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Abstract Objective The signal-to-noise ratio in com-
puted tomography (CT) data should be improved by us-
ing adaptive noise estimation for level-dependent thresh-
old determination in the wavelet domain.
Method The projection data measured in CT and, thus,
the slices reconstructed from these data are noisy. For
a reliable diagnosis and subsequent image processing,
like segmentation, the ratio between relevant tissue con-
trasts and the noise amplitude must be sufficiently large.
By separate reconstructions from disjoint subsets of pro-
jections, e.g. even and odd numbered projections, two
CT volumes can be computed, which only differ with
respect to noise. We show that these images allow a
position and orientation adaptive noise estimation for
level-dependent threshold determination in the wavelet
domain. The computed thresholds are applied to the av-
eraged wavelet coefficients of the input data.
Results The final result contains data from the com-
plete set of projections, but shows approximately 50%
improvement in signal-to-noise ratio.
Conclusions The proposed noise reduction method adapts
itself to the noise power in the images and allows for the
reduction of spatially varying and oriented noise.

1 Introduction

In computed tomography (CT), the projections acquired
at the detector are noisy, predominantly caused by quan-
tum statistics. This noise propagates through the re-
construction algorithm to the reconstructed slices. Pixel
noise in the images can be reduced by increasing the
radiation dose or by choosing a smoothing reconstruc-
tion [14]. However, with respect to patients’ care, the
least possible radiation dose is required and a smoothing
reconstruction decreases image resolution. This shows
that noise cannot be reduced arbitrarily. An increased
signal-to-noise ratio is beneficial for a reliable diagno-
sis and subsequent image processing, like registration or

segmentation. Many different approaches for noise sup-
pression in CT have been investigated. For example,
iterative numerical reconstruction techniques optimiz-
ing statistical objective functions [10,16,15]. The main
drawback of these approaches is the high computational
complexity. Furthermore, several linear or nonlinear fil-
tering methods for noise reduction in the sinogram [11,
12,8] or reconstructed images [20,17] have been pro-
posed. The disadvantage of denoising in the sinogram-
space is the low signal-to-noise level, what makes a struc-
ture-preserving denoising difficult. Reducing noise after
reconstruction is challenging mainly due to the difficult
noise properties in CT: after reconstruction the noise
distribution is unknown and noise is non-stationary. Fur-
ther, directed noise due to high attenuation along certain
directions makes the differentiation between structures
and noise more complicated. In [1] we suggested to an-
alyze the correlations between the wavelet representa-
tions of separately reconstructed images in order to dis-
tinguish between structures and noise. This method al-
lows an automatic adaptation to the locally varying noise
power in CT. However, no anisotropic denoising can be
performed with this approach. This paper presents a
new wavelet-thresholding method for edge-preserving,
anisotropic noise reduction in CT-images.

A very important requirement for any noise reduc-
tion in medical images is that all clinically relevant im-
age content must be preserved. A common approach for
edge-preserving noise reduction is wavelet thresholding,
based on the work of Donoho and Johnstone [9]. The
input image is decomposed into wavelet coefficients. In-
significant detail coefficients below a defined threshold
are erased, but those with larger values are preserved.
The noise suppressed image is obtained by an inverse
wavelet transformation from the modified coefficients.
The difficulty is to find a proper threshold, especially
for noise of spatially varying power and directed noise,
which is commonly present in CT-images. Choosing a
very high threshold may lead to visible loss of image
structures, but the effect of noise suppression may be in-
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sufficient, if the chosen threshold was too low. Therefore,
a reliable estimation of noise for threshold determination
is one of the main issues.

We show that the position and orientation dependent
noise power in CT can be estimated from two separately
reconstructed images, which only differ with respect to
image noise. Therefore, the denoising method adapts it-
self to the noise power and allows for the reduction of
spatially varying and oriented noise.

