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Abstract—The projection data measured in computed tomo- increases the noise approximately by a factor d@. The

graphy (CT) and, consequently, the slices reconstructed from ratio between relevant tissue contrasts and the amplitfide o
these data are noisy. We present a new wavelet based structure-gise myst be suf ciently large for a reliable diagnosisuh
preserving method for noise reduction in CT-images that can be th diation d tb d d arbitrarily. St
used in combination with different reconstruction methods. The € radia 'OU OSe cannot be re UC? arbitrarily. Stateef
approach is based on the assumption that data can be decom.art automatic exposure COﬂtI’OlS, Wh|Ch adapt the tube Qurre
posed into information and temporally uncorrelated noise. In CT according to the attenuation of the patient's body, achigve
two spatially identical images can be generated by reconstructions remarkable dose reduction [1]—[3]. Further reduction, é&asv,
from disjoint subsets of projections: using the latest generation increases the noise level in the reconstructed images add le

dual source CT-scanners one image can be reconstructed fromt | . lity. M diff ¢ hes f .
the projections acquired at the rst, the other image from the 0 lower Image quality. Many diiferent approaches for noise

projections acquired at the second detector. For standard CT- suppression in CT have been investigated, for exampldiitera
scanners the two images can be generated by splitting up the numerical reconstruction techniques optimizing staiigtob-
set of projections into even and odd numbered projections. The jective functions [4]. Other methods model the noise privger
resulting images show the same information but differ with in the projections and seek for a smoothed estimation of
respect to image noise. The analysis of correlations between theth isv data foll d by Itered backproiecti FBP)45
wavelet representations of the input images allows separating € noisy data toflowe y ered bac _prOJeC |on_ ( )15]
information from noise down to a certain signal-to-noise level. [7]. Furthermore, several linear or nonlinear lItering rhetls
Wavelet coef cients with small correlation are suppressed, while for noise reduction in the sinogram [8]—[10] or reconsteaict
those with high correlations are assumed to represent structu® jmages [11], [12] have been proposed. In the majority of the
and are preserved. The nal noise-suppressed image is recon- gingaram pased methods, the lters are adapted in order to
structed from the averaged and weighted wavelet coef cients d th t NOISE | P f highest aft fi Th
of the input images. The proposed method is robust, of low re uce. € most noise in reglonsc_) ighest a _enua |on_s, u
Comp|exity and adap’[s itself to the noise in the imagesl The the main goal Of these methOdS IS the reduct|0n Of dlreCted
quantitative and qualitative evaluation based on phantom as well noise and streak artifacts. As a result, especially in tise cd
as real clinical data showed, that high noise reduction rates of nearly constant noise variance over all of the projectitmsse
around 40% can be achieved without noticable loss of image |iers either do not remove any noise, or the noise reduction
resolution. . - . o -
_ _ is accompanied by noticeable loss of image resolution. The
Index Terms—noise reduction, wavelets, computed tomo- goal of the new method, described in this paper, is the
graphy, correlation analysis structure-preserving reduction of pixel noise in recarcted
CT-images and can be applied in combination with different
|. INTRODUCTION reconstruction methods. The proposed post-processiogsll
OMPUTED TOMOGRAPHY (CT) is one of the mosteither improved signal-to-noise ratio (SNR) without irased
important modalities in medical imaging. Unfortunatelyfose, or reduced dose without loss of image quality.
the radiation exposure associated with CT is generally re-A very important requirement for any noise reduction in
garded to be its main disadvantage. With respect to patienwedical images is that all clinically relevant image comten
care, the least possible radiation dose is demanded. Howewust be preserved. Especially edges and small structures
dose has a direct impact on image quality due to quantushould not be affected. Several edge-preserving appreache
statistics. Reducing the exposure by a factor of 2, for imsa for noise reduction in images are known. The goal of all of
g . g A § these methods is to lower the noise power without smoothing
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dates back to the work of Donoho and Johnstone [16]. Usitgo input images. The nonreducirggtrous algorithm (ATR),
this knowledge, thresholding methods have been introducélte dyadic wavelet transformation (DWT) and the stationary
which erase insigni cant coef cients but preserve thosehwi wavelet transformation (SWT) are compared in combination
larger values. The dif culty is to nd a suitable threshold.with both similarity measurements, our correlation coefrat
Choosing a very high threshold may lead to visible loss afnd the gradient approximation method. In contrast to the
image structures. On the other hand, a very low threshoddR, additional diagonal detail coef cients are needed for
may result in insuf cient noise suppression. Various techthe DWT and SWT in order to ensure perfect reconstruction.
nigues have been developed for improving the detection ahflbis leads to problems if the approximated gradients ard,use
preservation of edges and relevant image content, for eleampecause some correlated diagonal structures cannot hzatbte
