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Abstract— Precise knowledge of the local image noise is an
essential ingredient to efficient application of post-processing
methods such as wavelet or diffusion filtering to computed
tomography (CT) images. The non-stationary, object dependent
nature of noise in CT images is a direct result from the noise
present in the projection data. Since quantum and electronics
noise are the dominating noise sources, comparably simple
models can be used for direct noise estimates in the individual
projections. In this article, we describe the analytic propagation
of these noise estimates through fan-beam filtered backpro-
jection (FBP) reconstruction. Contrary to earlier publications
in this field, we include the correlations within the parallel
projections resulting from the rebinning, the convolution, and
the backprojection processes. The method has been validated
against Monte-Carlo results and good accuracy with an average
relative error below 3.6% was acchieved for arbitrary objects
and over the full range of commonly used convolution kernels
and field-of-view settings.

I. I NTRODUCTION

For many applications in Computed Tomography (CT) it
would be beneficial having access to a precise estimate of
the image noise in each individual pixel. This information
can be used for adapting various kinds of post-processing
methods to the non-stationary, object dependent nature of
noise in CT. In [1], [2] it has been shown that taking into
account the local noise variance for wavelet or diffusion
filtering of CT reconstructions is essential for getting good
results. In addition, several image quality evaluations such
as detective quantum efficiency evaluations are based on
reliable estimates of the local noise variance in the image.It
is possible to get a crude approximation of the local noise
variance directly from the reconstructed image or by using
two separate reconstructions and noise estimation based on
the difference image [1]. These methods have the drawback
that the noise estimate needs to be performed within local
neighborhoods, making the estimates less reliable on a per-
pixel basis. A better approach is to use the knowledge about
the noise statistics in the projections and analytically prop-
agate it through the reconstruction algorithm. Theoretical
descriptions for parallel-beam filtered backprojection can
be found e.g. in [3], [4]. In the case of fan-beam FBP
reconstruction, image variance has been investigated in [5]–
[8]. These methods are all dealing with direct fan-beam
reconstructions without rebinning to parallel projections. In

1 A. Borsdorf and J. Hornegger are with with the FriedrichAlexander-
University ErlangenNuremberg (FAU), Chair of Pattern Recognition,
Martensstr. 3, 91058 Erlangen, Germany (see http://www5.informatik.uni-
erlangen.de).

2 S. Kappler and R. Raupach are with Siemens Healthcare, Siemensstr.
1, 91301 Forchheim, Germany.

The concepts and information presented in this paper is basedon research
and is not commercially available.

α

β

θ

t

y

x

Focus

Ray

Rf

Fig. 1. Geometry and notation used in this paper.

this paper we describe a new approach for propagating noise
through indirect fan-beam FBP reconstruction, where the
data is first rebinned to parallel-beam geometry. We take
into account the correlations induced at the various steps
of the reconstruction pipeline. In the evaluation section we
experimentally validate the new approach and point out the
importance of including the covariances in the computation.

II. M ETHOD

We provide a description of analytic noise propagation
through fan-beam reconstruction that is structured as follows:

• Rebinning from fan-beam projections to equidistantly
spaced parallel projections.

• Convolution of the rebinned projections with the recon-
struction kernel.

• Backprojection of the filtered projections.
• Hounsfield-scaling of reconstructed attenuation coeffi-

cients to normalized CT-values.
Instead of reconstructing CT values, an analytical estimate
of the error should now be computed for each image pixel.
Therefore, every step of the reconstruction pipeline needs
to be modified in order to reconstruct noise variances based
on the noise estimates in the fan-beam projections. Mainly,
all single steps of the reconstruction pipeline (interpolations,
convolution and backprojection) can be expressed as linear
combinations of noisy data or random variables. For the
variance of a linear combination of random variablesXi the
following holds:
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aiajCov(Xi, Xj).

(1)
This equation needs to be considered in every single step

of the algorithm. Furthermore, the covariance part needs to
be modeled properly.

Before the detailed description of the different steps of the
noise propagation, we start with a short introduction of the
geometry and notation. The basic geometry parameters are



illustrated in Fig. 1. Given a certain focus angleα, the focus
position (xf , yf ) is defined as:

xf = Rf cos α, yf = Rf sin α, (2)

whereRf is the radius of the focal path. The x-ray path is
given by the following equations:

xr(l) = Rf cos α − l cos(α + β), (3)

yr(l) = Rf sin α − l sin(α + β). (4)

Here, l ∈ [0,∞[ is the parameter along the ray andβ
describes the fan-angle.

