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Wavelet based Noise Reduction in CT-Images using
Correlation Analysis
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Abstract— The projection data measured in computed tomo-
graphy (CT) and, consequently, the slices reconstructed from
these data are noisy. We present a new wavelet based structure-
preserving method for noise reduction in CT-images that can be
used in combination with different reconstruction methods. The
approach is based on the assumption that data can be decom-
posed into information and temporally uncorrelated noise. In CT
two spatially identical images can be generated by reconstructions
from disjoint subsets of projections: using the latest generation
dual source CT-scanners one image can be reconstructed from
the projections acquired at the �rst, the other image from the
projections acquired at the second detector. For standard CT-
scanners the two images can be generated by splitting up the
set of projections into even and odd numbered projections. The
resulting images show the same information but differ with
respect to image noise. The analysis of correlations between the
wavelet representations of the input images allows separating
information from noise down to a certain signal-to-noise level.
Wavelet coef�cients with small correlation are suppressed, while
those with high correlations are assumed to represent structures
and are preserved. The �nal noise-suppressed image is recon-
structed from the averaged and weighted wavelet coef�cients
of the input images. The proposed method is robust, of low
complexity and adapts itself to the noise in the images. The
quantitative and qualitative evaluation based on phantom as well
as real clinical data showed, that high noise reduction rates of
around 40% can be achieved without noticable loss of image
resolution.

Index Terms— noise reduction, wavelets, computed tomo-
graphy, correlation analysis

I. I NTRODUCTION

COMPUTED TOMOGRAPHY (CT) is one of the most
important modalities in medical imaging. Unfortunately,

the radiation exposure associated with CT is generally re-
garded to be its main disadvantage. With respect to patients'
care, the least possible radiation dose is demanded. However,
dose has a direct impact on image quality due to quantum
statistics. Reducing the exposure by a factor of 2, for instance,
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increases the noise approximately by a factor of
p

2. The
ratio between relevant tissue contrasts and the amplitude of
noise must be suf�ciently large for a reliable diagnosis. Thus,
the radiation dose cannot be reduced arbitrarily. State-of-the-
art automatic exposure controls, which adapt the tube current
according to the attenuation of the patient's body, achievea
remarkable dose reduction [1]–[3]. Further reduction, however,
increases the noise level in the reconstructed images and leads
to lower image quality. Many different approaches for noise
suppression in CT have been investigated, for example iterative
numerical reconstruction techniques optimizing statistical ob-
jective functions [4]. Other methods model the noise properties
in the projections and seek for a smoothed estimation of
the noisy data followed by �ltered backprojection (FBP) [5]–
[7]. Furthermore, several linear or nonlinear �ltering methods
for noise reduction in the sinogram [8]–[10] or reconstructed
images [11], [12] have been proposed. In the majority of the
sinogram based methods, the �lters are adapted in order to
reduce the most noise in regions of highest attenuation. Thus,
the main goal of these methods is the reduction of directed
noise and streak artifacts. As a result, especially in the case of
nearly constant noise variance over all of the projections,these
�lters either do not remove any noise, or the noise reduction
is accompanied by noticeable loss of image resolution. The
goal of the new method, described in this paper, is the
structure-preserving reduction of pixel noise in reconstructed
CT-images and can be applied in combination with different
reconstruction methods. The proposed post-processing allows
either improved signal-to-noise ratio (SNR) without increased
dose, or reduced dose without loss of image quality.

A very important requirement for any noise reduction in
medical images is that all clinically relevant image content
must be preserved. Especially edges and small structures
should not be affected. Several edge-preserving approaches
for noise reduction in images are known. The goal of all of
these methods is to lower the noise power without smoothing
across edges. Some popular examples are nonlinear diffusion
�ltering [13] and bilateral �ltering [14], which directly work
in the spatial domain. Other approaches, in particular wavelet-
domain denoising techniques, are based on the scale-space
representation of the input data. Most of these algorithms are
based on the observation that information and white noise
can be separated using an orthogonal basis in the wavelet
domain, as described e.g. in [15]. Structures (such as edges)
are represented in a small number of dominant coef�cients,
while white noise, which is invariant to orthogonal transfor-
mations and remains white noise in the wavelet domain, is
spread across a range of small coef�cients. This observation
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dates back to the work of Donoho and Johnstone [16]. Using
this knowledge, thresholding methods have been introduced,
which erase insigni�cant coef�cients but preserve those with
larger values. The dif�culty is to �nd a suitable threshold.
Choosing a very high threshold may lead to visible loss of
image structures. On the other hand, a very low threshold
may result in insuf�cient noise suppression. Various tech-
niques have been developed for improving the detection and
preservation of edges and relevant image content, for example
by comparing the detail coef�cients at adjacent scales [17],
[18]. The additive noise in CT-images, however, cannot be
assumed to be white. Furthermore, the noise distribution is
usually unknown. Making matters even more complicated,
noise is not stationary, violating, for example, the assumptions
in [19] for estimating the statistical distributions of coef�cients
representing structures or noise. Motivated by the complicated
noise conditions in CT, we developed a methodology which
adapts itself to the noise in the images.

Recently, Tischenko et al. [20] proposed a structure-saving
noise reduction method using the correlations between two
images for threshold determination in the wavelet domain.
Their approach was motivated by the observation that, in
contrast to the actual signal, noise is almost uncorrelatedover
time. Two projection radiography images, which are acquired
directly one after the other, show the same information but
noise between the images is uncorrelated assuming, of course,
that the patient does not move. Both images are decomposed
by an�a-trous wavelet transformation. The two highpass �ltered
detail images at each decomposition level are interpreted
as approximations of the gradient �eld of the previous ap-
proximation image. The cosine of the angle between the
approximated gradient vectors of the two images is used as
correlation measurement. Coef�cients with low correlation
are weighted down and others with high correlation are kept
unchanged. The result of the inverse wavelet transformation is
a noise suppressed image, which still includes all correlated
structures.

This concept of image denoising serves as a basis for the
suppression of pixel noise in computed tomography images,
proposed in this paper. The contribution of our work is as fol-
lows: We �rst solved the problem of how to acquire spatially
identical input images in case of CT, where noise between
the two images is uncorrelated. Two images, including the
same information, can be generated by separate reconstruc-
tions from disjoint subsets of projections. With the latest
generation dual-source CT-scanners (DSCT), the two images
can be obtained directly by separate reconstructions from the
projections measured at the two detectors. Using standard CT-
scanners, e.g., one image can be reconstructed from the even
and the other from the odd numbered projections, respectively.
Furthermore, we propose a new similarity measurement based
on correlation coef�cients. Pixel regions from the approxi-
mation images of the previous decomposition level, which
directly in�uence the value of a respective detail coef�cient
through the computation of the wavelet transformation, build
the basis for our local similarity measurement. Moreover,
we investigated the use of different wavelet transformations
with different properties for the noise reduction based on

two input images. The nonreducing�a-trous algorithm (ATR),
the dyadic wavelet transformation (DWT) and the stationary
wavelet transformation (SWT) are compared in combination
with both similarity measurements, our correlation coef�cient
and the gradient approximation method. In contrast to the
ATR, additional diagonal detail coef�cients are needed for
the DWT and SWT in order to ensure perfect reconstruction.
This leads to problems if the approximated gradients are used,
because some correlated diagonal structures cannot be detected
by comparing the angle between the approximated gradient
vectors. Visible artifacts due to wrongly down-weighted detail
coef�cients are the result. To circumvent this problem, we
propose an alternative gradient approximation method, which
is computationally very ef�cient and is based directly on the
detail coef�cients. Finally, the different approaches areevalu-
ated with respect to reduction of pixel noise and preservation
of structures. We performed experiments based on phantoms
and on clinically-acquired data. We show how the modulation
transfer function (MTF), a standard quality measurement in
CT, can be used for directly evaluating the in�uence of the
denoising algorithm on the edge quality for different edge-
contrasts. Additionally, we performed a human observer study,
comparing the low-contrast-detectability in noisy and denoised
images. Lastly, we also compare our approach to a projection-
based noise reduction method that is used in clinical practice.

The paper is organized as follows: In Section II, the different
steps used in the noise reduction method are described in
detail. Section III presents the experimental evaluation based
on simulated, as well as real clinical data. Finally, Section IV
concludes our work.

II. WAVELET BASED NOISE REDUCTION

A. Method Overview

Figure 1 illustrates the different steps of the noise reduction
method. Instead of reconstructing just one image from the
complete set of projectionsP, two imagesA and B , which
only differ with respect to image noise, are generated. This
can be achieved by separate reconstructions from disjoint
subsets of projections. ImageA is reconstructed from the set
of projectionsP1 (e.g. from the set of projections acquired at
the �rst detector of a DSCT) andB is reconstructed fromP2
(e.g. the set of projections acquired at the second detectorof
a DSCT). The two images include the same information, but
noise between the two images is assumed to be uncorrelated.