This paper is an extension of our work presented
in [2] and is organized as follows: In section 2, the dif-
ferent steps used in the noise reduction method are de-
scribed in detail. Section 3 presents the experimental
evaluation based on simulated, as well as real clinical
data. In section 4 the main observations of the experi-
ments are discussed. Finally, section 5 summarizes the
results and draws conclusions.

2 Material and Methods

2.1 Overview

An overview of the noise reduction method is shown in
Fig. 1. First, two images A and B are generated, which
only differ with respect to image noise. In CT, this can be
achieved by separate reconstructions from disjoint sub-
sets of projections P1 ⊂ P and P2 ⊂ P, with P1∩P2 = ∅,
|P1| = |P2| and P = P1 ∪ P2 (|P| defines the number
of samples in P). Different possibilities for acquiring P1
and P2 exist:

– The simplest possibility is to scan the object twice,
one time shortly after another with the same scan-
ning parameters, each at half of the overall dose.
However, this only works as long as the patient does
not move.

– The acquisition of the two subsets can also be done
during one single scan by splitting the overall num-
ber of projections into two disjoint sets afterwards.
More specifically, one image is reconstructed from the
even and the other from the odd numbered projec-
tions [1]. Here, it must be ensured that the sampling
is high enough for the separate reconstruction of both
datasets within the desired field-of-view.

– A third possibility is to use a dual-source CT scan-
ner, where two tubes and two detectors with an off-
set of 90 degrees can work in parallel [3]. The two
source-detector-systems need to be concerted in or-
der to show comparable, but statistically uncorre-
lated, noise characteristics. Further, the same scan-
ning and reconstruction parameters should be used
for both source-detector-systems. One image can then
be reconstructed from the projections acquired at the
first and the other from the projections acquired at
the second detector. The two resulting images include
the same ideal noise-free signal but different noise.

Each of the images is then decomposed by a two di-
mensional stationary wavelet transformation (SWT) [5].
After this linear transformation, four two-dimensional
blocks of coefficients are available at each decomposition
level for each image: the lowpass filtered approximation
image C and three detail images WH, WV and WD in-
cluding high frequency structures in horizontal (H), ver-
tical (V) and diagonal (D) direction, together with noise
in the respective frequency bands. For more details on
wavelet theory we refer to [18,23,7]. The computation
of the differences between the detail coefficients of the
two input images A and B shows just the noise in the
respective frequency band and orientation. This will be
described in the next section in greater detail. These
noise images can be used for the estimation of the po-
sition and orientation dependent standard deviation of
noise in A and B. From this estimation, a thresholding
mask is computed and applied to the averaged detail co-
efficients of the input images. The computation of the
inverse wavelet transformation from the modified coef-
ficients results in a noise-suppressed image. This again
corresponds to the reconstruction from the complete set
of projections but with improved signal-to-noise ratio.

2.2 Threshold Determination

The two images A and B are reconstructed from dis-
joint subsets of projections, where noise between the
projections can be assumed to be uncorrelated (see [13,
4] for more information about CT reconstruction and
the propagation of noise from the projections to the re-
constructed slices). Consequently, A and B only differ
with respect to image noise, but include the same ideal
noise-free signal:

A = S + NA , B = S + NB , (1)

where S = E(A) = E(B) represents the ideal noise-
free image (the statistical expectation E) and NA 6= NB

zero-mean noise (E(NA) = E(NB) = 0) included in im-
age A and B, respectively. Noise in both images is non-
stationary, and consequently the standard deviation of
noise depends on the local position x = (x1, x2). The
standard deviations at a given pixel position are approx-
imately the same in both images:

σA(x) ≈ σB(x), (2)

because on average the same number of contributing
quanta can be assumed. Noise between the projections
P1 and P2 is uncorrelated and accordingly noise between
the separately reconstructed images is uncorrelated, too,
leading to the following covariance:

Cov(NA, NB) = 0. (3)

We are now interested in the noise variance in a linear
combination L of A and B defined as:

L = g1A + g2B, (4)
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Fig. 1 Block diagram of the noise reduction method.