1) Rebinning:The transformation from fan-beam to par-
allel geometry can be described by the following rebinning
equations:

θ = α + β, (5)

t = Rf sin β. (6)

Fig. 1 shows that each ray can be uniquely determined in
the xy-plane either byα andβ or by the parallel projection
angle θ and the orthogonal distancet to the isocenter.
The resampling from(α, β)-grid to an equidistantly spaced
(θ, t)-grid can be computed differently, using e.g. different
interpolation functions. In order to interpolate the noisevari-
ances from fan-beam (Var(P fan

α (β))) to parallel geometry
(Var(P par

θ (t))) basically the following steps are necessary:

• The correlation within the projections needs to be
analyzed - For simplicity we assume here that noise
in the fan-beam projections is perfectly uncorrelated.
This is valid as long as crosstalk at the detector and
tube-current variations are negligibly small.

• The weighted sum used for interpolation is replaced by
equation (1) - This means that the interpolation weights
used during rebinning are replaced by squared weights.
If noise in the projections is assumed to be uncorrelated,
the covariance part cancels out.

• The correlation induced to the data by the performed
interpolation must be modeled - The corresponding
interpolation filter, usually a 2D-filter, is computed. The
effective filter in t and θ-direction are here approxi-
mated as separable linear filters.

In our case, the rebinning is performed in two steps. First,
during azimuthal rebinning, equation (5) is applied to obtain
a hybrid sinogram depending on the parallel projection angle
θ and the fan angleβ. We use a fixed interpolation grid,
keeping the number of grid points constant and perform
a linear interpolation inα direction. For interpolating the
noise variances the squared interpolation weights need to be
used according to equation (1). The azimuthal interpolation
introduces no correlations to the hybrid projections inβ

direction. Thus, for the second rebinning step the data can
still be assumed to be uncorrelated. Then, the radial rebinning
interpolates the hybrid data to an equally distributed set of
parallel rays according to equation (6). Here, again a linear
interpolation with squared weights is used for interpolating
the noise variances. After this interpolation we have the

corresponding noise varianceVar(P par
θ (t)) for every parallel

projection.
After rebinning, noise in the parallel projections and

between neighboring views is no longer uncorrelated. The
filter function describing azimuthal rebinning is a triangle
filter hazi(θ). The radial interpolation filter is also modeled
as a triangle filterhrad(t). We approximate the complete
interpolation filter as a separable 2D-filter:

hipol(θ, t) = hazi(θ) · hrad(t). (7)

Therefore, the autocorrelation coefficient functionρipol(t)
corresponding to the 2D-interpolation filter is:

ρipol(θ, t) = h(θ, t)/h(0, 0), h(θ, t) = hipol(θ, t) ∗ hipol(θ, t).
(8)

2) Convolution: The next step in the reconstruction
pipeline is the convolution of the parallel projectionsP

par
θ (t)

with the kernel functionk(t) along the row directiont:

P con
θ (t) =

∫

P par

θ (t′)k(t − t′)dt′. (9)

In discrete formulation the integral in equation (9) is
replaced by a sum. The noise variance in the filtered
projectionsVar(P con

θ (t)) can thus be computed based on
equation (1).

Basically, the noise propagation through the convolution
can be split into two parts: the convolution with the squared
filtering kernel and the consideration of the covariances. The
convolution of the noise variances in the parallel projections
with the squared filtering kernel has also been considered in
the theoretical analysis presented in [4] and [3]. However,our
experiments will show, that the covariance terms of the data
within the same projections are essential for getting reliable
noise estimates. Altogether, the noise variance in the filtered
projections can be estimated according to:

Var(P con
θ (t)) =

∑

t′

Var(P par

θ (t′))k2(t − t′)+

∑

t′

∑

t′′ 6=t′

Cov(P par

θ (t′), P par

θ (t′′))k(t − t′)k(t − t′′). (10)

The covariance between two channels within one parallel
projection can be approximated using the autocorrelation
coefficient function in equation (8):

Cov(P par

θ (t′), P par

θ (t′′)) ≈
√

Var(P par

θ (t′))Var(P par

θ (t′′))ρipol(0, t′ − t′′). (11)

The projections are sampled with the sampling distance∆t.
Consequently, equation (11) can be reformulated such that
the distance betweent′ and t′′ in discrete steps of size∆t
is included:

Var(P con
θ (t)) =

∑

t′

Var(P par

θ (t′))k2(t−t′)+
∑

n

ρipol(0, n∆t)·

∑

t′

{

√

Var(P par

θ (t′))Var(P par

θ (t′ + n∆t)) k(t−t′)k(t−t′−n∆t)+

√

Var(P par

θ (t′))Var(P par

θ (t′ − n∆t))k(t − t′)k(t − t′ + n∆t)
}

.