Both images are then decomposed into multiple frequency
bands by a 2D discrete dyadic wavelet transformation. This
allows a local frequency analysis. The detail coef�cients of
the wavelet representations include higher frequency structure
information of the images together with noise in the respective
frequency bands. For the reduction of high frequency noise
as it is present in CT-images, only decomposition levels
covering the frequency bands of the noise spectrum are of
interest. It is, thus, not necessary to compute the wavelet
decomposition down to the coarsest scale. The number of
decomposition levels that cover the noise spectrum depends
on the reconstruction �eld-of-view (FOV). The smaller the
FOV the smaller the pixel size and consequently the higher
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Fig. 1. Block diagram of the noise reduction method

the frequencies at the �rst decomposition level. Due to the
logarithmic scale of the wavelet transformation, halving the
FOV, e.g., means that one more decomposition level is needed.
During our experiments, we found out, that in most cases few
decomposition levels, e.g. 3 or 4, are suf�cient because they
cover approximately 90 percent of the frequencies of an image,
if dyadic wavelet decompositions are used.

For each decomposition level a similarity image is computed
based on correlation analysis between the wavelet coef�cients
of A andB . The goal is to distinguish between high frequency
detail coef�cients, which represent structure information and
those which represent noise. High frequency structure thatis
present in both images should remain unchanged, while coef-
�cients representing noise should be suppressed. A frequency
dependent local similarity measurement can be obtained by
comparing the wavelet coef�cients of the input images. Two
different approaches will be described. The similarity mea-
surement can be based either on pixel regions taken from
the lowpass �ltered approximation images, or on the high
frequency detail coef�cients of the wavelet representation of
the images.

Level dependent weighting images are then computed by
applying a prede�ned weighting function to the computed sim-
ilarity values. Ideally, the resulting masks include the value 1
in regions where structure has been detected and values smaller
than 1 elsewhere. Next, the wavelet coef�cients of the input
images (detail- and approximation-coef�cients) are averaged,
what equals the computation of the wavelet coef�cients of the
average of the two input images because of the linearity of the
wavelet transformation. The averaged detail-coef�cientsof the
input images are then weighted according to the computed
weighting image. Averaging in the wavelet domain allows
the computation of just one inverse wavelet transformationin
order to get a noise suppressed output imageR. This output
image corresponds to the reconstruction from the complete set
of projections but with improved signal-to-noise ratio (SNR).

In the following subsections we will describe each step of
the proposed methodology in greater detail.

B. Generation of input images

Motivated by the complicated noise conditions in CT-images
(non-white, unknown distribution, non-stationary), we devel-
oped a method that is based on two spatially identical images,
where noise between the images is uncorrelated. This property
is used for distinguishing between structures and noise using
correlation analysis in the wavelet domain. It is, however,very
important to notice that the noise suppression is not performed

on just one of the input images, but on the combination of both.
Generally, we want to obtain a result image that corresponds
to the reconstruction from the complete set of projections,but
with increased SNR.

A lot of research has been done in the �eld of CT in the
recent years. Different reconstruction methods together with
their in�uence on noise, resolution and artifacts were inves-
tigated. Detailed descriptions regarding different methods, as
well as special topics like aliasing artifacts and the propagation
of noise from the projections to the reconstructed slices can
be found, e.g., in [21], [22]. In this section we focus on the
description of different possibilities for the generationof the
input imagesA andB .

The input images are generated by separate reconstructions
from disjoint subsets of projectionsP1 � P andP2 � P, with
P1\ P2 = ; , jP1j = jP2j andP = P1 [ P2, wherejPj de�nes
the number of samples in P. This means that

A = G fP1g and B = G fP2g; (1)

whereG de�nes the reconstruction operator, like in our case
the weighted �ltered backprojection (WFBP) [23]. Generally,
other reconstruction techniques can be used, however, the
investigation of the in�uence of the reconstruction technique
to the denoising method is beyond the scope of this paper.
Different reconstruction methods may also lead to special
requirements for the valid sets of projectionsP1 and P2.
However, the restrictions based on Shannon's sampling the-
orem are valid for all kinds of reconstructions (see [24]). In
the following we assume that the sampling theorem is ful�lled
for both single sets of projections.

Both separately reconstructed images can be written as a
superposition of an ideal noise-free signalS and a zero-mean
additive noiseN :

A = S + NA and B = S + NB ; (2)

with NA 6= NB , and the subscripts describing the different im-
ages. The ideal signal, respectively the statistical expectation
E, is the same for both input imagesS = Ef Ag = Ef B g and
hence also for the averageM = 1

2 (A + B ), which corresponds
to the reconstruction from the complete set of projections.The
noise in both images is non-stationary, and consequently the
standard deviation of noise depends on the local positionx =
(x1; x2), but the standard deviations� N A (x) and� N B (x) at a
given pixel position are approximately the same because in av-
erage the same number of contributing quanta can be assumed.
Noise between the projectionsP1 andP2 is uncorrelated and
accordingly noise between the separately reconstructed images
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is uncorrelated, too, leading to the following covariance:

Cov(NA ; NB ) =
X

x 2 


NA (x)NB (x) = 0 ; (3)

with x de�ning a pixel position and
 denoting the whole
image domain.

Generally, the above scheme can also be extended to work
with more than two sets of projections. The reason for re-
stricting all the following discussions on just two input images
can be found in the close relation between pixel noise� and
radiation dosed [25]:

� /
1

p
d

; (4)

which holds as long as quantum statistics are the most
dominant source of noise and other effects, like electronic
noise, are negligible. If the set of projections should be
split up into m equally sized parts the effective dose for
each separately reconstructed image decreases by a factor
of m. Thus, the pixel noise increases by a factor of

p
m

in every single image. The detectability of edges based on
correlation analysis depends on the contrast-to-noise level, as
our experiments show. Therefore, it is reasonable to keep the
number of separate reconstructions as small as possible if also
low contrasts are of interest, leading tom = 2 .

The simplest possibility for acquiringP1 andP2 is to use
a dual-source CT-scanner (DSCT) where two X-ray tubes and
two detectors work in parallel [26]. If for both tube-detector-
systems the same scan and reconstruction parameters are used,
two spatially identical images can be reconstructed directly.
One image is reconstructed from the projectionsP1 acquired at
the �rst detector and the second one from the projectionsP2 of
the second detector. Instead of simply averaging both images,
they can be used as input to the noise reduction algorithm in
order to further suppress noise (see section III-E).

If no DSCT scanner is available, different approaches for
generating two disjoint subsets are possible. For example,
P1 and P2 can be acquired within two successive scans of
the same body region using the same scanning parameters.
This requires that the patient does not move between the two
scans. In order to avoid scanning the same object twice we
propose another possibility for generatingA andB from one
single scan. As we have shown in [27], for parallel projection
geometry, two complete images can be reconstructed, each
using only every other projection. Speci�cally, one image is
computed from the even and the other one from the odd
numbered projections:

P1 =
�

P�

�
�
�
� � = 2k

�
jPj

�
; (5)

P2 =
�

P�

�
�
�
� � = (2 k + 1)

�
jPj

�
; (6)

with 0 � k � jP j
2 � 1, wherejPj denotes the total number of

projections and is assumed to be even. A projection acquired
at rotation angle� is denoted asP� . Under the constraint
that noise between different projections is uncorrelated,which
means that cross-talk at the detector is negligibly small,
noise betweenA and B is again uncorrelated as stated in

(a) (b)

Fig. 2. Example of a discrete dyadic wavelet decomposition (DWT) - (a)
original image, (b) wavelet coef�cients up to the second decomposition level.

equation (3). The average of the two input images again
corresponds to the reconstruction from the complete set of
projections, what is easy to comprehend on the example of
the �ltered backprojection: Reconstructing images by means of
backprojection is simply a numerical integration. Thus, aver-
aging the two separately reconstructed images correspondsto
the reconstruction using the complete set of projections. It has
the same image resolution and the same amount of pixel noise.
However, halving the number of projections might in�uence
aliasing artifacts and resolution inA andB . With decreasing
number of projections the artifact radius, within which a
reconstruction free of artifacts is possible, decreases [28].
Furthermore, azimuthal resolution is reduced away from the
iso-center [21]. Usually, for CT-scanners commonly available,
the number of projections is set to a �xed number that ensures
a reconstruction free of artifacts within a certain �eld of
view (FOV) at a certain maximum resolution. Thus, for the
application of this splitting technique, care must be takenthat
the number of projections for separate reconstructions is still
high enough for the desired FOV in order to avoid lower
correlations due to reduced resolution or artifacts inA and
B . Alternatively, the scan protocol can be adapted to acquire
the doubled number of projections per rotation.

C. Wavelet Transformation

This section introduces the notation and reviews the basic
concepts of the three wavelet transformations used in this
paper. For detailed information on wavelet theory we refer
to [29]–[31].

