single short word (**W**)
- degree of intimacy: higher impact of formants (M) vs. higher impact of MFCC features (N)
- Queen Margaret University

		F measure		
in	Test	RF	SVM	
thers	Mothers	76.6%	78.6%	
n-mothers	Non-mothers	70.3%	74.5%	
n-mothers	Mothers	72.4%	73.4%	
thers	Non-mothers	68.8%	65.1 %	
N	M+N	68.7 %	65.6%	
o (chunks)	Aibo (chunks)	72.8%	71.1%	
o (word)	Aibo (word)	71.4%	64.2%	
	·		•	

■ intimacy more pronounced for Mothers than for Non-mothers

in accordance with subjective impression when listening to the data

accuracy for children in the same range as for Non-

Speech Science Research Centre