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Abstract—In X-ray Computed Tomography (CT) the measured
projections and consequently the reconstructed CT images are
subject to quantum and electronics noise. While noise in the pro-
jections can be well described and estimated with a corresponding
physics model, the distribution of noise in the reconstructed CT
images is not directly evident. Due to attenuation variations along
different directions, the nature of noise in CT images is non-
stationary and directed. This complicates the direct application
of standard post-processing methods like bilateral filtering. In this
article we describe a possibility to compute precise orientation
dependent noise estimates for every pixel position. This is done
by analytic propagation of projection noise estimates through
indirect fan-beam filtered backprojection reconstruction. The
resulting orientation dependent image noise estimates are subse-
quently used in adaptive bilateral filters. Taking into account the
non-stationary and non-isotropic nature of noise in CT images, an
average improvement in SNR of about 60% is achieved compared
to linear filtering at the same resolution.

I. INTRODUCTION

THE non-stationary, object dependent nature of noise in

CT images is a direct result of the noise present in

the projection data. Since quantum and electronics noise are

the dominating noise sources, comparably simple models can

be used for direct noise estimates in the individual projec-

tions. These noise estimates can be propagated through the

reconstruction algorithm in order to get an estimate of the

noise variance at every pixel position. In reference [1] we

proposed a fast analytic noise propagation through indirect fan-

beam filtered-backprojection (FBP) reconstruction. We now

extend this noise propagation approach such that separate

noise estimates for the horizontal and vertical directions can

be computed. This information allows us to adapt filtering

methods to the local noise properties in CT images, as we

demonstrate by means of a simple bilateral filter [2].

II. METHOD

The flowchart of the methodology is presented in Fig. 1

including all intermediate results for an example slice of a

real scan. The method splits up into the following parts:

1) The noise variance in the fan-beam projections is esti-

mated according to a calibrated physical noise model.

2) The multiplication with sine and cosine squares sepa-

rates the contributing rays for noise in horizontal and

vertical directions.
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Fig. 1. Flowchart of the noise reduction method.

3) The horizontal and vertical noise variances in image do-

main are computed using an analytic noise propagation

method for indirect fan-beam FBP [1].

4) The CT image is reconstructed using indirect fan-beam

FBP reconstruction.

5) The orientation dependent noise estimates in image

domain are used for noise adaptive bilateral filtering.

In the following we give a brief review of the noise prop-

agation method and illustrate how it is used for computing

orientation dependent noise estimates. After that we describe

how these noise estimates are used to adapt the bilateral filter

to the non-stationary and non-isotropic noise in the CT image.

A. Orientation Dependent Analytic Noise Propagation

Our method is based on the analytic propagation of the

noise variance through indirect fan-beam reconstruction [1].

Basically, all steps of the reconstruction pipeline (interpola-

tions, convolution and backprojection) can be expressed as
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linear combinations of noisy data (i.e. random variables). For

the variance of a linear combination of random variables Xi

the following holds:

Var(
∑

i

aiXi) =
∑

i

a2
i Var(Xi)+2

∑

i

∑

j 6=i

aiajCov(Xi, Xj).

(1)

Starting from the estimated noise variances in the fan-beam

projections Var(P fan
α (β)) with tube-angle α and fan-angle

β, equation (1) is considered in every single step of the

reconstruction algorithm. Further, we model at every step the

influence of the processing to the correlation of the data

and take this into account for the covariance computation.

Finally, we obtain for every pixel position x = (x, y) of the

reconstructed CT image f(x) an estimate of the noise variance

σ2(x).
For objects with strongly directed noise due to strong atten-

uation along certain directions, one would like to have separate

noise estimates for the horizontal and vertical directions. The

contribution of noise for every ray of the fan-beam projections

to the horizontal direction is computed by:

VarH(P fan
α (β)) = sin2(α + β)Var(P fan

α (β)), (2)

and analogously for the vertical direction:

VarV(P fan
α (β)) = cos2(α + β)Var(P fan

α (β)), (3)

where θ = α+β is the parallel projection angle after rebinning.

These equations are based on the observation that noise in

the projections mostly contributes to the direction orthogonal

to the projection direction. The direction dependent noise

variances in the projections are then propagated through the

reconstruction algorithm as described in [1]. This leads to

orientation dependent estimates of the noise standard deviation

σH(x) and σV(x). A noise estimation vector, defined as:

σ̄(x) = (σH(x), σV(x)) , (4)

is now given for every pixel position. Assuming that noise in

the fan-beam projections is uncorrelated, the noise variance in

the CT image σ2(x) can be expressed as:

σ2(x) = σ2
H(x) + σ2

V(x). (5)

This means, that at position x the standard deviation of noise

σ(x) is given by the norm of the noise estimation vector

defined in eq. (4).