1) DWT: The one-dimensional, discrete, dyadic, decimating
(nonredundant) wavelet transformation (DWT) of a signal is a
linear operation that maps the discrete input signal of length
k onto the set ofk wavelet coef�cients. The multiresolution
decomposition proceeds as an iterated �lter bank. The signal
is �ltered with a highpass �lter~g and a corresponding lowpass
�lter ~h followed by a dyadic downsampling step respectively.
This decomposition can be repeated for the lowpass �ltered
approximation coef�cients until the maximum decomposition
level lmax � log2 k (assumedk is a power of two) is reached.
For perfect reconstruction of the signal, the dual �ltersg and
h are applied to the coef�cients at decomposition levell after
upsampling. The two resulting parts are summed up leading
to the approximation coef�cients at levell � 1.
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When dealing with images, a two-dimensional wavelet
transformation is required. The one-dimensional transforma-
tion can be applied to the rows and columns in succession,
which is referred to as separable transformation. After this
decomposition, four two-dimensional blocks of coef�cients
are available: the lowpass �ltered approximation imageC,
and three detail imagesW H , W V and W D which include
high frequency structures in the horizontal (H), vertical (V)
and diagonal (D) directions, respectively together with noise
in the corresponding frequency bands. Like the 1D case, the
2D multiresolution wavelet decomposition can be computed
iteratively from the approximation coef�cients of the previous
decomposition level. An example of a 2D-DWT performed on
a CT-image is shown in Figure 2.

2) SWT: The computational ef�ciency and the constant
storage complexity are advantages of DWT. Nevertheless, the
nondecimating wavelet transformation, also known as station-
ary wavelet transformation (SWT), has certain advantages over
DWT concerning noise reduction [32], [33]. Mainly, SWT
works in the same way as DWT with the difference that
no downsampling step is performed. In contrast to DWT,
the frequency resolution is now gained by upsampling the
wavelet �lters ~g and ~h in each iteration. The number of
coef�cients at each decomposition level is constant, leading
to an overall increased storage complexity. The reconstruction
from this redundant representation is not unique. If coef�cients
are modi�ed, as it is done in cases of noise reduction,
an additional smoothing can be achieved by combining all
possible reconstruction schemes. A further advantage is that,
unlike DWT, SWT is shift-invariant.

3) ATR: A third alternative wavelet transformation we
considered the two-dimensional�a-trous (ATR) algorithm as
described in [34]. The main difference in comparison to DWT
and SWT is that only two instead of three detail images are
computed at each decomposition level. The approximation
coef�cientsCl at decomposition levell are again computed by
�ltering the approximation coef�cients of the previous decom-
position levell � 1 with the lowpass �lter in both directions.
The detail coef�cients are �ltered with the one-dimensional
highpass only in one direction respectively, resulting in two
detail imagesW H andW V . In contrast to DWT and SWT, no
lowpass �ltering orthogonal to the highpass �ltering direction
is performed. Diagonal detail coef�cients are not needed
for perfect reconstruction because no downsampling step is
performed. For the reconstruction, however, an additional
lowpass �ltering orthogonal to the highpass �ltering direction
is necessary for the detail coef�cients, in order to compensate
for the missing diagonal detail coef�cients [34].

D. Correlation Analysis

Detail coef�cients gained from the multiresolution wavelet
decomposition of the input images include structure informa-
tion together with noise. The goal of the correlation analysis is
to estimate the probability of a detail coef�cient correspond-
ing to structural information. This estimate is based on the
measurement of the local frequency-dependent similarity of
the input images.

Fig. 3. Schematic description of similarity computation basedon correlation
coef�cients between approximation coef�cients of the wavelet decompositions
(here DWT) obtained from the input imagesA andB .

Two different methods for similarity computation will be
discussed. First, a correlation coef�cient based measurement,
comparing pixel regions from the approximation images, will
be introduced. Secondly, a similarity measurement, directly
based on the detail coef�cients, is presented. The core idea
behind both methods is similar: For all detail images of
the wavelet decomposition, including horizontal, vertical (and
diagonal) details, a corresponding similarity imageSl between
the corresponding wavelet decompositions of the two input
images A and B is computed for each levell up to the
maximum decomposition level. The higher the local simi-
larity, the higher the probability that the coef�cients at the
corresponding positions include structural information that
should be preserved. According to the de�ned weighting
function, the detail coef�cients are weighted with respect
to their corresponding values in the similarity image. Detail
coef�cients representing high frequency structure information
are preserved, while noisy coef�cients are suppressed.

1) Correlation Coef�cient: One popular method for mea-
suring the similarity of noisy data is the computation of
the empirical correlation coef�cient, also known asPearson's
correlation. It is independent from both origin and scale and
its value lies in the interval[� 1; 1], where 1 means perfect cor-
relation, 0 no correlation and� 1 perfect anticorrelation [35].
This correlation coef�cient can be used in computing the local
similarity between two images, by taking blocks of pixels in
a de�ned neighborhood around each pixel in the two images
and computing their empirical correlation coef�cient.

This concept can be extended by comparing images of
wavelet coef�cients. In order to estimate the probability for
each detail coef�cient of the wavelet decomposition to in-
clude structural information, we propose the computation of a
similarity image at each decomposition level, as illustrated in
Figure 3. The similarity image is of the same size as the detail
images at that decomposition level, meaning that for each
detail coef�cient a corresponding similarity value is calculated.

An important factor is the selection of the pixel regions
used for the local correlation analysis. A very close connection
between the detail coef�cients and the similarity values can
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be obtained if the approximation coef�cients of the previous
decomposition levell � 1 are used for correlation analysis at
level l , where the original image is the approximation image
at level l = 0 . For the similarity valueSl (x l ) the correlation
coef�cient is computed between the approximation coef�cients
CA;l � 1 and CB;l � 1 within a local neighborhood
 x around
the corresponding positionx l � 1 of the current positionx l

according to:

Sl (x l ) =
Cov(CA;l � 1; CB;l � 1)

p
Var(CA;l � 1)Var(CB;l � 1)

; (7)

with covariance

Cov(a; b) =
1
n

X

x 2 
 x

(a(x) � �a)
�
b(x) � �b

�
; (8)

and variance

Var(a) =
1
n

X

x 2 
 x

(a(x) � �a)2 ; (9)

wheren de�nes the number of pixels in the neighborhood
 x

and �a = 1
n

P
x 2 
 x

a(x) de�nes the average value within
 x .
With this de�nition it is possible to directly use those

approximation coef�cients for the correlation analysis, which
mainly in�uenced the detail coef�cient at positionx l =
(x1;l ; x2;l ) through the computation of the wavelet transforma-
tion. The multiresolution wavelet decomposition is computed
iteratively. Thus, the detail coef�cients at levell are the
result of the convolution of the approximation image at level
l � 1 with the respective analysis lowpass and highpass �lters.
During the computation of the inverse wavelet transformation,
the approximation image at levell � 1 is reconstructed by
summing up the approximation and detail coef�cients at level
l �ltered with the synthesis �lters. The wavelets we used,
all lead to spatially limited �lters. Consequently, a detail
coef�cient at a certain position is in�uenced by a �xed number
of pixels from the approximation image and has in�uence to
a de�ned region of pixels in the approximation image due to
the reconstruction. Therefore, we de�ne
 x to be a squared
neighborhood according to:


 x =
n

~x l � 1

�
�
� j~xk;l � 1 � xk;l � 1(k)j �

s
2

; 8 k 2 f 1; 2g
o

;
(10)

where the lengths of the four analysis and synthesis �lters
(~g, ~h, g, h) is, without loss of generality, assumed to be
equal and even. Consequently, the number of pixels used
for the correlation analysis is adapted to the length of the
wavelet �lters. This is necessary in order to ensure that
those coef�cients, which include high frequency information
of an edge can be preserved. Care must be taken if redun-
dant wavelet transformations without downsampling are used.
Then, analogously to the upsampling of the wavelet �lters,
the pixel regions used for correlation analysis also need tobe

(a) Haar,l = 1 (b) Haar,l = 2

(c) CDF9/7,l = 1 (d) CDF9/7,l = 2

Fig. 4. Similarity measurement based on correlation coef�cients using the
Haar and CDF9/7 wavelet for the �rst two decomposition levelsof DWT.

adapted, leading to:


 x =
�

~x l � 1

�
�
�
�

�
j~xk;l � 1 � xk;l � 1j �

2l � 1s
2

�

^
�

mod
�
j~xk;l � 1 � xk;l � 1j ; 2l � 1�

= 0
�

;

8 k 2 f 1; 2g
�

; (11)

where the overall number of pixels used for correlation anal-
ysis is kept constant across the decomposition levels.

