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Analytic Noise Propagation for Anisotropic
Denoising of CT Images

Anja Borsdorf !, Steffen Kappler

Abstract—In X-ray Computed Tomography (CT) the measured
projections and consequently the reconstructed CT images are
subject to quantum and electronics noise. While noise in the pro-
jections can be well described and estimated with a corresponding
physics model, the distribution of noise in the reconstructed CT
images is not directly evident. Due to attenuation variations along
different directions, the nature of noise in CT images is non-
stationary and directed. This complicates the direct application
of standard post-processing methods like bilateral filtering. In this
article we describe a possibility to compute precise orientation
dependent noise estimates for every pixel position. This is done
by analytic propagation of projection noise estimates through
indirect fan-beam filtered backprojection reconstruction. The
resulting orientation dependent image noise estimates are subse-
quently used in adaptive bilateral filters. Taking into account the
non-stationary and non-isotropic nature of noise in CT images, an
average improvement in SNR of about 60 % is achieved compared
to linear filtering at the same resolution.

I. INTRODUCTION

HE non-stationary, object dependent nature of noise in

CT images is a direct result of the noise present in
the projection data. Since quantum and electronics noise are
the dominating noise sources, comparably simple models can
be used for direct noise estimates in the individual projec-
tions. These noise estimates can be propagated through the
reconstruction algorithm in order to get an estimate of the
noise variance at every pixel position. In reference [1] we
proposed a fast analytic noise propagation through indirect fan-
beam filtered-backprojection (FBP) reconstruction. We now
extend this noise propagation approach such that separate
noise estimates for the horizontal and vertical directions can
be computed. This information allows us to adapt filtering
methods to the local noise properties in CT images, as we
demonstrate by means of a simple bilateral filter [2].

II. METHOD

The flowchart of the methodology is presented in Fig. 1
including all intermediate results for an example slice of a
real scan. The method splits up into the following parts:

1) The noise variance in the fan-beam projections is esti-
mated according to a calibrated physical noise model.

2) The multiplication with sine and cosine squares sepa-
rates the contributing rays for noise in horizontal and
vertical directions.
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Fig. 1. Flowchart of the noise reduction method.

3) The horizontal and vertical noise variances in image do-
main are computed using an analytic noise propagation
method for indirect fan-beam FBP [1].

4) The CT image is reconstructed using indirect fan-beam
FBP reconstruction.

5) The orientation dependent noise estimates in image
domain are used for noise adaptive bilateral filtering.

In the following we give a brief review of the noise prop-
agation method and illustrate how it is used for computing
orientation dependent noise estimates. After that we describe
how these noise estimates are used to adapt the bilateral filter
to the non-stationary and non-isotropic noise in the CT image.

A. Orientation Dependent Analytic Noise Propagation

Our method is based on the analytic propagation of the
noise variance through indirect fan-beam reconstruction [1].
Basically, all steps of the reconstruction pipeline (interpola-
tions, convolution and backprojection) can be expressed as
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linear combinations of noisy data (i.e. random variables). For
the variance of a linear combination of random variables X;
the following holds:

Var(z azXz) = Z a?Var(XZ)—Q—Q Z Z aiajCOV(Xi, XJ)

i j#i

M
Starting from the estimated noise variances in the fan-beam
projections Var(Pf"(3)) with tube-angle @ and fan-angle
0, equation (1) is considered in every single step of the
reconstruction algorithm. Further, we model at every step the
influence of the processing to the correlation of the data
and take this into account for the covariance computation.
Finally, we obtain for every pixel position x = (z,y) of the
reconstructed CT image f(x) an estimate of the noise variance
a%(x).

For objects with strongly directed noise due to strong atten-
uation along certain directions, one would like to have separate
noise estimates for the horizontal and vertical directions. The
contribution of noise for every ray of the fan-beam projections
to the horizontal direction is computed by:

Vary (PR1(3)) = sin?(a + 8) Var(PR1(3)), ?2)
and analogously for the vertical direction:
Vary (P(8)) = cos®(a + 8)Var(PE™(8)),  (3)

where 6 = a+( is the parallel projection angle after rebinning.
These equations are based on the observation that noise in
the projections mostly contributes to the direction orthogonal
to the projection direction. The direction dependent noise
variances in the projections are then propagated through the
reconstruction algorithm as described in [1]. This leads to
orientation dependent estimates of the noise standard deviation
ou(x) and oy (x). A noise estimation vector, defined as:

5’(X) = (UH(X)v OV(X)) ) 4

is now given for every pixel position. Assuming that noise in
the fan-beam projections is uncorrelated, the noise variance in
the CT image o2(x) can be expressed as:

0”(x) = o (x) + 03 (x). Q)

This means, that at position x the standard deviation of noise
o(x) is given by the norm of the noise estimation vector
defined in eq. (4).