B. Noise-Adaptive Bilateral Filtering

The orientation dependent noise estimates can be used

for denoising the reconstructed CT images with adaptive

anisotropic filters. In this article, we restrict to one particular

example that is mainly based on the idea of bilateral filter-

ing [2], a simple and widely used approach for edge-preserving

denoising. The filtered CT image f̃(x) is computed as follows:

f̃(x) =
1

k(x)

∑

x
′

f(x′) · c(x,x′) · s(f(x), f(x′)), (6)

where k(x) is needed for normalization. The domain-filter

c(x,x′) takes into account the geometric closeness of pixels

x and x
′, and the range-filter s(f(x), f(x′)) considers the

photometric closeness of the intensity values during averaging.

Instead of using simple Gaussian filters as in [2], we now

propose to adapt both parts to the local, orientation dependent

noise estimates. We define the domain-filter to be a multivari-

ate Gaussian filter, given by:

c(x,x′) = e−
1
2 ((x−x

′)T Σ−1
x

(x−x
′)), (7)

Σx =

[

2σ2
H(x)/σ2(x) 0

0 2σ2
V(x)/σ2(x)

]

d, (8)

where d controls the spatial extension of the domain-filter.

With increasing d noise is stronger reduced.

For the computation of the range-filter, we now want to take

into account the non-stationarity of noise and that directed

noise due to strong attenuation along certain directions might

be present. We use the noise estimates in horizontal σH(x)
and vertical σV(x) direction in order to allow stronger filtering

to the direction along which less correlation is present. The

range-filter is built as a separable filter:

s(f(x), f(x′)) = sH(f(x), f(x′)) · sV(f(x), f(x′)), (9)

sH(f(x), f(x′)) = e
− 1

2

(

(‖f(x)−f(x′)‖ cos(ϕ))2

(σ2
H

(x)+σ2
H

(x′))s

)

, (10)

sV(f(x), f(x′)) = e
− 1

2

(

(‖f(x)−f(x′)‖ sin(ϕ))2

(σ2
V

(x)+σ2
V

(x′))s

)

, (11)

where ϕ is the angle between the vector (x′
− x) and the

x-axis and the parameter s controls the strength of noise

reduction versus edge-preservation. With increasing s more

noise is removed.

III. EXPERIMENTAL EVALUATION

In Fig. 2 the results are displayed for the simulated phantom

used for quantitative evaluation. We used an elliptical water

cylinder of 40 cm/20 cm extension in x/y-direction with a

circular inlay of 3.5 cm radius and placed 12cm off-center.

The inlay has a contrast of 100 HU compared to water. We

simulated noise-free fan-beam projections with 1160 projec-

tions per rotation and 672 channels. We then added quantum

noise to the projections and generated 500 noisy realizations.

All images were then reconstructed with an indirect fan-beam

FBP reconstruction using a standard Shepp-Logan filtering

kernel and a field-of-view (FOV) of 40 cm. The noise variance

in the projections is directly computed with a quantum noise

model and the noise-free fan-beam data. One example image

is displayed in Fig. 2 together with filtered versions of it using

different configurations of filters:

1) Original noisy image: no filtering is applied. See

Fig. 2(a).

2) Gaussian filtering: no range filter is used, just the

underlying isotropic Gaussian domain filter influences

the result. See Fig. 2(b).

3) Standard bilateral filtering: the range filter used s times

the average noise variance within the scanned object as

a parameter controlling the range filter. See Fig. 2(c).

4) Adaptive domain filtering: only the domain filter is

adapted using the noise estimation vector. The range
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(a) Original noisy image (b) Gaussian

(c) Standard Bilateral Filtering (d) Adaptive Domain Filtering

(e) Adaptive Range Filtering (f) Adaptive Range and Domain Fil-
tering

Fig. 2. Example images used for quantitative evaluation filtered with different
configurations of the bilateral filter (all using d=9 and s=2, displayed with
c = 10 and w = 50).

filter is just locally adapted by using s times the local

noise variance σ2(x). See Fig. 2(d).

5) Adaptive range filtering: only the range filter is adapted

using the noise estimation vector. The domain filter is

an isotropic Gaussian filter. See Fig. 2(e).

6) Adaptive range and domain filtering: both, range and

domain filter are adapted using the noise estimation

vector. See Fig. 2(f).