Figure 4 shows an example of the similarity measurement
based on the correlation coef�cients for the �rst two de-
composition levels of DWT. The results are compared for
two different wavelets: the Haar and the Cohen-Daubechies-
Fauraue (CDF9/7) wavelet. White pixels correspond to high
correlation and black to low correlation. It can be seen that
especially in regions of edges high correlations are present.
Additionally, it can be seen, that the area with high correlation
at an edge increases from the �rst to the second decomposition
level. The reason for this is that at the second decompo-
sition level lower frequencies with larger spatial extension
are analyzed. Furthermore, two important differences between
the different wavelets, which in�uence the �nal result can
be seen. Firstly, for longer reaching wavelets the region
around edges where high correlations are obtained increases.
Secondly, in homogeneous regions the correlation result is
smoother. The Haar wavelet is the shortest existing wavelet.
The corresponding analysis and synthesis �lters have a length
of s = 2 . Thus only those coef�cients very close to the edge
include information about the edge and the pixel region
 x

can be chosen to be very small without destroying the edge.
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(a) Haar,l = 1 (b) Haar,l = 2

(c) CDF9/7,l = 1 (d) CDF9/7,l = 2

Fig. 5. Similarity measurement based on approximated gradientsusing the
Haar and CDF9/7 wavelet for the �rst two decomposition levelsof DWT.

Consequently noise can also be removed close to the edges.
In contrast to that, the CDF9/7 wavelet results in �lters of
length s = 10. Thus, coef�cients farther away from the edge
still include information that should be preserved. This again
explains the reason for adapting
 x to the �lterlength. Edges
are preserved, but the noise reduction around high contrast
edges decreases as a consequence. Because of the increased
pixel region, however, a stronger smoothing can be achieved
in homogeneous regions. The smaller the number of pixels
used for correlation analysis, the higher the probability that
noise is wrongly detected as structure. This is re�ected in the
higher number of white spots in combination with Haar. These
observations are also con�rmed by our experimental evaluation
in section III.

2) Gradient Approximation:The core idea of a gradient-
based similarity measurement is to exploit the fact that the
horizontal and vertical detail coef�cientsW H

l and W V
l can

be interpreted as approximations of the partial derivatives
of the approximation imageC l � 1. In the case of the Haar
wavelet, for example, the application of the highpass �lteris
equivalent to the computation of �nite differences. Coef�cients
in W H

l show high values at positions where high frequencies
in thex1-direction are present, while coef�cients inW V

l have
high values where high frequencies in thex2-direction can be
found. If these two aspects are considered together, we get an
approximation of the gradient �eld ofCl � 1:

r Cl � 1 =

 @Cl � 1

@x 1
@Cl � 1

@x 2

!

�
�

W H
l

W V
l

�
: (12)

The detail coef�cients in horizontal and vertical direction of
both decompositions approximate the gradient vectors with

respect to Equation (12). The similarity can then be measured
by computing the angle between the corresponding gradient
vectors. The goal is to obtain a similarity value in the range
[� 1; 1], similar to the correlation computations of eq. 7.
Therefore, we take the cosine of the angle:

Sl =
W H

A;l W H
B;l + W V

A;l W V
B;lr �

W H
A;l

� 2
+

�
W V

A;l

� 2
r �

W H
B;l

� 2
+

�
W V

B;l

� 2
; (13)

where the index A refers to the �rst and B to the second input
image. An example of the results of the similarity computation
with the gradient approximation method is shown in Figure 5
again for the �rst two decompostion levels of the DWT and the
Haar and CDF9/7 wavelets. Here it can already be seen that
the masks look more noisy than for the correlation coef�cient
based approach shown in Figure 4. The difference between
the Haar and CDF9/7 wavelet are very small. The edges,
however seem to be better detected in combination with the
Haar wavelet. These observations will also be con�rmed by
our quantitative evaluation III.

This kind of similarity measurement has also been used
by Tischenko [20] in combination with the�a-trous wavelet
decomposition. As already explained above, only horizontal
and vertical detail coef�cients are computed in the case of the
�a-trous algorithm. However, the additional lowpass �ltering or-
thogonal to the highpass �ltering direction in the case of DWT
and SWT is advantageous with respect to edge detection. The
only problem is that the gradient approximation, as introduced
so far, in the case of DWT and SWT, can sometimes lead
to visible artifacts. Figure 6(a) and the difference imagesin
Figure 6(c) show four example regions where this problem
can be seen using the Haar wavelet.

Noticeably, artifacts predominantly emerge where diagonal
structures appear in the image, and their shape, in general
further justi�es the assumption that diagonal coef�cientsare
falsely weighted down. The different sizes of the artifactsare
due to errors at different decomposition levels. Suppression
of correlated diagonal structures at a coarser level in�uences
a larger region in the reconstructed image. The reason for
these types of artifacts is that diagonal patterns exist, which
lead to vanishing detail coef�cients in horizontal and vertical
direction. If the norm of one of the approximated gradient
vectors is too small or even zero, no reliable information about
the existence of correlated diagonal structures can be obtained
from Equation (13).

The simplest solution for eliminating such artifacts is to
weight only the detail coef�cientsW H

l andW V
l based on the

similarity measurementSl and leave the diagonal coef�cients
W D

l unchanged. As expected, this avoids artifacts in the
resulting images, but, unfortunately, noise included in the
diagonal coef�cients is not removed, leading to a lower signal-
to-noise ratio in the denoised images. Equation (13) shows that
the similarity value is computed only fromW H

l andW V
l . The

diagonal coef�cients do not in�uenceSl . The idea of extending
the approximated gradient vector (see Equation (12)) by the
diagonal coef�cients to a three dimensional vector does not
lead to the desired improvements. In the cases of vanishing
detail coef�cients in the horizontal and vertical direction, no
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(a) artifacts (b) no artifacts

(c) difference, artifacts (d) difference, no artifacts

Fig. 6. Artifacts due to weighting down correlated diagonalcoef�cients
with the gradient approximation method - (a) four detailed regions showing
artifacts, (b) same image regions without artifacts, (c) difference between noise
suppressed and original image regions showing artifacts, (d) differences free
of artifact after appropriate weighting of diagonal detailcoef�cients.

quantitative relation between the diagonal coef�cients can
be obtained. Moreover, the extension of the approximated
gradient vector by the diagonal coef�cient is more errorprone.
A diagonal coef�cient can be interpreted as a second order
derivative because of highpass �ltering to both directions
and is, therefore, very sensitive to noise. Mixing it with the
horizontal and vertical detail coef�cients generally leads to
less reliable similarity measurements.

In order to avoid artifacts while still reducing noise in the
diagonal coef�cients, we propose weighting only the detail
coef�cients W H

l and W V
l depending on the similarity mea-

surement computed from Equation (13). The diagonal detail
coef�cients are then treated separately. The new weighting
function for the diagonal coef�cients is based on the following
correlation analysis betweenW D

A;l andW D
B;l :

SD
l =

2W D
A;l W D

B;l
�

W D
A;l

� 2
+

�
W D

B;l

� 2 : (14)

Using this extension for a separate weighting of diagonal coef-
�cients, denoising results are free of artifacts (see Figure 6(d)).

Note that, equations (7, 13, 14) are only de�ned for non-
zero denominators. However, in all three cases it can be
assumed that no relevant high frequency details are present
if the denominator is 0 and, therefore, the similarity valueis
set to 0.

E. Weighting of Coef�cients

The result of the correlation analysis is a set of similarity
imagesSl with values in the range[� 1; 1]. The closer the

values are to 1, the higher the probability that structure is
present. Consequently, the detail coef�cient at the correspond-
ing position should remain. The lower the similarity value,the
higher the probability that the corresponding detail coef�cient
includes only noise and, therefore, should be suppressed. We
now have to de�ne a weighting functionf (Sl ), that maps the
values in the similarity images to weights in the range[0; 1].
These weights are then pointwise multiplied to the averaged
detail wavelet coef�cients of the two input images:

WR;l =
1
2

(WA;l + WB;l ) � f (Sl ); 8 l 2 [1; lmax ]; (15)

obtaining the detail coef�cientsWRl of the output image R.
The approximation images of the two input images are only
averaged:

CR;l max = ( CA;l max + CB;l max ) � 0:5: (16)

The simplest possible method for a weighting function is
to use a thresholding approach. If the similarity valueSl at a
certain position is above a de�ned value the weight is 1 and the
detail coef�cient is kept unchanged, otherwise it is set to zero.
Generally, the use of continuous weighting functions, where
no hard decision about keeping or discarding coef�cients is
required, leads to better results. In principle one can use
any continuous, monotonically decreasing function with range
[0; 1], such that 1 maps to similarity values close to 1. We use
the weighting function

f (Sl ) =
�

1
2

(Sl + 1)
� p

2 [0; 1] ; (17)

which has a simple geometric interpretation. In the case of
the gradient approximation method, the similarity values cor-
respond to the cosine of the angle between the gradient vectors.
In the case of the correlation coef�cients, the similarity value
can be interpreted as the cosine of the angle between then-
dimensional vectorsa and b freed by their mean, wheren
de�nes the number of pixels in
 x . Equation (17), therefore,
leads to a simple cosine weighting, shifted and scaled to the
interval [0; 1], where the powerp controls the amount of noise
suppression. With increasingp values the function goes to 0
more rapidly, but still leads to weights close to 1 for similarity
values close to 1. The in�uence of the parameterp on noise
and resolution has been evaluated in section III-A.5 and is
shown in Figure 11. In all other experiments we setp = 1 , to
have a simple cosine weighting function.