(12)

The covariance parts are consequently implemented by
additional convolutions. The parametern ∈ [1, nmax] con-
trols the distance between neighboring channels. Usually,the



autocorrelation functionρipol(t) very rapidly goes to zero.
This means that only channels in a small neighborhood are
correlated. Therefore, the maximum distance between the
channels that need to be considered and thusnmax can be
chosen in dependence of the correlation coefficients:

nmax = min
{

n|(ρipol(0, n∆t) < τ
}

. (13)

Thosen for which the correlation coefficient atn∆t is below
a certain small threshold1 τ are neglected in equation (12).

The convolution process inside the reconstruction pipeline
introduces further correlations within the parallel projections.
In order to model this for the next step, the autocorrelation
coefficient function needs to be computed. The convolution
with the kernel function is a linear process. Thus, the
correlation inside the data after convolution is describedby:

ρcon(θ, t) =
h(θ, t)

h(0, 0)
, h(θ, t) = F−1

{

(F
{

hipol(θ, t) ∗ k(t)
}

)2
}

,

(14)
whereF denotes the Fourier transformation andF−1 its

inverse.
3) Backprojection:After the filtering with the convolution

kernel the next step in the reconstruction pipeline is the
backprojection into image plane. For each image pixelx =
(x, y) the sum over allNp parallel projection anglesθ ∈

[0, π[ is computed:

µ(x) =
π∆t

Np

∑

θ

P con
θ (x sin θ − y cos θ). (15)

Using the definitionP con
θ,x := P con

θ (x sin θ − y cos θ), the
noise variance of the reconstructed attenuation coefficients
Var(µ(x, y)) can be estimated as following:

Var(µ(x)) =

(

π∆t

Np

)2
∑

θ

{

Var(P con
θ,x )+

m
∑

n=1

(

Cov
(

P con
θ,x , P con

θ−m∆θ,x

)

+ Cov
(

P con
θ,x , P con

θ+m∆θ,x

))}

.

(16)

During the reconstruction algorithm only the azimuthal
rebinning introduces a correlation between directly neighbor-
ing projections. Thus, only the covariances between neigh-
boring projections are taken into account, meaningm = 1.

For getting the projection valuesP con
θ (x sin θ−y cos θ) an

interpolation is necessary. As already described before, we
use here a linear interpolation between neighboring channels.
Therefore, the approximation

P con
θ (x sin θ − y cos θ) ≈ (1 − w)P con

θ (tl) + wP con
θ (tr) (17)

is used during the reconstruction, wheretl <= x sin θ −

y cos θ <= tr are the nearest left and right samples and
w ∈ [0, 1] defines the linear interpolation weight. The
corresponding values in projectionθ′ are denotedt′l, t′r and
w′. Consequently, the covariances in eq. (16) amount to:

Cov
(

P con
θ,x , P con

θ′,x

)

= (1−w)(1−w′)Cov
(

P con
θ (tl), P

con
θ′ (t′l)

)

+

(1 − w)w′Cov
(

P con
θ (tl), P

con
θ′ (t′r)

)

+

w(1 − w′)Cov
(

P con
θ (tr), P

con
θ′ (t′l)

)

+

ww′Cov
(

P con
θ (tr), P

con
θ′ (t′r)

)

, (18)

1Typical values forτ are in the range of 0.01.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

lp/cm

M
T

F

 

 
B10
B30
B35
B50
B70

Fig. 2. MTFs of kernels used for the experiments.

and the varianceVar(P con
θ,x ) as a special case of eq. (18)

results in:

Var(P con
θ,x ) = (1−w)2Var(P con

θ (tl))+w2Var(P con
θ (tr))+

2(1 − w)wCov(P con
θ (tl), P

con
θ (tr)). (19)

Furthermore, the covariance between the different samples
can be estimated using the autocorrelation coefficient func-
tion presented in equation (14):

Cov(P con
θ (t), P con

θ′ (t′)) ≈
√

Var(P con
θ (t))Var(P con

θ′ (t′))ρcon(θ − θ′, t − t′). (20)

4) Hounsfield-scaling:The reconstructed attenuation co-
efficients are usually normalized to Hounsfield-Units (HU)
according to:

f(x) = ((µ(x) − µw)/µw) 1000HU, (21)

with µw defining the attenuation coefficient of water. In
order to estimate the noise in the normalized reconstructed
data, the following equation needs to be used:

Var(f(x)) =
(

Var(µ(x))/µ2
w

)

10002 HU2. (22)

Consequently, the standard deviation of noiseσ(x) in the
reconstructed and normalized image can be computed by

σ(x) =
√

Var(f(x)). (23)

III. A CCURRACY OF THEMETHOD

The analytic model presented in the previous sections
makes use of some assumptions and approximations, leading
to a systematic error of the method. In addition, the method
uses noisy projection data as input to the noise estimation.
This leads to an additional intrinsic statistical uncertainty.
To quantify systematic and statistical uncertainty, we have
carried out Monte-Carlo simulations with the DRASIM
software package [9]. We used noise free simulated fan-
beam projection data (one full rotation, 1160 projections per
2π, 672 detector channels per row) of the synthetic phan-
toms shown in Fig. 3, and built CT-image noise estimates
according to the following three procedures:

A) Noise free projections were used for a Poisson-
distributed noise estimation; propagation through
the analytical model yieldsσA(x).