B. Noise-Adaptive Bilateral Filtering

The orientation dependent noise estimates can be used
for denoising the reconstructed CT images with adaptive
anisotropic filters. In this article, we restrict to one particular
example that is mainly based on the idea of bilateral filter-
ing [2], a simple and widely used approach for edge-preserving
denoising. The filtered CT image f(x) is computed as follows:

MF@ZMMMﬂMMM»@

where k(x) is needed for normalization. The domain-filter
c(x,x’) takes into account the geometric closeness of pixels

x and x’, and the range-filter s(f(x), f(x’)) considers the
photometric closeness of the intensity values during averaging.
Instead of using simple Gaussian filters as in [2], we now
propose to adapt both parts to the local, orientation dependent
noise estimates. We define the domain-filter to be a multivari-
ate Gaussian filter, given by:

C(X, X/) _ e—%((x—x')TZJ;I(x—x'))7 (7)
[ 2034 (x)/0*(x) 0
00T et [0 @

where d controls the spatial extension of the domain-filter.
With increasing d noise is stronger reduced.

For the computation of the range-filter, we now want to take
into account the non-stationarity of noise and that directed
noise due to strong attenuation along certain directions might
be present. We use the noise estimates in horizontal o (x)
and vertical oy (x) direction in order to allow stronger filtering
to the direction along which less correlation is present. The
range-filter is built as a separable filter:

s(f(x), f(x) = su(f(x), f(x) - sv(f(x), F(X), (9

1 [ £ — £ || cos())?
2 (eF Ga+od (<))s

su(f(x), /(X)) = e ) (10)

sv(f(x), f(x))

where ¢ is the angle between the vector (x’ — x) and the
z-axis and the parameter s controls the strength of noise
reduction versus edge-preservation. With increasing s more
noise is removed.

1 [ IF G0 —FGN || sin(e))?
(03 ) +e3 (x))s

o

e
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III. EXPERIMENTAL EVALUATION

In Fig. 2 the results are displayed for the simulated phantom
used for quantitative evaluation. We used an elliptical water
cylinder of 40cm/20cm extension in x/y-direction with a
circular inlay of 3.5cm radius and placed 12cm off-center.
The inlay has a contrast of 100 HU compared to water. We
simulated noise-free fan-beam projections with 1160 projec-
tions per rotation and 672 channels. We then added quantum
noise to the projections and generated 500 noisy realizations.
All images were then reconstructed with an indirect fan-beam
FBP reconstruction using a standard Shepp-Logan filtering
kernel and a field-of-view (FOV) of 40 cm. The noise variance
in the projections is directly computed with a quantum noise
model and the noise-free fan-beam data. One example image
is displayed in Fig. 2 together with filtered versions of it using
different configurations of filters:

1) Original noisy image: no filtering is applied. See

Fig.2(a).

2) Gaussian filtering: no range filter is used, just the
underlying isotropic Gaussian domain filter influences
the result. See Fig.2(b).

3) Standard bilateral filtering: the range filter used s times
the average noise variance within the scanned object as
a parameter controlling the range filter. See Fig. 2(c).

4) Adaptive domain filtering: only the domain filter is
adapted using the noise estimation vector. The range
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(a) Original noisy image (b) Gaussian

(c) Standard Bilateral Filtering (d) Adaptive Domain Filtering

(e) Adaptive Range Filtering

(f) Adaptive Range and Domain Fil-
tering

Fig. 2. Example images used for quantitative evaluation filtered with different
configurations of the bilateral filter (all using d=9 and s=2, displayed with
¢ =10 and w = 50).

filter is just locally adapted by using s times the local
noise variance o%(x). See Fig. 2(d).

5) Adaptive range filtering: only the range filter is adapted
using the noise estimation vector. The domain filter is
an isotropic Gaussian filter. See Fig. 2(e).

6) Adaptive range and domain filtering: both, range and
domain filter are adapted using the noise estimation
vector. See Fig. 2(f).