(a) Average M (b) Difference D

(c) Threshold τH
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Fig. 2 Example of orientation and position dependent threshold at the first decomposition level for thoracic image with
strongly directed noise. The average of input images is shown in (a) and their difference in (b). The threshold images in
horizontal (c), vertical (d) and diagonal (e) directions were computed with k = 1.0 and s = 8. The color-mapping is shown in
(f).

with weights g1, g2 ∈ R. For the variance of a linear
combination of random variables the following holds [24]:

σ2

L = g2

1
σ2

A + g2

2
σ2

B + 2g1g2Cov(A,B). (5)

We can show that

Cov(A,B) = E((A − E(A))(B − E(B))) (6)

= E((A − S)(B − S))

= E(NA · NB)

= Cov(NA, NB) − E(NA)E(NB)

= 0.

Using eq. 2 and eq. 6, eq. 5 results in:

σL =
√

g2
1

+ g2
2
σA. (7)

First of all, eq. 7 shows why the noise level in A and
B is increased by a factor of

√
2 in comparison to the

reconstruction from the complete set of projections or

the average of the two input images M = 0.5(A + B).
Furthermore, it can be used for estimating noise in A

and B and consequently in M from the difference of
the input images. By the computation of the difference
image

D = A − B = NA − NB , (8)

we get a noise-image free of structures. Using eq. 7, we
obtain that the standard deviations σA and σB of noise
can be approximated from the standard deviation in the
difference image σD by:

σA = σB =
σD√

2
. (9)

Thus, the standard deviation of noise in the average im-
age M results in:

σM =
σA√

2
=

σD

2
. (10)

In order to compute a level and orientation depen-
dent threshold for denoising in the wavelet domain, noise
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in the different frequency bands and orientations should
be estimated separately. Due to the known linearity of
the wavelet transformation, the differences between the
detail coefficients can also be directly used for noise es-
timation. At each decomposition level l the difference
images

DH

l = WH

A,l − WH

B,l , (11)

DV

l = WV

A,l − WV

B,l , (12)

DD

l = WD

A,l − WD

B,l (13)

between the detail coefficients are computed, where the
subscripts A and B correspond to the two images and
H, V and D again denote the horizontal, vertical and di-
agonal directions. These difference images are then used
for the estimation of noise in the respective frequency
band and orientation. In CT-images, the noise power is
spatially varying. Therefore, noise estimation should be
position dependent. For example, we estimate the stan-
dard deviation σ at decomposition level l in the horizon-
tal direction according to:

σH

l (x) =

√

1

|Ωx|
∑

x̃∈Ωx

(DH

l (x̃))2, (14)

within a local square pixel region Ωx centered around
the current position x = (x1, x2) such that:

Ωx =

{

x̃
∣

∣ |xj − x̃j | ≤ s; ∀j = 1, 2

}

, (15)

where the constant s defines the size of the pixel region
and, thus, the number of pixels |Ωx| used for the local
noise estimation. Analogously, we obtain the noise es-
timates for the vertical and diagonal directions. From
the three standard deviation images σH

l , σV

l and σD

l we
compute for all decomposition levels, orientation and po-
sition dependent thresholds according to:

τH

l = k
σH

l

2
(16)

τV

l = k
σV

l

2

τD

l = k
σD

l

2

The constant k controls the amount of noise suppression.
With increasing k more noise is removed. In Fig. 2(c)-
2(e) the thresholds computed with s = 8 for the first
decomposition level in the horizontal, vertical and diag-
onal directions are shown for a thorax-slice (see average
of input images in Fig. 2(a)) with strongly directed noise
(see difference of input images in Fig. 2(b)).