We now have described all the different steps of the noise
reduction method, as shown in Figure 1. We described how
to generate the input imagesA and B , explained different
possibilities for wavelet decomposition, introduced a newsim-
ilarity measure between the wavelet coef�cients of the input
images based on correlation analysis, presented an artifact-
free extension to gradient-based approximations of correlation
analysis and proposed a technique for weighting the averaged
details. The �nal step is to reconstruct the noise suppressed
result imageR by an inverse wavelet transformation from the
averaged and weighted wavelet coef�cients.
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(a) no noise,10 HU (b) noisy,10 HU

(c) no noise,100 HU (d) noisy,100 HU

Fig. 7. Reconstructed simulated phantom images using S80 kernel.

Fig. 8. MTFs of different reconstruction kernels.

III. E XPERIMENTAL EVALUATION

For the evaluation of the described methods, experiments
both on phantom data and clinically-acquired data were per-
formed.

A. Noise and Resolution

In order to evaluate the performance of the noise reduction
methods, mainly two aspects are of interest: the amount of
noise reduction and, even more importantly, the preservation
of anatomical structures.

1) Phantom:For our experiments we used reconstructions
from a simulated cylindrical water phantom (r = 15 cm),
with an embedded, quartered cylinder (r = 6 cm). The
contrast of the embedded object in comparison to water
varied between 10 and 100 HU. The dose of radiation
(100 mAs=1160 Projections) is kept constant for all simu-
lations, leading to a nearly constant pixel noise in the ho-
mogeneous area of the water cylinder. All simulations were
performed with theDRASIM software package provided by
Karl Stierstorfer [36]. The advantage of simulations is that in

addition to noisy projections (with Poisson distributed noise
according to quantum statistics), ideal, noise-free data can
also be produced. All slices are of size512� 512 and were
reconstructed within a �eld of view of20 cmusing: a) a sharp
Shepp-Logan (S80) �ltering kernel, leading to a pixel noise
of approximately7:6 HU in the homogeneous image region in
the reconstruction from the complete set of projections; and
b) a smoother body kernel (B40), leading to a pixel noise
of approximately5:2 HU. The MTFs of all used kernels are
shown in Figure 8. The standard deviation of noise in the
separately reconstructed images is about

p
2 times higher. Two

examples (10 and 100 HU) are shown in Figure 7. For both
contrast levels, one of the noisy input images, reconstructed
from every second projection, together with the ideal, noise-
free image, reconstructed from the complete set of projections,
are shown.

2) MTF Computation: First, we want to investigate the
capability of the noise reduction algorithm to detect edgesof
a given contrast in the presence of noise. We are interested in
how the local modulation transfer function (MTF), measuredat
an edge, changes due to the weighting of wavelet coef�cients
during noise suppression. It is possible to determine the MTF
directly from the edge in an image. For this purpose, we
manually selected a �xed region of20 � 125 pixels around
an edge (with a slope of approx. 4 degrees). The slight tilt
of the edge allows a higher sampling of the edge pro�le,
which is additionally average along the edge. The derivation
of the edge pro�le leads to the line-spread function (LSF). The
Fourier transformation of the LSF results in the MTF, which
is additionally normalized so thatMTF(0) = 1 . Reliable
measurements of the MTF from thisedge techniquecan only
be achieved if the contrast of the edge is much higher than the
pixel noise in the images [37]. Ideally, one should measure
MTF on noise-free images. However, we are interested in
measuring the quality of edge preservation based on the
contrast of the edge in the presence of noise. In order to enable
the measurement of a smooth MTF curve, usually, several
noise realizations are needed (the number of images needed for
reliable results increases, if the contrast of the edge decreases).
However, the same results can be achieved even faster using
the simulated data described above. We want to measure the
impact of the weighting in the wavelet domain during noise
suppression to the ideal signal. For that purpose, in addition
to the noisy input images, which are a superposition of ideal
signal and noise, an ideal image, free of noise, is simulated
and reconstructed. The noise-free image is also decomposed
into its wavelet coef�cients. The weighting image is generated
from the similarity computations from the wavelet coef�cients
of the noisy input images, as explained in the previous section.
In order to measure the impact of the weighting to the ideal
signal, the detail coef�cients of the noise-free image are
pointwise multiplied with the computed weights. The image
gained from the inverse wavelet transformation of the weighted
coef�cients of the noise-free image shows the in�uence of the
noise suppression method on structures directly. Edges, which
were detected as correlated structures, are preserved. If an edge
has not been detected correctly, the edge gets blurred, which
in�uences the MTF.
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(a) Grad - ATR (b) Corr - ATR

(c) Grad - DWT (d) Corr - DWT

(e) Grad - SWT (f) Corr - SWT

Fig. 9. MTF for varying contrast at the edge using the CDF9/7 wavelet. Comparison of correlation coef�cient approach (Corr) and gradient approximation
(Grad) in combination with different wavelet transformations.
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3) Evaluation of Edge-Preservation:In our �rst test, the
in�uence of the noise suppression method to the MTF is eval-
uated with regard to the contrast of the edge. We used phantom
images, as described above, reconstructed with the S80 kernel,
with varying contrasts at the edge (10, 20, 40, 60, 80 and
100 HU). The noise suppression method is performed for the
�rst three decomposition levels using a CDF9/7 wavelet. In all
cases a continuous weighting function is utilized, as presented
in Equation (17). The MTF is computed for the modi�ed
noise-free images and compared to the MTF of the ideal
image, without modi�cations, reconstructed from the complete
set of projections. The results of this test are illustrated
in Fig. 9, allowing a comparison of the different wavelet
transformation methods and theCorr andGrad approaches for
similarity computation. Ideally, the noise reduction methods
do not in�uence the MTF in any respect. Speci�cally, the
edge is not blurred. If the corresponding MTF falls below the
original ideal curve, this indicates that the edge is smoothed.
Alternatively, the MTF raises if some frequencies are ampli-
�ed. As seen in Fig. 9 theCorr method leads to better edge
detection in comparison to theGrad approach for all cases.
This can be explained by the better statistical properties of the
similarity evaluation based on correlation coef�cients between
pixel regions. More values are included in the correlation
computations and, therefore, the results are more reliable. As
expected, the approximated gradients are more sensitive to
noise. For all methods we can see that decreasing edge contrast
results in decreasing MTF. This clearly shows that decreasing
CNR lowers the probability that the edge can be perfectly
detected. However, one can see that with increasing contrast,
the MTF gets closer to the ideal MTF. In the case of theCorr
method the difference to the ideal MTF, even for a contrast
of 60 HU, is very small. TheGrad approach, in contrast,
does not reach the ideal MTF even for an edge contrast of
100 HU. One can also observe that the performances for
the three different wavelet computation methods are quite
similar. The two nonreducing transformations give slightly
better results in case of theCorr method, at least for higher
contrasts. In combination with theGrad method, ART and
SWT slightly outperform DWT. The redundant information
included in nonreducing wavelet transformations, such as ATR
and SWT, smooths the edge detection results. The similarity
is evaluated for all coef�cients. The reconstruction from the
weighted redundant data, therefore, leads to smoothed results.
On the other hand, the additional lowpass �ltering orthogonal
to the highpass �ltering direction, in the case of DWT and
SWT, improves the edge detection results. Altogether, this
explains why SWT, which combines both positive aspects,
gives best results.

An even better comparison of the results can be obtained
regarding the� 50 values. This is the resolution for which
the MTF reaches a value of0:5. In Fig. 10, � 50 is plotted
against the contrast of the edge for the different methods. This
time, three different wavelets (Haar, Db2 and CDF9/7) are
compared. Two different convolution kernels (S80 and B40)
were used for image reconstruction (see MTFs in Fig. 8).
Using a smoothing kernel changes the image resolution, as
well as the noise characteristics. From Fig. 10 it can be seen

that the resolution in the original image using the B40 kernel
is lower than for the S80 kernel. In addition to that, the noise
level is also lower (see next section on noise evaluation) using
the B40 kernel. Due to the better signal-to-noise-level in the
input images the edges can be better preserved when using
B40. All other effects are similar for both cases. First of all,
we can see that the clear differences between theCorr and
Grad methods decrease when using the Db2 and the Haar
wavelet. The results of theGrad approach get better with
decreasing length of the wavelet �lters. More speci�cally,the
better the highpass �lter of the wavelet is in spatially localizing
edges, the better the results of theGrad method. For the Haar
wavelet, we can see that� 50 even exceeds the� 50 value of the
ideal image. This can be attributed to the discontinuity of the
wavelet, which can lead to rising higher frequencies during
noise suppression.