by comparing the detail coef cients at adjacent scales,[1®y comparing the angle between the approximated gradient
[18]. The additive noise in CT-images, however, cannot hesctors. Visible artifacts due to wrongly down-weightedadle
assumed to be white. Furthermore, the noise distribution deef cients are the result. To circumvent this problem, we
usually unknown. Making matters even more complicategropose an alternative gradient approximation methodghwhi
noise is not stationary, violating, for example, the assiong is computationally very ef cient and is based directly oreth
in [19] for estimating the statistical distributions of ¢@gents detail coef cients. Finally, the different approaches axalu-
representing structures or noise. Motivated by the corafdit ated with respect to reduction of pixel noise and preseymati
noise conditions in CT, we developed a methodology whidaf structures. We performed experiments based on phantoms
adapts itself to the noise in the images. and on clinically-acquired data. We show how the modulation
Recently, Tischenko et al. [20] proposed a structure-gavitransfer function (MTF), a standard quality measurement in
noise reduction method using the correlations between tWd, can be used for directly evaluating the in uence of the
images for threshold determination in the wavelet domaidenoising algorithm on the edge quality for different edge-
Their approach was motivated by the observation that, dontrasts. Additionally, we performed a human observetystu
contrast to the actual signal, noise is almost uncorrelated comparing the low-contrast-detectability in noisy andalsed
time. Two projection radiography images, which are acgliréemages. Lastly, we also compare our approach to a projection
directly one after the other, show the same information bbased noise reduction method that is used in clinical practi
noise between the images is uncorrelated assuming, ofeours The paper is organized as follows: In Section Il, the diffiere
that the patient does not move. Both images are decomposé&zbs used in the noise reduction method are described in
by ana-trous wavelet transformation. The two highpass Iteredetail. Section Il presents the experimental evaluatiaseol
detail images at each decomposition level are interpreted simulated, as well as real clinical data. Finally, Sectid
as approximations of the gradient eld of the previous apeoncludes our work.
proximation image. The cosine of the angle between the
approximated gradient vectors of the two images is used as Il. WAVELET BASED NOISE REDUCTION
correlation measurement. Coef cients with low correlatio .
are weighted down and others with high correlation are keft Method Overview
unchanged. The result of the inverse wavelet transformagio  Figure 1 illustrates the different steps of the noise reduact
a noise suppressed image, which still includes all comdlatmethod. Instead of reconstructing just one image from the
structures. complete set of projectionB, two imagesA and B, which
This concept of image denoising serves as a basis for thaly differ with respect to image noise, are generated. This
suppression of pixel noise in computed tomography imagesin be achieved by separate reconstructions from disjoint
proposed in this paper. The contribution of our work is as fosubsets of projections. Image is reconstructed from the set
lows: We rst solved the problem of how to acquire spatiallyf projectionsP1 (e.g. from the set of projections acquired at
identical input images in case of CT, where noise betwedme rst detector of a DSCT) an@ is reconstructed fronP2
the two images is uncorrelated. Two images, including tHe.g. the set of projections acquired at the second detettor
same information, can be generated by separate reconsta@®SCT). The two images include the same information, but
tions from disjoint subsets of projections. With the latestoise between the two images is assumed to be uncorrelated.
generation dual-source CT-scanners (DSCT), the two image®$oth images are then decomposed into multiple frequency
can be obtained directly by separate reconstructions ftmm thands by a 2D discrete dyadic wavelet transformation. This
projections measured at the two detectors. Using stand&rd @llows a local frequency analysis. The detail coef cienfs o
scanners, e.g., one image can be reconstructed from the evenwavelet representations include higher frequencytstre
and the other from the odd numbered projections, respégctivenformation of the images together with noise in the redpect
Furthermore, we propose a new similarity measurement bageshjuency bands. For the reduction of high frequency noise
on correlation coef cients. Pixel regions from the approxias it is present in CT-images, only decomposition levels
mation images of the previous decomposition level, whiatovering the frequency bands of the noise spectrum are of
directly in uence the value of a respective detail coefote interest. It is, thus, not necessary to compute the wavelet
through the computation of the wavelet transformation]jdouidecomposition down to the coarsest scale. The number of
the basis for our local similarity measurement. Moreovedecomposition levels that cover the noise spectrum depends
we investigated the use of different wavelet transfornmetioon the reconstruction eld-of-view (FOV). The smaller the
with different properties for the noise reduction based dROV the smaller the pixel size and consequently the higher
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Fig. 1. Block diagram of the noise reduction method
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the frequencies at the rst decomposition level. Due to then just one of the input images, but on the combination of both