2.3 Averaging and Thresholding

The computed thresholds from eq. (16) are then applied
to the averaged wavelet coefficients of the input images:

WH

M,l = 0.5 · (WH

A,l + WH

B,l), (17)

WV

M,l = 0.5 · (WV

A,l + WV

B,l),

WD

M,l = 0.5 · (WD

A,l + WD

B,l).

We perform a hard thresholding, meaning that all aver-
aged coefficients with an absolute value below the thresh-
old are set to zero and values above are kept unchanged:

WR,l =

{

WM,l, if |WM,l| ≥ τl,

0, else.
(18)

The approximation coefficients CA,lmax
and CA,lmax

of
A and B at the maximum decomposition level lmax are
simply averaged:

CR,lmax
= 0.5 · (CA,lmax

+ CB,lmax
). (19)

The final noise suppressed image is computed by an
inverse wavelet transformation from the averaged and
weighted wavelet coefficients of the input images.

3 Results

3.1 Noise and Resolution

In evaluating the performance of the noise reduction
method, mainly two aspects are of interest: the amount
of noise reduction and, even more importantly, the preser-
vation of anatomical structures. Therefore, we investi-
gated the influence of the noise suppression method to
the standard deviation of noise and image resolution.

For our experiments we used reconstructions from a
simulated elliptical water phantom (dx = 20 cm, dy =
10 cm), with an embedded, quartered cylinder (r = 6 cm)
with a contrast of 100HU. For this test, P1 and P2 were
simulated independently, corresponding to two consecu-
tive scans or the acquisition with a dual-source-scanner.
All simulations were performed with the DRASIM soft-
ware package provided by Karl Stierstorfer [21]. The ad-
vantage of simulations is that in addition to noisy projec-
tions (with Poisson distributed noise according to quan-
tum statistics), ideal, noise-free data can also be pro-
duced. All slices are of size 512 × 512 and were recon-
structed using the weighted filtered backprojection [22]
within a field of view of 20 cm using a sharp Shepp-Logan
filtering kernel. This results in an average pixel noise of
approximately 22.4HU in the homogeneous image region
in the reconstruction from the complete set of projec-
tions. The standard deviation of noise in the separately
reconstructed images is about

√
2 times higher.

All images were denoised with the proposed method
up to the fourth decomposition level of a Haar-SWT.
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(a) Original noisy phantom
(k = 0)

(b) ANESWT with k = 1.0 (c) ANESWT with k = 1.5

(d) ANESWT with k = 2.0 (e) ANESWT with k = 2.5 (f) ANESWT with k = 3.0

Fig. 3 Phantom used for noise and resolution evaluation. (a) Original noisy phantom, where regions used for noise evaluation
are marked. (b)-(f) Denoised images achieved with proposed method (ANESWT ) with different values of parameter k control-
ling the amount of noise suppression. Center and window settings used for displaying CT-images: center=50, window=200.

(a) STSWT (b) CASWT with p = 1.0 (c) CASWT with p = 2.0 (d) CASWT with p = 3.0

Fig. 4 Denoising results achieved with standard wavelet thresholding (STSWT ) (a) and correlation analysis based wavelet
denoising (CASWT) (b)-(d) for different values of parameter p controlling the amount of noise suppression. Center and window
settings used for displaying CT-images: center=50, window=200.

We used s = 4 for the pixel region defined in equa-
tion (15) and compare the results for different values
of k ∈ {1, 1.5, 2, 2.5, 3} regulating the amount of noise
suppression. We compared the proposed method with a
standard wavelet thresholding method that is not spe-
cially adapted for the use in CT. We used the SWT De-

noising 2D tool from the Matlab wavelet toolbox [19].
For denoising in Matlab, we used a Balance Sparsity-

Norm hard thresholding method with a non-white-noise
model and again four levels of a Haar-SWT. Further,
we compared proposed method with another wavelet de-
noising method for edge-preserving noise reduction in
CT, as presented in [1]. The weights at each decompo-
sition level were gained from a correlation analysis be-

tween the approximation images of the previous decom-
position level. We used again four decomposition lev-
els of a Haar-SWT and computed the correlation within
neighborhoods of 5 × 5 pixels around the corresponding
position. The amount of noise suppression was controlled
by the power within the weighting function, denoted by
parameter
p ∈ {1, 1.5, 2, 2.5, 3}. In the following we use the abre-
viation STSWT for the standard thresholding, CASWT

for the correlation analysis based denoising method, and
ANESWT for the proposed adaptive noise estimation
based method.

