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Abstract— Precise knowledge of the local image noise is an
essential ingredient to efficient application of post-processing Focus
methods such as wavelet or diffusion filtering to computed
tomography (CT) images. The non-stationary, object dependen
nature of noise in CT images is a direct result from the noise
present in the projection data. Since quantum and electronics
noise are the dominating noise sources, comparably simple
models can be used for direct noise estimates in the individual
projections. In this article, we describe the analytic propagation Ry
of these noise estimates through fan-beam filtered backpro-
jection (FBP) reconstruction. Contrary to earlier publications
in this field, we include the correlations within the parallel i ) o
projections resulting from the rebinning, the convolution, and Fig. 1. Geometry and notation used in this paper.
the backprojection processes. The method has been validated
against Monte-Carlo results and good accuracy with an average

relative error below 3.6% was acchieved for arbitrary ObjeCtS thls paper we descnbe a new approach for propagatlng n0|se

and over the full range of commonly used convolution kernels throuah indirect fan-beam FBP reconstruction. where the
and field-of-view settings. gn 1 . '

data is first rebinned to parallel-beam geometry. We take

I. INTRODUCTION into account the correlations induced at the various steps

For many applications in Computed Tomography (CT) ipf the' reconstructi'on pipeline. In the evaluation ;ecticm w
would be beneficial having access to a precise estimate @fPerimentally validate the new approach and point out the
the image noise in each individual pixel. This informatiofMPortance of including the covariances in the computation

can be used for adapting various kinds of post-processing
methods to the non-stationary, object dependent nature of
noise in CT. In [1], [2] it has been shown that taking into \We provide a description of analytic noise propagation
account the local noise variance for wavelet or diffusionhrough fan-beam reconstruction that is structured asvisi

filtering of CT 'r(.econstruction.s is essent?al for gett?ng doo | Rebinning from fan-beam projections to equidistantly
results. In addition, several image quality evaluationshsu spaced parallel projections.

as detective quantum efficiency evaluations are based on, Convolution of the rebinned projections with the recon-
reliable estimates of the local noise variance in the imége. struction kernel

is possible to get a crude approximation of the local noise . Backprojection of the filtered projections

variance directly from the reconstructed image or by using _ o nsfield-scaling of reconstructed attenuation coeffi-
two separate reconstructions and noise estimation based on o i< 10 normalized CTvalues.

the difference image [1]. These methods have the drawbai:k

. > o stead of reconstructing CT values, an analytical esémat
that the noise estimate needs to be performed within Iocé} the error should now be computed for each image pixel.

neighborhoods, making the estimates less reliable on a p@herefore, every step of the reconstruction pipeline needs
pixel basis. A better approach is to use the knowledge abotat be modified in order to reconstruct noise variances based
the noise statistics in the projections and analyticallgppr ©On the noise estimates in the fan-beam projections. Mainly,

agate it through the reconstruction algorithm. Theorétic&ll Single steps of the reconstruction pipeline (interfiofes,
. . S convolution and backprojection) can be expressed as linear
descriptions for parallel-beam filtered backprojectiom cacqympinations of noisy data or random variables. For the

be found e.g. in [3], [4]. In the case of fan-beam FBRariance of a linear combination of random variahlésthe
reconstruction, image variance has been investigated]in [5following holds:

[8]. These methods are all dealing with direct fan-beam )
reconstructions without rebinning to parallel projectiom ~ Var(}_aiXi) =Y aiVar(X:) + Y Y " aia;Cov(Xy, X;).
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Il. METHOD



illustrated in Fig. 1. Given a certain focus anglethe focus corresponding noise varian&er (P (t)) for every parallel
position (z 7, y) is defined as: projection.
After rebinning, noise in the parallel projections and

zy = Rycosa, yy= Rysina, @ between neighboring views is no longer uncorrelated. The
where R, is the radius of the focal path. The x-ray path igiltér function describing azimuthal rebinning is a triaagl
given by the following equations: filter h**(6). The radial interpolation filter is also modeled
as a triangle filterh*@d(t). We approximate the complete
zr(l) = Ry cosa — lcos(a + f3), (3) interpolation filter as a separable 2D-filter:
WPON(O,t) = h*(0) - B (). @)
yr(l) = Rysina — Isin(a + B3). 4)