Based on the 500 noisy and denoised images, we performed
the quantitative evaluation of resolution and noise. For mea-
suring the image resolution we computed the local modulation
transfer function (MTF) at the edge of the circular inlay in
the average image of the 500 noisy/denoised realizations. The
MTF curves for the corresponding configurations listed above
are shown in Fig. 3. From the MTF measured at the edge of
the processed and original data, the corresponding linear filter
was computed that transforms the original MTF into the MTF
of the processed data. We then applied this filter as an isotropic
linear filter to the noisy images. In average these filtered
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Fig. 3. Local MTFs measured at the circular inlay of 100HU contrast
compared to water.

images have the same average resolution at the circular object,
but differ with respect to noise reduction in homogeneous
image regions. Therefore, we computed the average standard
deviation of noise in the water ellipse in one noise realization
of the adaptively filtered and corresponding linearly filtered
data. We made sure to leave out the object boundaries in
order to only measure the effect of noise reduction. We
computed the average standard deviations of noise in the
bilateral filtered images, denoted as ofjtered and compared it to
the average standard deviations of noise in the same region in
the corresponding linearly filtered image iy fitered- We then
define the gain in signal-to-noise (SNR) ratio as:

Ofiltered

SNRgain = 1 — (12)

Olin.filtered

This is a measure of how much more noise can be reduced
with the adaptive filtering method compared to a linear filtering
leading to the same average resolution at the circular inlay.
Therefore, it is a noise-resolution trade-off measurement.
The SNR gains achieved for the different configurations are
presented in Table 1.

TABLE I
SNR GAIN IN COMPARISON TO LINEAR FILTERING WITH SAME
SMOOTHING AT THE EDGE FOR THE DIFFERENT FILTERING

CONFIGURATIONS.
[ configuration [[ contrast | ohitered | SNRgain |
1. Original noisy 100HU | 16.8HU 0%
2. Gaussian 100 HU 0.9HU 0%
3. Standard bilateral 100HU 8.2HU 47%
4. Adaptive domain 100 HU 6.5HU 58%
5. Adaptive range 100 HU 7.8 HU 52%
6. Adaptive range and domain 100HU 6.3HU 60%

Furthermore, we compared the standard bilateral filtering
and the proposed noise adaptive bilateral filtering approach
visually for two different examples of real CT scans. Here we
used a calibrated physical noise model for estimating quantum
and electronics noise in the fan-beam projections. The images
were reconstructed from one single detector row with 672
channels, using 1152 projections per rotation. The FOV is
30 cm and a standard reconstruction kernel for body scans was
used. The original noisy slices together with the two denoised
versions are presented in Fig. 4.
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Fig. 4. Real scanned phantom images from abdomen and thorax region.
Original noisy images are presented together with standard bilateral filtering
and adaptive range and domain filtering results (all using d=9 and s=2,
displayed with ¢ = 50 and w = 400).

IV. DISCUSSION

The denoising results in Fig.2 show that with the pro-
posed adaptive bilateral filtering (see Fig.2(f)) method more
homogeneous denoising can be achieved compared to standard
bilateral filtering (see Fig.2(c)).

The proposed method takes into account the local noise vari-
ance for controlling the strength of noise reduction. Therefore,
the method automatically adapts to the non-stationary noise in
the image. Further, the anisotropic adaptation using the hori-
zontal and vertical noise variances allows to reduce strongly
directed noise better than the standard filtering method.

The quantitative evaluation based on the simulated data
shows that even with standard bilateral filtering edges can
be preserved and good noise reduction can be achieved in
homogeneous image regions. The proposed method allows the
filter to adapt to the non-stationary and non-isotropic noise in
CT images. This leads to even better results comparing the
noise-resolution-tradeoff measurements presented in Table I.
The highest SNR gain of 60% was achieved for the anisotropic
adapted range and domain filter.

These observations are confirmed by the real scanned ex-
amples presented in Fig. 4.

V. CONCLUSIONS

We proposed a new method for orientation dependent noise
estimation in CT images. It is based on analytical propaga-
tion of projection noise estimates through indirect fan-beam
FBP reconstruction. These noise estimates are then used for
adapting bilateral filters to the non-stationary and non-isotropic
noise in the CT image. This adaptation leads to improved SNR
gain of about 60% compared to 47% achieved with standard
bilateral filtering at comparable resolution. The horizontal and
vertical noise estimates can be used for adapting various other
post-processing methods to the very specific noise present in
CT images.
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