In Fig. 3 the used noisy phantom together with the
denoised images achieved with ANESWT for different
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(b) Mean noise and standard deviation between regions

Fig. 5 Noise evaluation for ANESWT in different pixel regions marked in Fig. 3(a). (a) Comparison of standard deviation of
noise in different pixel regions for different values of k. (b) Mean standard deviation of noise of all pixel regions together with
standard deviation between different pixel regions for different values of k.
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(b) Standard deviation of noise -
CASWT
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between regions - CASWT

Fig. 6 Noise evaluation for STSWT (a) and CASWT (b) and (c). The same pixel regions were used, as marked in Fig. 3(a).
(a) Standard deviation of noise in different pixel regions, (b) comparison of standard deviation of noise in different pixel regions
for different values of p. (b) Mean standard deviation of noise of all pixel regions together with standard deviation between
different pixel regions for different values of p.

values of k are shown. Due to the eccentricity of the
used phantom, we got directed noise, pointing out in
the direction of highest attenuation, as can be seen in
the original noisy image in Fig. 3(a). For better compar-
ison, the denoising results achieved with STSWT and
CASWT for different values of p are presented in Fig. 4.
In order to compare the noise homogeneity before and
after denoising, we evaluated the standard deviations of
noise in 24 homogeneous image regions of 40× 40 pixels
as marked in Fig. 3(a). The standard deviations of noise
in the different pixel regions are plotted in Fig. 5(a) for
the original and the denoised images using ANESWT.
The pixel regions are numbered incrementally according
to their standard deviation of noise in the original image.
It can be seen that with increasing k stronger noise sup-
pression is achieved. Furthermore, it can be seen that,
with increasing k, noise between the different evaluation
regions becomes more homogeneous. This is even clearer
in Fig. 5(b), where the average standard deviations of

noise from all evaluation regions are plotted for the dif-
ferent values of k (k = 0 denotes the original image),
together with the standard deviations between the 24
evaluation regions. As Fig. 5(b) shows, with increasing k

not only the average noise in the image is reduced, but
also the standard deviation between the pixel regions is
decreased.

Fig. 6(a) shows the noise evaluation for STSWT. In
all pixel regions the standard deviation of noise was de-
creased. However, it can be seen, that the algorithm does
not adapt to the noise level in the image. Regions with a
higher noise level are not stronger denoised. Fig. 6(b)
shows the noise evaluation for CASWT. The average
standard deviation of noise together with the standard
deviation between the different pixel regions is shown in
Fig. 6(c). With increasing parameter p a stronger noise
suppression is achieved. The direct comparison of the
standard deviations of noise in the different pixel regions
between ANESWT and CASWT shows that a compara-
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(d) MTF measured at horizontal edge

Fig. 7 Evaluation of image resolution for ANESWT. Average edge profiles of the vertical (a) and horizontal (b) edge and
MTFs of vertical (c) and horizontal (d) edge are compared for different values of k.

ble noise suppression in pixel regions 1-12 is e.g. achieved
for k = 2.0 and p = 2.0. In contrast to that, the average
noise suppression in pixel regions 13-24 achieved with
k = 2.0 corresponds to that of p = 2.5. ANESWT re-
duces more noise in regions with strong directed noise.
Consequently, a lower standard deviation between the
different pixel regions is achieved.