logarithmic scale of the wavelet transformation, halvihg t Generally, we want to obtain a result image that corresponds

FQV, e.g., means that one more decomposition level is needidthe reconstruction from the complete set of projectidnog,

During our experiments, we found out, that in most cases famith increased SNR.

decomposition levels, e.g. 3 or 4, are suf cient becausg the A lot of research has been done in the eld of CT in the

cover approximately 90 percent of the frequencies of an @nagecent years. Different reconstruction methods togethénr w

if dyadic wavelet decompositions are used. their in uence on noise, resolution and artifacts were swe
For each decomposition level a similarity image is computeijated. Detailed descriptions regarding different mdthaas

based on correlation analysis between the wavelet coeitsie well as special topics like aliasing artifacts and the pgajen

of A andB. The goal is to distinguish between high frequencgf noise from the projections to the reconstructed slices ca

detail coef cients, which represent structure informatiand be found, e.g., in [21], [22]. In this section we focus on the

those which represent noise. High frequency structureithatdescription of different possibilities for the generatiohthe

present in both images should remain unchanged, while coifput imagesA andB.

cients representing noise should be suppressed. A freqjuen The input images are generated by separate reconstructions

dependent local similarity measurement can be obtained fogm disjoint subsets of projectiodsl P andP2 P, with

comparing the wavelet coef cients of the input images. TwP1\ P2 = ;, jP1j = jP2j andP = P1[ P2, wherejPj de nes

different approaches will be described. The similarity meahe number of samples in P. This means that

surement can be based either on pixel regions taken from

the lowpass Itered approximation images, or on the high A=GfPlg and B = GfP2g; 1)

frequency detail coef cients of the wavelet representatad . .
q Y P where G de nes the reconstruction operator, like in our case

the images. : L
Level dependent weighting images are then computed g1e weighted Itered backprpjectmn (WFBP) [23]. Generally
other reconstruction techniques can be used, however, the

applying a prede ned weighting function to the computed-sim S . . .
ilarity values. Ideally, the resulting masks include théueal Investigation of the in uence of the reconsiruction teafe

in regions where structure has been detected and vaIuekesm% the denoising method is beyond the scope of this paper.

. : ifferent reconstruction methods may also lead to special
than1 elsewhere. Next, the wavelet coef cients of the inpu . . L
requirements for the valid sets of projectioRs and P 2.

images (detail- and apprqmmaﬂon-coef cients) are ageth However, the restrictions based on Shannon's sampling the-
what equals the computation of the wavelet coef cients &f th . ; .
rem are valid for all kinds of reconstructions (see [241). |

average of the two input images because of the linearityef t . . .
. : ) e following we assume that the sampling theorem is fudille
wavelet transformation. The averaged detail-coef cienftthe . L
fo&Bboth single sets of projections.

input images are then weighted according to the compute . .
o N . oth separately reconstructed images can be written as a
weighting image. Averaging in the wavelet domain allows

the computation of just one inverse wavelet transformaition supg_rposmpn Of an ideal noise-free siglabnd a zero-mean
X i . additive noiseN :

order to get a noise suppressed output imRge& his output
image corresponds to the reconstruction from the compéste s A=S+Ny and B =S+ Ng: @)
of projections but with improved signal-to-noise ratio (SN