Therefore, the autocorrelation coefficient functipﬁﬁ"l(t)
Here, ! € [0,00[ is the parameter along the ray agd corresponding to the 2D-interpolation filter is:

describes the fan-angle. _ p??(0,t) = h(0,)/h(0,0), h(B,t) = h'*°'(0,t) = K™ (8, 1).

1) Rebinning: The transformation from fan-beam to par- (8)
allel geometry can be described by the following rebinning
equations: 2) Convolution: The next step in the reconstruction

0=a+p, (5 pipeline is the convolution of the parallel projectioRE™ (t)
with the kernel functiork(¢) along the row direction:

b= Rysinf. ©) PEon (1) = / PP () k(t — )dt. )

Fig. 1 shows that each ray can be uniquely determined in

the zy-plane either byr and 3 or by the parallel projection In discrete formulation the integral in equation (9) is

angle @ and the orthogonal distance to the isocenter. replaced by a sum. The noise variance in the filtered

The resampling from{«, 3)-grid to an equidistantly spaced projections Var(Pg°"(¢)) can thus be computed based on

(6,t)-grid can be computed differently, using e.g. differenequation (1). _ , ,

interpolation functions. In order to interpolate the noisei- Basically, the noise propagation through the convolution

fan can be split into two parts: the convolution with the squared
ances from fan-beamVer(F,™(5))) to parallel geometry fiering kernel and the consideration of the covariance® T

(Var(Py™(t))) basically the following steps are necessary:convolution of the noise variances in the parallel projeusi

. The correlation within the projections needs to bevith the squared filtering kernel has also been considered in

analyzed - For simplicity we assume here that noisi® theoretical analysis presented in [4] and [3]. However,
xperiments will show, that the covariance terms of the data

in the fan-beam projections is perfectly uncorrelate(ﬁ,ithin the same projections are essential for getting Iédia
This is valid as long as crosstalk at the detector anfloise estimates. Altogether, the noise variance in thedilte
tube-current variations are negligibly small. projections can be estimated according to:

« The weighted sum used for interpolation is replaced by
equation (1) - This means that the interpolation weights Var(P"(t)) = z:Vaﬂf(Pém(t'))k2 (t—t)+
used during rebinning are replaced by squared weights. ¢
If noise in the projections is assumed to be uncorrelated, >~y " Cov(PP™ (t'), Py (")k(t — t)k(t — ). (10)
the covariance part cancels out. P

« The correlation induced to the data by the performedrhe covariance between two channels within one parallel
interpolation must be modeled - The correspondingrojection can be approximated using the autocorrelation
interpolation filter, usually a 2D-filter, is computed. Thecoefficient function in equation (8):

effective filter in ¢ and 6-direction are here approxi-
mated as separable linear filters.
ar (4, ar (4 ipol / "
In our case, the rebinning is performed in two steps. First, \/Var (PP (1)) Var(PF (1)) p'* (0, — ¢).  (11)
during azimuthal rebinning, equation (5) is applied to obta The projections are sampled with the sampling distahte
a hybrid sinogram depending on the parallel projection@nglConsequently, equation (11) can be reformulated such that
6 and the fan angle3. We use a fixed interpolation grid, the distance betweeti and¢” in discrete steps of sizat
keeping the number of grid points constant and perfonir'f’ included:
a linear interpolation inn direction. For interpolating the ;. pcon ;) — Var( PP ()2 (t—t')+ ipol
. . - g ! = p 0, nAt)-
noise variances the squared interpolation weights neeé to b Y ; o G G) Z ( )
used according to equation (1). The azimuthal interpafatio AT A , ,
introduces no correlations to the hybrid projections/dn Z{\/VM(P‘) (#))Var(B™ (' + nAt)) k(t—t)k(t—t —nAt)+
direction. Thus, for the second rebinning step the data can ' . ) /
still be assumed to be uncorrelated. Then, the radial regnn v/ Var(Py™ () Var(Py™ (' — nAb)k(t — ¢ )k(t — ¢’ + nAt)} -
interpolates the hybrid data to an equally distributed $et o (12)
parallel rays according to equation (6). Here, again a finea e covariance parts are consequently implemented by