For evaluating image resolution, we used a standard
measurement for resolution in CT. The modulation trans-
fer function (MTF) (see e.g. [4]) indicates how many line
pairs per cm (lp/cm) can be distinguished. It is possi-
ble to determine the local MTF directly from the edge
in an image. For this purpose, we manually selected a
fixed region around the horizontal or vertical edge of the
quartered cylinder. The slight tilt of the edge allows a
higher sampling of the edge profile, which is additionally
averaged along the edge. The derivation of the edge pro-
file leads to the line-spread function (LSF). The Fourier
transformation of the LSF results in the MTF, which
is additionally normalized so that MTF(0) = 1. Reli-
able measurements of the MTF from this edge technique

can only be achieved if the contrast of the edge is much
higher than the pixel noise in the images [6]. This can
be easily avoided by applying the computed weights at
each decomposition level to the wavelet coefficients of the
ideal noise-free image and computing the inverse trans-

formation. This has the effect of making the influence
of the weighting to the real signal directly visible. The
local MTF can then be computed at the edge in the
processed noise-free image. In Fig. 7 the edge profiles of
the vertical and horizontal edge and the corresponding
MTFs can be seen. In Fig. 7(a) and 7(c) it can be seen
that the vertical edge was very well preserved. Image
resolution at the vertical edge could even be improved.
In contrast to that, a slight blurring is noticeable at the
horizontal edge, as can be seen in Fig. 7(b) and 7(d). In
Fig. 8 the resolution evaluations performed for CASWT

are shown. Here, it can be observed that there is nearly
no difference with respect to edge-preservation for the
horizontal and vertical edge.

3.2 Example Images

In Fig. 9(d) and 9(f), zoomed-in noise-suppressed results
from the proposed method applied to a thoracic image
(see Fig. 2(a)) are shown for two different settings of k.
The two input datasets A and B were generated by sep-
arate reconstructions from even and odd numbered pro-
jections. The difference images (Fig. 9(e), 9(g)) between
the denoised and average of input images (Fig. 9(a)) are
also displayed. The images are compared to the denoising
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(d) MTF measured at horizontal edge

Fig. 8 Evaluation of image resolution for CASWT. Average edge profiles of the vertical (a) and horizontal (b) edge and MTFs
of vertical (c) and horizontal (d) edge are compared for different values of p.

result achieved with the SWT De-noising 2D tool from
the Matlab wavelet toolbox [19] (see Fig. 9(b) and 9(c)).
All computations were performed using a Haar wavelet
decomposition up to the fourth decomposition level. For
denoising in Matlab, we used a Balance Sparsity-Norm

hard thresholding method with a non-white-noise model.

The difference image in Fig. 9(c) shows that standard
wavelet denoising methods reduce noise in the images,
but also blur edges. The reason for this is that no reli-
able noise estimation is possible if just one CT-image is
available. In contrast, the proposed method adapts itself
to the spatially varying noise power in the different fre-
quency bands and orientations and, therefore, performs
much better especially in images with directed noise.

4 Discussion

The experiments in the previous section showed that
standard denoising techniques like STSWT lead to un-
convincing results if they are applied to CT images. The
reason for this can be found in the difficult noise prop-
erties in CT. The noise distribution after reconstruction
is not known, noise is non-stationary and directed noise
may be present. This makes the distinction between real
structures and noise more complicated. The presented

examples, where STSWT was applied to CT slices with
directed noise, clearly showed that in regions of higher
noise level noise still remains in the image, while other
regions already get blurred.

The CASWT, another wavelet based method for noise
suppression on CT data, showed that an adaptation to
the noise level is performed. The method adapts itself to
the noise level of the input data by computing the local
correlations between the wavelet representations of two
separately reconstructed CT images. At each decompo-
sition level, one weighting image is computed. This is ap-
plied equally to the different directions. Therefore, this
method does not allow an anisotropic. In images with
strong directed noise, a higher noise suppression always
influences the resolution in horizontal and vertical direc-
tion in the same way.