Based on the 500 noisy and denoised images, we performed

the quantitative evaluation of resolution and noise. For mea-

suring the image resolution we computed the local modulation

transfer function (MTF) at the edge of the circular inlay in

the average image of the 500 noisy/denoised realizations. The

MTF curves for the corresponding configurations listed above

are shown in Fig. 3. From the MTF measured at the edge of

the processed and original data, the corresponding linear filter

was computed that transforms the original MTF into the MTF

of the processed data. We then applied this filter as an isotropic

linear filter to the noisy images. In average these filtered

Fig. 3. Local MTFs measured at the circular inlay of 100 HU contrast
compared to water.

images have the same average resolution at the circular object,

but differ with respect to noise reduction in homogeneous

image regions. Therefore, we computed the average standard

deviation of noise in the water ellipse in one noise realization

of the adaptively filtered and corresponding linearly filtered

data. We made sure to leave out the object boundaries in

order to only measure the effect of noise reduction. We

computed the average standard deviations of noise in the

bilateral filtered images, denoted as σfiltered and compared it to

the average standard deviations of noise in the same region in

the corresponding linearly filtered image σlin.filtered. We then

define the gain in signal-to-noise (SNR) ratio as:

SNRgain = 1 −

σfiltered

σlin.filtered
. (12)

This is a measure of how much more noise can be reduced

with the adaptive filtering method compared to a linear filtering

leading to the same average resolution at the circular inlay.

Therefore, it is a noise-resolution trade-off measurement.

The SNR gains achieved for the different configurations are

presented in Table I.

TABLE I
SNR GAIN IN COMPARISON TO LINEAR FILTERING WITH SAME

SMOOTHING AT THE EDGE FOR THE DIFFERENT FILTERING

CONFIGURATIONS.

configuration contrast σfiltered SNRgain

1. Original noisy 100 HU 16.8 HU 0%

2. Gaussian 100 HU 0.9 HU 0%

3. Standard bilateral 100 HU 8.2 HU 47%

4. Adaptive domain 100 HU 6.5 HU 58%

5. Adaptive range 100 HU 7.8 HU 52%

6. Adaptive range and domain 100 HU 6.3 HU 60%

Furthermore, we compared the standard bilateral filtering

and the proposed noise adaptive bilateral filtering approach

visually for two different examples of real CT scans. Here we

used a calibrated physical noise model for estimating quantum

and electronics noise in the fan-beam projections. The images

were reconstructed from one single detector row with 672

channels, using 1152 projections per rotation. The FOV is

30 cm and a standard reconstruction kernel for body scans was

used. The original noisy slices together with the two denoised

versions are presented in Fig. 4.
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(a) Abdomen Noisy (b) Thorax Noisy

(c) Standard Bilateral Filtering (d) Standard Bilateral Filtering

(e) Adaptive Range and Domain Fil-
tering

(f) Adaptive Range and Domain Fil-
tering

Fig. 4. Real scanned phantom images from abdomen and thorax region.
Original noisy images are presented together with standard bilateral filtering
and adaptive range and domain filtering results (all using d=9 and s=2,
displayed with c = 50 and w = 400).

IV. DISCUSSION

The denoising results in Fig. 2 show that with the pro-

posed adaptive bilateral filtering (see Fig. 2(f)) method more

homogeneous denoising can be achieved compared to standard

bilateral filtering (see Fig. 2(c)).

The proposed method takes into account the local noise vari-

ance for controlling the strength of noise reduction. Therefore,

the method automatically adapts to the non-stationary noise in

the image. Further, the anisotropic adaptation using the hori-

zontal and vertical noise variances allows to reduce strongly

directed noise better than the standard filtering method.

The quantitative evaluation based on the simulated data

shows that even with standard bilateral filtering edges can

be preserved and good noise reduction can be achieved in

homogeneous image regions. The proposed method allows the

filter to adapt to the non-stationary and non-isotropic noise in

CT images. This leads to even better results comparing the

noise-resolution-tradeoff measurements presented in Table I.

The highest SNR gain of 60% was achieved for the anisotropic

adapted range and domain filter.

These observations are confirmed by the real scanned ex-

amples presented in Fig. 4.

V. CONCLUSIONS

We proposed a new method for orientation dependent noise

estimation in CT images. It is based on analytical propaga-

tion of projection noise estimates through indirect fan-beam

FBP reconstruction. These noise estimates are then used for

adapting bilateral filters to the non-stationary and non-isotropic

noise in the CT image. This adaptation leads to improved SNR

gain of about 60% compared to 47% achieved with standard

bilateral filtering at comparable resolution. The horizontal and

vertical noise estimates can be used for adapting various other

post-processing methods to the very specific noise present in

CT images.
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