4) Evaluation of Noise Reduction:The same phantom
images are used for evaluating the noise reduction rate. The
use of simulations has the advantage that we have an ideal,
noise-free image. Therefore, noise in the images can be clearly
separated from the information by computing the differences
from the ideal image. The effect of the noise reduction
algorithm can be evaluated by comparing the amount of noise
in the noise-suppressed images to that in the average of the
input images. We used two different regions, each100� 100
pixels, and computed the standard deviation of the pixel values
in the difference images. The �rst region was taken from a
homogeneous area. Here the achievable noise reduction rateof
the different approaches can be measured. The second region
was chosen at an edge because the performance near the edges
differs for the various approaches. Sometimes a lower noise
reduction rate is achieved near higher contrast edges. There-
fore, it is interesting to compare the noise reduction ratesat
edges for different contrasts. Furthermore, the noise reduction
rates are evaluated for the two different reconstruction kernels
(S80 and B40).

In the homogeneous image region, no noticeable changes
are observed when the contrast of the objects is changed.
Therefore, the measurements in cases of 100, 60 and 20
HU are averaged. Table I presents the noise reduction rates
(percentage values) measured in the homogeneous image
region. The �rst clear observation is that the noise suppression
for the Corr method is much higher than that for theGrad
method. The computation of correlation coef�cients between
pixel regions taken from the approximation images leads to
smoother similarity measurements. This is also noticeable
regarding the weighting matrices in Fig. 5 in comparison to
Fig. 4. An interesting observation is that, for theGrad method,
the noise reduction rates do not vary for the different wavelets.
In contrast to that, when using theCorr approach, slightly
increased noise suppression can be achieved for longer reach-
ing wavelets. By increasing the length of the wavelet �lters,
larger pixel regions are used for the similarity computations.
This avoids the case where noisy homogeneous pixel regions
are accidentally detected as correlated. In contrast, the fact that
the approximated gradient vectors in noisy homogeneous pixel
regions can sometimes point to the same direction cannot be
reduced by using longer reaching wavelets. The comparison
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(a) Haar - S80 (b) Db2 - S80 (c) CDF9/7 - S80

(d) Haar - B40 (e) Db2 - B40 (f) CDF9/7 - B40

Fig. 10. The� 50 values in dependence on contrast at the edge for different methods and wavelets.

TABLE I

PERCENTAGE NOISE REDUCTION IN A HOMOGENEOUS IMAGE REGION.

Grad Corr
S80 ATR DWT SWT ATR DWT SWT
Haar 26.9 22.9 26.0 42.1 39.2 40.7
Db2 27.4 22.9 26.3 46.2 44.9 45.7
CDF9/7 27.6 23.2 26.5 48.2 47.9 48.1

B40 ATR DWT SWT ATR DWT SWT
Haar 26.6 22.0 25.4 38.9 36.3 38.3
Db2 26.1 22.5 25.9 43.5 42.2 43.2
CDF9/7 27.0 22.7 26.2 45.5 44.9 45.4

of the three wavelet transformation methods shows that DWT
again has the lowest noise suppression capability, while SWT
and ATR perform comparably. This shows that nonreducing
wavelet transformations are better for noise suppression due
to their inherent redundancy. All these observations can be
made for both convolution kernels. The difference is, that in
the images with lower noise level, due to the reconstruction
with a smoothing kernel like the B40, the noise reduction
rate is approximately 3 percent points in the case of the
Corr method and less than 1 percent point in the case of the
Grad method below the noise reduction rate in the more noisy
images reconstructed with the S80.

Table II lists the noise reduction rates achieved in the edge
region, again using the two different convolution kernels.Here,
the results are compared for three different contrasts at the
edge. Most of the observations we made for the homogeneous
image region are also valid for the edge region. OurCorr
approach clearly outperforms theGrad method. The DWT
shows the lowest noise suppression, whereas ART and SWT

TABLE II

PERCENTAGE NOISE REDUCTION RATES IN AN EDGE REGION.

Grad Corr
S80 ATR DWT SWT ATR DWT SWT

Haar 25.4 21.2 24.1 38.4 35.3 37.0
100HU Db2 25.2 21.6 24.1 40.0 39.0 39.6

CDF9/7 25.9 21.5 24.5 36.0 35.6 36.0
Haar 26.5 22.1 25.2 40.1 37.9 38.9

60HU Db2 26.6 21.6 24.8 42.1 41.1 41.8
CDF9/7 27.0 21.7 25.4 39.0 38.0 38.9
Haar 26.6 21.7 25.1 40.7 38.1 39.4

20HU Db2 26.6 22.1 25.4 43.8 42.3 43.3
CDF9/7 27.1 22.4 25.4 43.2 42.5 43.1

B40 ATR DWT SWT ATR DWT SWT
Haar 22.9 19.8 22.4 33.0 31.1 32.6

100HU Db2 21.8 19.3 22.0 34.8 34.1 34.7
CDF9/7 22.3 19.2 22.2 29.4 28.8 29.7
Haar 25.3 21.2 24.0 35.8 33.6 35.0

60HU Db2 24.4 19.6 23.1 37.7 36.5 37.4
CDF9/7 25.3 19.9 23.7 32.7 31.7 32.6
Haar 25.1 20.3 24.0 36.0 34.1 35.4

20HU Db2 24.8 20.3 24.2 39.0 37.1 38.8
CDF9/7 25.7 21.0 24.4 36.9 35.7 36.9

are comparable. In the case of theGrad method, we can
again observe that nearly no differences between the different
wavelets can be obtained. Generally, we can see that with
decreasing contrast at the edge, more noise in the local neigh-
borhood of the edge can be removed. The reason for this is
that the lower the contrast, the lower the in�uence of the edge
to the correlation analysis. However, one difference between
the two similarity computation methods becomes clear. For
the Grad approach the increment in noise suppression with
decreasing contrast at the edge is quite similar for all wavelets.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL., NO., 2008 13

Fig. 11. Noise-Resolution-Tradeoff: Comparison of high-contrast resolution
and standard deviation of noise in homogeneous image region for different
denoising methods using Db2 wavelet. The powerp within the weighting
function (17) is used for varying the amount of noise suppression.

This does not hold for theCorr approach. Here, we can
see that by increasing the spatial extension of the wavelet
�lters, the difference between the noise suppression rate at
100 HU increases in comparison to 20 HU. This means that
for higher contrast, more noise close to edges remains in the
image if longer reaching �lters are utilized. The reason for
this is that the size of the pixel regions used for the correlation
computations are adapted to the �lter lengths of the wavelets.
This is needed in order to ensure that all coef�cients, which
include information of an edge, are included in the similarity
computations, as already remarked during the discussion of
Fig. 4. The effect is that edges with contrast high above the
noise level dominate the correlation computation, as long as
they occur within the pixel region. As a result, nearly no noise
is removed within a band around the edge. The width of the
stripe depends on the spatial extension of the wavelet �lters.

5) Noise-Resolution-Tradeoff:Within the last two sections
we presented a very detailed, contrast dependent evaluation
of noise and resolution. For easier comparison of the dif-
ferent denoising approaches, noise-resolution-tradeoffcurves
are plotted in Fig. 11. The phantom described in section III-
A.1 with an edge-contrast of 100 HU, reconstructed with the
S80 kernel, was used for this experiment. The� 50 values
are plotted against the standard deviation of noise, mea-
sured within a homogeneous image region. TheCorr and
Grad method in combination with DWT, SWT and ATR are
compared, all using the Db2 wavelet and 3 decomposition
levels. The powerp within the weighting function (17) was
used for varying the amount of noise suppression. The 10
points within each curve correspond to the powersp =
f 5:0; 4:5; 4:0; 3:5; 3:0; 2:5; 2:0; 1:5; 1:0; 0:5g from left to right.
In summary the following obervations can be made:

� SWT and DWT show better edge-preservation than ATR
at the same noise reduction rate in combination with the
Grad method.

� The Corr method clearly outperforms theGrad method
in all cases.

� There is nearly no difference between the different
wavelet transformations if theCorr approach is used.

Fig. 12. Noise-Resolution-Tradeoff:� 50 polotted against CNR for different
reconstruction kernels. Denoising con�guration: 3 level SWT with CDF9/7
wavelet andCorr method.

In a second test, the in�uence of the reconstruction kernel
to the noise-resolution-tradeoff was evaluated. Different re-
construction kernels can be selected in CT, always leading to
a noise-resolution-tradeoff. Smoothing reconstruction kernels
implicate lower noise power, but also lower image resolution.
As we have already seen during the discussion of noise and
resolution in the last two sections the reconstruction kernel
also in�uences the results of the denoising method. Therefore,
we compared the noise-resolution-tradeoff for different recon-
struction kernels (see Fig. 8) with and without the application
of the proposed denoising method. We used again the phantom
images described in section III-A.1 with varying contrasts
c, reconstructed with B10, B20, B30 and B40 kernel. We
then compared the contrast-to-noise ratio (CNR = c=� ) and
resolution (� 50) of the original and denoised images. We used
a 3 level SWT with CDF9/7 wavelet and theCorr method for
the comparison shown in Fig. 12. The dashed lines correspond
to the original and the solid lines to the denoised images.
Each line consists of �ve points corresponding to the contrasts
(10, 20, 40, 60, 80 and100 HU) devided by the respective
standard deviation of noise� measured in a homogeneous
image region. Ideally the denoising procedure would only
increase the CNR without lowering resolution. This would
mean that the solid lines are just shifted to the right in
comparison tho the corresponding dashed lines. The observed
behavior, however, was more complex and corroborates the
results presented in the previous sections:

� The sharper the kernel (high resolution, low CNR), the
higher the improvement in CNR that can be achieved by
applying the proposed method.