interpolation with squared weights is used for interpoiti additional convolutions. The parametere [1, .| con-
the noise variances. After this interpolation we have th#ols the distance between neighboring channels. Usuhéy,

Cov(PF™(t'), Py (")) ~

n
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autocorrelation functionp’P°!(¢) very rapidly goes to zero.
This means that only channels in a small neighborhood are
correlated. Therefore, the maximum distance between the
channels that need to be considered and thys, can be
chosen in dependence of the correlation coefficients:

—— B50
—*— B70

Nmaz = Min {n|(pip°1(0, nAt) < T} . (13)

Iplcm

Thosen for which the correlation coefficient atAt is below

a certain small thresholdr are neglected in equation (12).
The convolution process inside the reconstruction pipelin

introduces further correlations within the parallel patiens. . con .

In order to model this for the next step, the autocorrelation@nd the varianc&/ar(FP;3’) as a special case of eq. (18)

coefficient function needs to be computed. The convolutioresults in:

with the kernel function is a linear process. Thus, the

correlation inside the data after convolution is describgd  Var(P5%') = (1—w)*Var(P5" (t;))+w?Var(P§(t,))+

BOD iyt (00 k) 2(1 — w)wCov(P5™ (1), P (1)) (19)

h(0,0) (14) 7 Furthermore, the covariance between the different samples

. . . can be estimated using the autocorrelation coefficient-func
where F denotes the Fourier transformation afd! its tion presented in equa%on (14):

inverse.

3) Backprojection:After the filtering with the convolution  Cov(P5°"(t), s (1)) ~
kernel the next step in the reconstruction pipeline is the — — con , /
backprojection into image plane. For each image pixet v/ Var(Pgen (£)) Var (P (#))p*" (0 — 0/, ¢ = t'). - (20)
(z,y) the sum over allN, parallel projection angleg &

[0, [ is computed: 4) Hounsfield-scaling:The reconstructed attenuation co-

T At o efficients are usually normalized to Hounsfield-Units (HU)
p(x) = Z Py (zsinf — y cos0). (15)  according to:
0

NP
: - . f(x) = ((1(x) = pw)/ ) 1000 HU, (21)
Using the definitionPy? := P§°"(xsind — ycosf), the

noise variance of the reconstructed attenuation coefticien With 1., defining the attenuation coefficient of water. In
Var(uu(z, y)) can be estimated as following: order to estimate the noise in the normalized reconstructed

data, the following equation needs to be used:

Fig. 2. MTFs of kernels used for the experiments.

pCO" (97 t) —

ﬂAt) 2 Z {Var(F5)+ Var(f(x)) = (Var(u(x))/us, ) 1000 HU?. (22)
7]

Var(u(x)) = ( =
P Consequently, the standard deviation of noig&) in the
reconstructed and normalized image can be computed by

o(x) = 4/ Var(f(x)). (23)

> (Cov (P5%e, Pshunox) + Cov (PSS, Pimnox)) } -
" (16)

