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I. I NTRODUCTION

Precise knowledge of the local image noise is important for the
efficient application of post-processing methods such as bilateral filter-
ing to computed tomography (CT) images. The non-stationary, object
dependent noise in CT images directly results from the noise present in
the projection data. Since quantum and electronics noise are the main
noise sources, comparably simple physical models can be used for noise
estimation in the individual projections.

II. M ETHOD

We developed a fast approximate method for analytic propagation of
these noise estimates through indirect fan-beam filtered backprojection
(FBP) reconstruction [1]. Mainly, all single steps of the reconstruc-
tion pipeline (interpolations, convolution and backprojection) can be
expressed as linear combinations of noisy data or random variables.
Starting from the estimated noise variance in the fan-beam projections
the variance of a linear combination of random variables is computed.
Furthermore, we approximate at every step the influence of the pro-
cessing to the correlation of the data and take this into account for
the covariance computation. Finally, we get for every pixel position
x = (x, y) of the reconstructed CT imagef(x) an estimate of the
noise varianceσ2(x).

Especially for objects with directed noise due to strong attenuation
along certain directions we would like to have separate noise estimates
for the horizontal (H) and vertical (V) directions, such thatσ2(x) =
σ2

H(x)+σ2

V(x). This is achieved by computing the contribution of noise
for every ray of the fan-beam projections to the horizontal and vertical
directions and separate noise propagation through the reconstruction
algorithm as described above.

The orientation dependent noise estimates can be used for adapting
post-processing methods, e.g. bilateral filtering [2] to the non-stationary
and directed noise in CT. The filtered CT imagẽf(x) is computed as
follows:

f̃(x) =
1

k(x)

∑

x
′

f(x′) · c(x,x
′) · s(f(x), f(x′)), (1)

where k(x) is needed for normalization. The domain-filterc(x,x′)
takes into account the geometric closeness of pixelsx and x

′, and
the range-filters(f(x), f(x′)) considers the photometric closeness of
the intensity values during averaging. Instead of using simple Gaussian
filters as in [2], we now propose to adapt both parts to the local,
orientation dependent noise estimates: We define the domain-filter to be
a multivariate Gaussian filter and the range-filter is built as a separable
Gaussian, that takes into account the horizontal and vertical noise
estimates in order to allow stronger smoothing in the direction of stronger
noise.

III. R ESULTS

In Fig. 1 the results of the noise propagation are displayed for two
examples. In Fig. 2 the corresponding two noisy phantoms are displayed
together with their denoising results from traditional and our noise
adaptive bilateral filtering method. We measured the standard deviation
of noise in two pixel regions, the first region with more homogeneous
noise and the second one with strong streaks (see Fig. 2(a) and 2(d)).The
noise reduction rates (NRR) in percent are also presented in Fig. 2. It
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Fig. 1. Analytic noise propagations (top: ellipse, bottom: thorax) compared to
Monte Carlo results (σmc) from 100 noisy CT images. Additionally, the noise
contribution to the horizontal and vertical direction are shown (displayed with
c = 50 andw = 100).
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(a) noisy ellipse (b) traditional,
NRR1 = 72.1%,
NRR2 = 54.1%

(c) proposed,
NRR1 = 73.2%,
NRR2 = 69.9%
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(d) noisy thorax (e) traditional,
NRR1 = 61.4%,
NRR2 = 54.2%

(f) proposed,
NRR1 = 76.0%,
NRR2 = 69.6%

Fig. 2. Noisy examples (top:ellipse, bottom:thorax) and denoised results from
traditional bilateral filtering compared to the proposed noise adaptive bilateral
filtering (displayed with: topc = 50 and w = 200, bottom c = 50 and w =
100).The regions for noise evaluation are marked in (a) and (d).

can be seen that especially in regions with streaks the proposed method
clearly outperforms the traditional filtering approach at comparable
resolution.

IV. CONCLUSIONS

We proposed a method for orientation dependent noise estimation in
CT images. These noise estimates are then used for adapting bilateral
filters to the non-stationary and non-isotropic noise in the CT image. This
adaptation leads to improved noise suppression at comparable resolution.
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