� The smoother the kernel (low resolution, high CNR),
the better the edge-detection and thus the preservation
of resolution in the denoised image.

The new insight we gained from this analysis is that we can
achieve better results with respect to image resolution and
CNR using a sharper reconstruction kernel in combination
with our proposed method than using a smoothing reconstruc-
tion kernel. For example, we can achieve higher resolution and
higher CNR for the same input data if the sharper B30 kernel
is used in combination with our �lter than using the smoother
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(a) 10 HU (b) 5 HU

(c) 3 HU (d) 1 HU

Fig. 14. Comparison of true-positive rates for different objects of noisy
(original) and denoised LCP.

B10 kernel without denoising.

B. Low-Contrast-Detectability

In addition to the quantitative evaluation of noise and
resolution we performed a human observer study to test how
the low-contrast-detectability is in�uenced by the application
of our proposed method.

1) Data and Experiment:For our experiments we used
reconstructions from a simulated cylindrical water phantom
(r = 14:5 cm), with four blocks of embedded cylindrical
objects with different contrasts (10; 5; 3; 1 HU) and different
sizes (15; 12; 9; 7; 5; 4; 3; 2 cm diameter). A reconstructed slice
from this phantom is shown in Fig. 13(a). We simulated and
reconstructed 10 noisy realizations of this phantom, all atthe
same dose level (30 mAs), leading to an average pixel noise
in the homogeneous water region of� = 4 :3 HU. One noisy
example slice is shown in Fig. 13(b). In addition to this, 20
noisy phantoms where some (95 in sum) of the embedded
objects were missing were simulated and reconstructed using
the same scanning and reconstruction parameters. For all
30 images the corresponding denoised images (with approx.
44% noise reduction, leading to� = 2 :4 HU in average)
were computed. We used 3 decomposition levels of SWT
in combination with CDF9/7 wavelet together with theCorr
method. As an example, in Fig. 13(c) the denoised image of
Fig. 13(b) can be seen.

For easier accomplishment and evaluation of the experiment
we developed a proprietary evaluation tool for low-contrast-
detectability. This tool showed the images from a list in
randomized order to the human observer. The observer then
had to select which objects he can detect by mouse click. All
47 observers evaluated 40 images, 10 original noisy images
where all objects were present, the 10 corresponding denoised,
10 noisy images where some objects were missing, and again
the 10 corresponding denoised.

2) Results and Discussion:In a �rst step we evaluated
the average true-positive rate (TPR) achieved for the different
objects. The performance of detecting objects of differentsize

Fig. 15. ROC curves resulting from human observer study. Comparison
between noisy (original) and denoised results.

and contrast was compared between the noisy and denoised
images. We computed the average TPR for all 32 objects
from all noisy images and all observers and compared it to
the average from all denoised images and all observers. In
Fig. 14 the TPR is plotted for all objects of different contrasts
and sizes. The closer the TPR is to 1 the better the object
was correctly judged to be visible in average. The clear result
is that all objects were judged to be as well or even better
detectable in the denoised images in comparison to the noisy
originals. The corresponding false-positive rates (FPR) are
all below 0.03 and in average below 0.005 for both noisy
and denoised images. In Fig. 14(a) the TPR for the10 HU
objects can be seen, where no clear difference between the
noisy and denoised objects is visible. In case of the5 HU
and3 HU objects (see Fig. 14(b) and 14(c)) a clear difference
can be seen. If objects with a TPR above 0.5 are said to be
detectable, two more objects (5 HU; 3 mm and 3 HU; 5 mm)
are detectable in the denoised images than in the noisy ones.
The TPR of the3 HU; 4 mm object is also very close to 0.5.
The 1 HU objects were nearly never detected in the noisy
images, but in the denoised at least the 15 and12 mm objects
were detected correctly in more than 20% of the cases.

In a second step, we computed the ROC-curves for the
noisy and denoised cases based on a thresholding approach
as described in detail in [38]. We �rstly computed the average
detection rate (number of positive votes that object is visible /
number of overall votes for this object) for each single image
and object from all observers. Then, a sliding threshold was
applied for the noisy and denoised cases separately. All objects
with a detection rate above a certain threshold were set to
be detected and then the corresponding FPR and TPR was
calculated, leading to the curves shown in Fig. 15. In addition
to the curves the area under the curve (AUC) was computed
for the noisy and denoised case. The AUC improved from
0.8326 in case of the noisy to 0.8637 in case of the denoised
samples.

C. Comparison with Adaptive Filtering of Projections

1) Data and Description:Fig. 16 shows a comparison of
the proposed method to a projection based adaptive �ltering,
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(a) no noise (b) noisy (c) denoised

Fig. 13. Low-contrast-phantom (LCP) used for human observerstudy: (a) ideal noise-free, (b) one noisy example and (c) corresponding denoised image
using 3 levels of SWT, CDF9/7 wavelet and theCorr method. Display options:c = 5 ,w = 12 .

(a) original: � = 11 :1 HU (b) proposed method:� = 6 :0 HU (c) adaptive �ltering of projections:� =
6:0 HU

(d) original: � = 19 :0 HU (e) proposed method:� = 10 :2 HU (f) adaptive �ltering of projections:� =
10:2 HU

(g) vertical lineplot through noise-free, (b) and (c) (h) vertical lineplot through noise-free, (e) and (f)

Fig. 16. Comparison of proposed method to adaptive �ltering ofprojections. The reconstruction without noise suppression are displayed in (a) and (d).
The proposed wavelet based noise reduction method was applied in (b) and (e) and the adaptive �ltering of the projections is shown in (c) and (f). Image
resolution of the �ltered images is compared at the same noise reduction rates. In (g) and (h) the corresponding vertical lineplots through the center of the
two phantoms are compared between the noise-free, adaptive-�ltered and wavelet denoised images. Display options:c = 200 andw = 1000 .
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which is used in clinical practice [39]. The 2D-projectionsare
�ltered with a linear �lter of �xed spatial extension. Then,a
weighted sum of the �ltered and original noisy projections is
computed based on the attenuation at a respective position.
The higher the attenuation, the higher the noise power and,
therefore, the stronger the smoothing being performed. This
method, like most other noise reduction methods based on
�ltering the projections, has the goal to reach nearly constant
noise variance over all projections in order to reduce directed
noise and streak artifacts.

For the comparison we used reconstructions from two sim-
ulated elliptical phantoms, one homogeneous water phantom
(r = 10 cm) and one eccentric water phantom (a = 15 cm
and b = 7 :5 cm). In the center of both phantoms a line-
pattern with6 lp=cm was embedded at a contrast of1000 HU.
In the eccentric phantom two additional cylindrical objects
(r = 2 cm) are embedded. All reconstructions to a pixel grid
of 512 � 512 with FOV of 250 cm were performed using
the B40 kernel. In Fig. 16(a) and 16(d) the original noisy
phantoms reconstructed from the complete set of projections
are shown. We measured the standard deviation of noise in
homogeneous regions in north, south, west and east direction
around the center resulting in an average noise of� = 11:1 HU
in the homogeneous, and� = 19:0 HU in the eccentric water
phantom. We applied both denoising methods to achieve the
same average noise reduction rate, leading to� = 6 :0 HU
in the homogenous and� = 10:2 HU in the eccentric case,
and compared resolution. For our proposed method we used
3 levels of SWT together with CDF9/7 wavelet and theCorr
method.

2) Results and Discussion:Fig. 16(f) shows that directed
noise pointing out the direction of highest attenuation is
reduced and a remarkable noise suppression can be achieved
by adaptively �ltering the projections. However, it can also be
noticed that structures orthogonal to the direction of highest
attenuation visibly lose spatial resolution. In comparison to
this the wavelet based �ltering method preserves structures
much better and no blurring effects are visible. This can be
seen well in the detailed vertical lineplots through the line-
pattern, shown in Fig. 16(g). Although the same average noise
reduction rate was obtained, the streak artifacts could notbe
completely removed using the wavelet approach. This is the
strength of the adaptive �ltering method. In contrast to this,
the adaptive �ltering method does not perform well if nearly
homogeneous objects are present. The goal of the adaptive
�ltering of the projections is to achieve nearly constant noise
variance over all projections. If the noise variance is already
very similar in all projections, the adaptive �ltering does
nothing at all, or loses resolution in all directions. This can be
seen well in Fig. 16(c). Here, the wavelet based method, as
shown in Fig. 16(b), can again achieve a high noise reduction
rate without loss of resolution. The detailed vertical lineplots
are again shown in Fig. 16(h). Nevertheless, we want to
emphasize that the noise suppression based on the projections
is a processing step prior to reconstruction, while the proposed
method is a post-processing step, thus making the combination
of the two methods possible

D. Clinically-Acquired Data

1) Data and Experiment:In order to test the noise re-
duction method with respect to its practical usability, the
application of the algorithm on clinically-acquired data is
indispensable. Noise reduction methods are particularly critical
in their application to low contrast images. Thus, images
predominantly including soft tissue are well suited for per-
formance assessment. Theoretically, as already discussed, the
higher the contrast of edges, the higher the probability that the
edge can be detected and preserved. If the application of the
method with speci�c parameter settings leads to good results in
slices with soft tissue, the use for higher contrast regionswill
not be critical. Therefore, we used a thoraco-abdomen scan
(see examples in Fig. 18), acquired at a Siemens Sensation CT-
scanner, for the clinical evaluation. The reconstruction of slices
at a FOV of38 cm with a thickness of3 mm was performed
with a B40 kernel, which is one of the standard kernels for
this body region.