During the reconstruction algorithm only the azimuthal
rebinning introduces a correlation between directly neagh
ing projections. Thus, only the covariances between neigh- The analytic model presented in the previous sections
boring projections are taken into account, meaning- 1. makes use of some assumptions and approximations, leading
~ For getting the projection valugg°" (xsinf —y cos ) an  to a systematic error of the method. In addition, the method
interpolation is necessary. As already described befoge, Wses noisy projection data as input to the noise estimation.
-lf-ﬁe here a linear interpolation between neighboring CHanneThis leads to an additional intrinsic statistical uncergai

erefore, the approximation . : o .
To quantify systematic and statistical uncertainty, weehav

P (xsinf —ycosf) ~ (1 —w)Py™ (1) + wPy™"(t-) (17) carried out Monte-Carlo simulations with the DRASIM

is used during the reconstruction, whefe<— z sin — software package [9]. We used n_oise free sirr_]ula_ted fan-
ycosf <= t, are the nearest left and right samples an§€am projection data (one full rotation, 1160 projectioas p
w € [0,1] defines the linear interpolation weight. The2w, 672 detector channels per row) of the synthetic phan-
corresponding values in projectigh are denoted;, ¢ and  toms shown in Fig. 3, and built CT-image noise estimates
w’. Consequently, the covariances in eq. (16) amount to: according to the following three procedures:

Cov (ng’; 533) — (1—w)(1—w")Cov (Pecorx(tl)7P9c/011(t2)) i A) N.0|s.e free prqecuoqs were used for.a Poisson-
distributed noise estimation; propagation through

I1l. ACCURRACY OF THEMETHOD

(1 = wyw'Cov (P5™" (1), Py (£1)) + the analytical model yields 4 (x).
w(l —w')Cov (P5*"(t,), P5*™ (1)) + B)  We reconstructedV = 100 CT images, each time
ww'Cov (ng’“(tr),ng’“(t;)) . (18) adding Poisson-distributed noise to the projections

and performed image-based noise measurements
Typical values forr are in the range of 0.01. from the N images for each pixelrz(x).



(03] In parallel, for each of thév images we used the
noisy projections for Poisson-distributed noise es-
timation; propagation through the analytical model
yields o¢(x) and Var(o¢(x)).

Procedure A) provides the expectation value for the CT
image noise according to our method. Measuring the variance
of the noise prediction during procedure C) exhibits its (a) Thorax (b) Analytical (c) Monte Carlo
intrinsic statistical uncertainty for a given dose and obje

rs(x) = 0‘32), 5(x) = y/Var(oo(x)) (24)

For the phantoms under study the relative statistical un-
certaintiesrs(z,y) are well below1%. Subsequently, we
use procedure B) to determine the systematic error of our
method:

AX) (d) Water (e) Analytical (f) Monte Carlo
ra(x) = =%, A(X) =oa(x) —op(x)  (25)

oa(x) Fig. 3.  Phantoms used for evaluation reconstructed with BB%o{

. . : 300mm FOV, display: w=50,c=400, Water: 250mm FOV, digpla
Table | summarizes the results achieved for the th_orax _(ﬁ:O,c=50), together with analytical noise estimates aninesés from 100
and water (W) phantoms. Examples of the analytic noiseisy realizations (display: w=0,c=50).

propagation results and the corresponding Monte-Carle sim

ulations are displayed in Fig. 3. The evaluation was carried

out for different reconstruction kernels, their modulatio IV. CONCLUSIONS

transfer functions (MTFs) are shown in Fig. 2. Tab. | lists th  We proposed a new, fast method for noise-propagation
average pixel noise valuess in HU for the various kernels through indirect fan-beam FBP reconstruction with religni

as determined by the Monte-Carlo simulations. In additiortp parallel-beam geometry. We have developed approxima-
the relative systematic errors are listed for three difiere tive models for the correlation terms of parallel projestio

cases: data, resulting from the rebinning and the convolution step
1) The covariances in the convolution and backprojectiohe method has been validated by Monte-Carlo and demon-
steps are neglected, giving, ;. strates good accuracy with an average relative error below

2) The covariances during the backprojection are ne3.6%.
glected, givingra .
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