In the following subsections we will describe each step afith Na 6 Ng, and the subscripts describing the different im-
the proposed methodology in greater detail. ages. The ideal signal, respectively the statistical expen
E, is the same for both input imag€s= Ef Ag= EfBg and
hence also for the average = %(A+ B), which corresponds
to the reconstruction from the complete set of projectidine

Motivated by the complicated noise conditions in CT-imagaewmise in both images is non-stationary, and consequengly th
(non-white, unknown distribution, non-stationary), wevele standard deviation of noise depends on the local posiien
oped a method that is based on two spatially identical imagés,; x2), but the standard deviationsg;, (x) and n, (x) at a
where noise between the images is uncorrelated. This gyopegiven pixel position are approximately the same because-in a
is used for distinguishing between structures and noisegusierage the same number of contributing quanta can be assumed.
correlation analysis in the wavelet domain. It is, howevery Noise between the projectiofsl and P2 is uncorrelated and
important to notice that the noise suppression is not perdor accordingly noise between the separately reconstructagem

B. Generation of input images
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is uncorrelated, too, leading to the following covariance:
X

Cov(Na;Ng) = Na(X)Ng(x)=0; 3)
X2
with x de ning a pixel position and denoting the whole
image domain.

Generally, the above scheme can also be extended to wo
with more than two sets of projections. The reason for re
stricting all the following discussions on just two inputdges
can be found in the close relation between pixel noisend
radiation dosal [25]:

(b)

1 ) Fig. 2. Example of a discrete dyadic wavelet decomposition (PWT{a)
/ FFa, (4) original image, (b) wavelet coef cients up to the second aeposition level.

which holds as long as quantum statistics are the most

dominant source of noise and other effects, like electrorggjuation (3). The average of the two input images again

noise, are negligible. If the set of projections should beorresponds to the reconstruction from the complete set of

split up into m equally sized parts the effective dose foprojections, what is easy to comprehend on the example of

each separately reconstructed image decreases bM a fattterltered backprojection: Reconstructing images by nseain

of m. Thus, the pixel noise increases by a factor ofn backprojection is simply a numerical integration. Thusgrav

in every single image. The detectability of edges based aging the two separately reconstructed images corresgonds

correlation analysis depends on the contrast-to-noisd,leg the reconstruction using the complete set of projectidrisas

our experiments show. Therefore, it is reasonable to keep the same image resolution and the same amount of pixel noise.

number of separate reconstructions as small as possildkoif &However, halving the number of projections might in uence

low contrasts are of interest, leadingno= 2. aliasing artifacts and resolution iy andB. With decreasing
The simplest possibility for acquirinB1 and P2 is to use number of projections the artifact radius, within which a

a dual-source CT-scanner (DSCT) where two X-ray tubes aretonstruction free of artifacts is possible, decreasé. [2

two detectors work in parallel [26]. If for both tube-detmet Furthermore, azimuthal resolution is reduced away from the

systems the same scan and reconstruction parameters dre use-center [21]. Usually, for CT-scanners commonly avdéa

two spatially identical images can be reconstructed directthe number of projections is set to a xed number that ensures

One image is reconstructed from the projectiBdsacquired at a reconstruction free of artifacts within a certain eld of

the rst detector and the second one from the projecti®2®f view (FOV) at a certain maximum resolution. Thus, for the

the second detector. Instead of simply averaging both isjagapplication of this splitting technique, care must be talteat

they can be used as input to the noise reduction algorithmthre number of projections for separate reconstructiongilis s

order to further suppress noise (see section IlI-E). high enough for the desired FOV in order to avoid lower
If no DSCT scanner is available, different approaches foprrelations due to reduced resolution or artifactsAirand

generating two disjoint subsets are possible. For example, Alternatively, the scan protocol can be adapted to acquire

P1 and P2 can be acquired within two successive scans tfie doubled number of projections per rotation.

the same body region using the same scanning parameters.