The proposed method adapts itself to the local and
orientation dependent noise power in CT. In contrast
to CASWT, the proposed ANESWT performs an an-
isotropic noise reduction. Noise is estimated separately
within the different frequency bands and orientations of
the wavelet decomposition. The thresholds used for de-
noising are chosen in adaptation to the local noise es-
timates. Consequently, locally varying and also directed
noise can be removed efficiently. The evaluation of noise
in different pixel regions showed that stronger denoising
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(a) Original (b) Matlab, denoised (c) Matlab, difference

(d) Denoised, k = 1.0 (e) Difference, k = 1.0 (f) Denoised, k = 1.5 (g) Difference, k = 1.5

Fig. 9 Denoising result of the proposed method (d),(f) in comparison to standard wavelet thresholding method from the
Matlab wavelet toolbox (b) in pixel region taken from a thorax-slice with strongly directed noise (a). The corresponding
difference images to the original (a) are displayed in (c),(e) and (g). Center and window settings used for displaying CT-
images: center=50, window=400. Center and window settings used for displaying difference images: center=0, window=30.

is performed where stronger directed noise is present.
This has the effect that not only the overall noise power
is reduced, but also the standard deviation between the
different evaluation regions is decreased. Thus, the ho-
mogeneity of noise within the image is improved. The
anisotropic behavior of the proposed method can also be
observed in the evaluation of resolution. With ANESWT,
stronger smoothing is performed orthogonal to the direc-
tion of the directed noise. This is the reason why with
increasing k stronger blurring is visible at the horizon-
tal than at the vertical edge. In comparison to CASWT

the blurring at the horizontal edge is slightly increased.
However, the vertical edge is nearly perfectly preserved,
also at high noise reduction rates. The anisotropic be-
havior is beneficial, especially in cases where directed
noise due to high attenuation along certain directions is
present.

The experiments performed on clinical data showed
that directed noise could be removed without noticeable
loss of resolution with the new denoising approach. Es-
pecially, the difference images between the original and
denoised images show that nearly no structure was re-
moved. Further, it can be seen that noise along edges
could also be removed. The comparison to STSWT ap-
plied to clinical data again showed that no reliable es-
timation of locally-varying and directed noise can be
achieved if just one input image is available. In the exam-
ple shown, noise was over-estimated resulting in strong
blurring at the edges.

The proposed method is computationally efficient.
The cost for reconstructing the two datasets A and B

separately corresponds a reconstruction from the com-
plete set of projections. Two reconstructions each with
only half the number of projections are needed, if only
the even or odd numbered projections are used respec-
tively. Otherwise, if the object is scanned twice or a dual-
source-scanner is used two complete reconstructions are
needed. The denoising process can be computed effi-
ciently. There are two wavelet decompositions and one
inverse wavelet transformation to be computed. The com-
plexity of the SWT is linear with the number of pix-
els. All computations needed for weighting the coeffi-
cients are performed within local neighborhoods. Thus,
the method is well suited for parallel computation.

5 Conclusions

In this paper, we proposed a new, robust and efficient
wavelet domain denoising technique for the suppression
of pixel noise in CT-images. The separate reconstruc-
tions from disjoint subsets of projections allows the gen-
eration of images which only differ with respect to image
noise but include the same ideal noise-free signal. We
showed that noise can be locally estimated in the dif-
ferent frequency bands and orientations of the wavelet
transformation, based on the difference between the wave-
let coefficients of the two separate reconstructions. With
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this technique, position and orientation adaptive thresh-
olds can be computed at each decomposition level for
noise reduction. The evaluation on simulated as well as
on real clinical CT data showed that the method adapts
itself to the locally varying noise power and can also
deal with difficult noise conditions like directed noise.
The comparison of our proposed method to a standard
wavelet denoising method and another wavelet denoising
method for CT showed that better edge-preservation can
be achieved and homogeneity of noise within the image
can be improved.
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