B) We reconstructedN = 100 CT images, each time
adding Poisson-distributed noise to the projections
and performed image-based noise measurements
from theN images for each pixel:σB(x).



C) In parallel, for each of theN images we used the
noisy projections for Poisson-distributed noise es-
timation; propagation through the analytical model
yields σC(x) andVar(σC(x)).

Procedure A) provides the expectation value for the CT
image noise according to our method. Measuring the variance
of the noise prediction during procedure C) exhibits its
intrinsic statistical uncertainty for a given dose and object:

rδ(x) =
δ(x)

σA(x)
, δ(x) =

√

Var(σC(x)) (24)

For the phantoms under study the relative statistical un-
certaintiesrδ(x, y) are well below1%. Subsequently, we
use procedure B) to determine the systematic error of our
method:

r∆(x) =
∆(x)

σA(x)
, ∆(x) = σA(x) − σB(x) (25)

Table I summarizes the results achieved for the thorax (T)
and water (W) phantoms. Examples of the analytic noise
propagation results and the corresponding Monte-Carlo sim-
ulations are displayed in Fig. 3. The evaluation was carried
out for different reconstruction kernels, their modulation
transfer functions (MTFs) are shown in Fig. 2. Tab. I lists the
average pixel noise values̄σB in HU for the various kernels
as determined by the Monte-Carlo simulations. In addition,
the relative systematic errors are listed for three different
cases:

1) The covariances in the convolution and backprojection
steps are neglected, givingr∆,1.

2) The covariances during the backprojection are ne-
glected, givingr∆,2.

3) All covariances proposed in our method are taken into
account, givingr∆,3.

The relative systematic errors are averaged over the whole
images and quoted in percent, together with their standard
deviations. For the method proposed by us, case number
3, the range [min., max.] of the relative systematic error
occurring in the images is quoted as well. It is evident,
that good results over the full range of convolution kernels
can only be achieved by considering the covariances during
the convolution and backprojection processes. The average
relative systematic error is then below3.6% for all objects,
convolution kernels and field-of-view settings covered by this
study.

TABLE I

EVALUATION OF THE SYSTEMATIC ERROR OF THE METHOD PROPOSED.

NUMBERS ARE QUOTED IN PERCENT(%).

T B10 B30 B35 B50 B70
σ̄B 8.7 HU 13.6 HU 13.9 HU 36.4 HU 57.6 HU
r∆,1 -92.4±8.8 -46.1±10.4 -17.5±9.8 24.7±9.1 39.0±8.1
r∆,2 -34.4±6.2 -26.2±9.0 -22.1±10.2 -10.8±13.3 -6.7±14.2
r∆,3 0.2±1.6 1.6±2.0 2.7±2.5 3.6±4.1 3.4±4.8
range [-6.7, 6.6] [-4.4, 7.6] [-4.8, 9.6] [-9.8, 11.7] [-12.6, 12.5]

W B10 B30 B35 B50 B70
σ̄B 6.2 HU 9.9 HU 10.1 HU 26.8 HU 42.6 HU
r∆,1 -94.8±7.2 -49.5±9.3 -20.6±9.1 21.9±9.2 36.7±8.5
r∆,2 -36.0±5.1 -29.1±8.1 -25.3±9.5 -14.9±13.5 -10.7±14.8
r∆,3 0.2±1.6 1.0±1.9 1.9±2.5 2.4±4.2 2.1±4.9
range [-6.0, 8.8] [-5.9, 7.6] [-5.3, 8.7] [-10.0, 9.7] [-13.2, 10.1]

(a) Thorax (b) Analytical (c) Monte Carlo

(d) Water (e) Analytical (f) Monte Carlo

Fig. 3. Phantoms used for evaluation reconstructed with B35 (Tho-
rax: 300mm FOV, display: w=50,c=400, Water: 250mm FOV, display:
w=0,c=50), together with analytical noise estimates and estimates from 100
noisy realizations (display: w=0,c=50).

IV. CONCLUSIONS

We proposed a new, fast method for noise-propagation
through indirect fan-beam FBP reconstruction with rebinning
to parallel-beam geometry. We have developed approxima-
tive models for the correlation terms of parallel projection
data, resulting from the rebinning and the convolution steps.
The method has been validated by Monte-Carlo and demon-
strates good accuracy with an average relative error below
3.6%.
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