For our clinical experiment, we computed 12 noise-
suppressed images from the same input images with different
con�gurations. We used three different wavelet transformation
methods (ATR, DWT and SWT) in combination with two
different wavelets (Haar and CDF9/7). Furthermore, we used
these con�gurations together with theCorr andGrad methods
for similarity computation. The resulting noise-reduced images
and the average of the input images, which corresponds to
the reconstruction from all projections, were compared by a
radiologist. All images correspond to the same dose level.
For simple comparison, we developed a proprietary evaluation
tool. A randomized list of comparisons between image pairs
can be performed with this tool. Within each comparison, an
image pair is shown to the radiologist. The initial positionof
the two images is also randomized. However, the positions of
the two images can be easily switched by the radiologist, in
order to facilitate the detection of even very small differences
between the images. The radiologist decides if there is one
preferred image (clear winner) or both images are judged
of equal quality with respect to some prede�ned evaluation
criteria.

Three different quality criteria were evaluated separately in
three consecutive tests:

� detectability of anatomical structures,
� noise in homogeneous image regions,
� noise in edge regions.

In each test, all possible image pairs were compared to each
other. Altogether,3 � 78 comparisons were performed. The
outcome of these tests is shown in Fig. 17. The dark bars
show the number of clear winners, normalized to the number
of performed comparisons for one image. The corresponding
light bars are the results of a score system. Three points are
gained by a winning image and one point if two images are
judged to be of equal quality. This value is again normalized,
this time to the number of maximally reachable points, if the
image won all comparisons.

2) Results and Discussion:In the �rst test (Fig. 17(a)), the
detectability of anatomical structures was examined. Onlyin
one case the anatomical structures were judged to be better
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(a) Detectability of anatomical structures

(b) Noise in homogeneous image region

(c) Noise in edge region

Fig. 17. Results of the clinical evaluation - (a) Detectability of anatomical
structures; (b) noise in homogeneous regions and (c) noise inedge regions
was compared for different con�gurations.

detected in the original image than in the noise suppressed
image. In all other direct comparisons of noise reduced images
to the average of input images (here denoted as original), the
processed images were chosen to be favorable. This shows
that the anatomical structures are well preserved by the noise
suppression method. The separation of information and noise
is further improved because of the better signal-to-noise ratio.
The comparison between the different con�gurations shows
that ourCorr method gives better edge detection results than
theGrad approach. There is no clearly preferred wavelet basis
or wavelet transformation.

In the second test (Fig. 17(b)), the treatment of noise in
homogeneous image regions was analyzed. Here again, the

Corr method gives much better visual results in all cases.
There is nearly no difference between the Haar and the
CDF9/7 wavelet.

In the last test (Fig. 17(c)), the noise in regions around edges
was compared. This test re�ects the results of the quantitative
evaluation with phantom data. It shows that nearly no noise
is removed in regions of edges if long reaching wavelets are
used in combination with theCorr method. The results of the
Haar wavelet are still judged better for theCorr method in
comparison to theGrad approach.

TheCorr method is clearly preferred considering the results
of all three tests together. However, longer reaching wavelets
lead to lower noise reduction around higher contrast edges.
Therefore, a tradeoff between smoothness and spatial locality
of the wavelet must be resolved.

E. Example Images

Two examples of noise suppression on clinically acquired
data are shown in Fig. 18. Zoomed-in images from the
abdomen (18(a)-18(c)) and thorax (18(d)-18(f)) are displayed.
For denoising we used 3 levels of a Haar wavelet decom-
position (SWT) in combination with theCorr method. The
original images, which correspond to the reconstruction from
the complete set of projections, are compared to the noise
suppressed images. Additionally, the differences betweenthe
original and denoised images are shown. Noticeably, noise in
homogeneous image regions is removed, while structures are
well preserved.

In Fig. 19 two examples of a thorax-abdomen phantom
acquired at a Siemens De�nition dual-source CT (DSCT)
scanner are shown. We used the same scan protocol
(100 mAs; 120 kV, slice-thickness= 1 :2 mm) and reconstruc-
tion parameters (FOV = 350 ; kernel = B30) for both source-
detector systems. The image reconstructed from projections
acquired at the �rst detector is denoted asA and the image
from the second detector is denoted asB . The FOV (26 cm)
of the second detector is smaller than that of the �rst detector.
Therefore, the sinogram of the B-system is extended at the
outer border with data from the A-system, as explained in
detail in [26]. With this technique two images can be recon-
structed at the full FOV. Inside the26 cm-FOV we have in-
dependent acquisitions from the two detectors. Consequently,
noise within these regions can be assumed to be uncorrelated
between the two images. Outside the FOV of26 cmonly parts
of the sinogram derive from independent measurements due
to the sinogram padding. Therefore, noise in this outer region
is no longer perfectly uncorrelated. Evaluating the correlation
during theCorr method or comparing the angle between the
approximated gradient vectors in theGrad method still works
in this outer region. However, only a lower noise reduction
can be achieved because of the increasing correlation between
A and B with increasing distance from the26 cm radius. In
Fig. 19(a) and 19(d) the average images ofA and B are
shown for two examples. TheA andB images are then used
as input to the proposed noise reduction method (3 levels
SWT with Db2 wavelet andCorr method). The corresponding
denoised results are shown in Fig. 19(b) and 19(e). For
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(a) original (b) denoised (c) difference

(d) original (e) denoised (f) difference

Fig. 18. Noise suppression in real clinical images from the abdomen (a)-(c) and thorax (d)-(f). Con�guration: SWT, Haar wavelet, lmax = 3 , p = 1 , Corr
method. Display options:c = 50 , w = 400 for CT-images andc = 0 ,w = 50 for difference images.

(a) 100 mAs; � = 18 :3 HU (b) 100 mAs denoised,� = 10 :4 HU (c) 500 mAs; � = 8 :9 HU

(d) 100 mAs; � = 17 :0 HU (e) 100 mAs denoised,� = 9 :8 HU (f) 500 mAs; � = 8 :3 HU

Fig. 19. Application of proposed method to Dual-Source-CT data: abdomen (a)-(c) and thorax (d)-(f). Con�guration: SWT, Db2 wavelet,lmax = 3 , p = 1 ,
Corr method. Display options:c = 50 , w = 300 .
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better comparison high-dose scans (500 mAs) are shown in
Fig. 19(c) and 19(f). Within the overlapping FOV, where data
from both detectors has been acquired, a noise reduction rate
of approximately 43% was achieved. Due to the sinogram
extension of the B-system with data from A, noise outside the
FOV of 26 cm is no longer perfectly uncorrelated. Therefore,
only a lower noise reduction of approximately 25% can be
achieved in regions outside the overlapping FOV.

IV. CONCLUSIONS

In this paper, we have introduced a new, robust and ef�cient
wavelet domain denoising technique for the suppression of
pixel noise in CT-images. The separate reconstruction from
disjoint subsets of projections allows the generation of images
which only differ with respect to image noise but include the
same information. We showed that correlation analysis based
on the detail coef�cients of the�a-trous wavelet decomposition
of the input images, as recently proposed by Tischenko, allows
the separation of structures and noise, without assuming or
estimating the underlying noise distribution. We extended
the approach for the applicability with DWT and SWT. The
quantitative and qualitative evaluation showed that comparable
edge preservation, with only slightly lower noise reduction,
can also be achieved with DWT at lower computational
costs. More importantly, a second similarity measurement was
introduced which makes use of correlation coef�cients. This
has lead to improved results with respect to edge preservation
and noise suppression for all wavelet transformations. The
performed human-observer study showed that the detectability
of small low-contrast objects could be improved by applying
the proposed method. In comparison to a commonly applied
projection based algorithm, the proposed method achieved
higher resolution at the same noise suppression. The evaluation
on clinically-acquired CT data proves the practical usability of
the methods.

Currently, we are working on the extension of the method to
3D. Improved results with respect to noise and resolution are
expected, due to the more reliable correlation analysis in 3D.
Further, we are planing more extended clinical tests, including
additional human-observer studies, in order to investigate the
potential dose reduction.
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