This requires that the patient does not move between the t@o \Wavelet Transformation

scans. In or(;ls rto avqtl)qlltsc?nnmg thet;am((aj é)bgect twice Weryis section introduces the notation and reviews the basic
Propose another possibility Tor generatiagan rom one concepts of the three wavelet transformations used in this
single scan. As we have shown in [27], for parallel projattio

: er. For detailed information on wavelet theory we refer
geometry, two complete images can be reconstructed, e%ﬂfzg]_[m]
using only every other projection. Speci cally, one image i i

q f h 4 th h ‘ h 1) DWT: The one-dimensional, discrete, dyadic, decimating
computed from the even and the other one from the odd,nequndant) wavelet transformation (DWT) of a signal is a
numbered projections:

linear operation that maps the discrete input signal oftleng
k onto the set ok wavelet coef cients. The multiresolution
decomposition proceeds as an iterated Iter bank. The signa
is Itered with a highpass lterg and a corresponding lowpass
P =Q@2k+1) B (6) Iter n followed by a dyadic downsampling step respectively.
o This decomposition can be repeated for the lowpass Itered
with 0 k % 1, wherejPj denotes the total number ofapproximation coef cients until the maximum decompositio
projections and is assumed to be even. A projection acquiregiel |ax 109, k (assumedk is a power of two) is reached.
at rotation angle is denoted as? . Under the constraint For perfect reconstruction of the signal, the dual Itersind
that noise between different projections is uncorrelaiddch h are applied to the coef cients at decomposition lelelfter
means that cross-talk at the detector is negligibly smallpsampling. The two resulting parts are summed up leading
noise betweerA and B is again uncorrelated as stated irio the approximation coef cients at levél 1.

PL = P =2k ; 5
P ®)

P2
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When dealing with images, a two-dimensional wavelet A L Correlation CJJ -
transformation is required. The one-dimensional tramsésr . "~ | Coelficients .
tion can be applied to the rows and columns in succession, Il
which is referred to as separable transformation. Aftes thi B HH
decomposition, four two-dimensional blocks of coef cient P
are available: the lowpass Itered approximation imaGe Input Image Similarity Images Input Image
and three detail image®", WY and WP which include A=l Il B=C;
high frequency structures in the horizontal (H), verticd) ( B
and diagonal (D) directions, respectively together witlisao N [ .
in the corresponding frequency bands. Like the 1D case, the | Approximation n: H N Approximation
2D multiresolution wavelet decomposition can be computed Level 1 . Level 1
iteratively from the approximation coef cients of the pieus a Wavelet Decomp. cr
decomposition level. An example of a 2D-DWT performed on (Average ol A.B)

a CT-image is shown in Figure 2.

2) SWT: The _CompUtatlonal efciency and the CO”Sta”Eig. 3. Schematic description of similarity computation basedorrelation
storage complexity are advantages of DWT. Nevertheless, #aef cients between approximation coef cients of the wastalecompositions
nondecimating wavelet transformation, also known ascstati (here DWT) obtained from the input imagésandB .
ary wavelet transformation (SWT), has certain advantages ov
DWT concerning noise reduction [32], [33]. Mainly, SWT
works in the same way as DWT with the difference that Two different methods for S|m|lar|ty Computation will be
no downsampling step is performed. In contrast to DWHiscussed. First, a correlation coef cient based measenem
the frequency resolution is now gained by upsampling ti@mparing pixel regions from the approximation images| wil
wavelet lters g and I in each iteration. The number ofbe introduced. Secondly, a similarity measurement, direct
coef cients at each decomposition level is constant, legdi based on the detail coefcients, is presented. The core idea
to an overall increased storage complexity. The recortsoruc Pehind both methods is similar: For all detail images of
from this redundant representation is not unique. If coefnts  the wavelet decomposition, including horizontal, veitti@and
are modied, as it is done in cases of noise reductiofliagonal) details, a corresponding similarity imsgebetween
an additional smoothing can be achieved by combining afle corresponding wavelet decompositions of the two input
possible reconstruction schemes. A further advantageais timagesA and B is computed for each level up to the
unlike DWT, SWT is shift-invariant. maximum decomposition level. The higher the local simi-

3) ATR: A third alternative wavelet transformation wel@rity, the higher the probability that the coef cients dtet
considered the two-dimensionattrous (ATR) algorithm as corresponding positions mclude structural |nformat|d_rmtt_
described in [34]. The main difference in comparison to Dw$hould be preserved. According to the dened weighting
and SWT is that only two instead of three detail images af@nction, the detail coefcients are weighted with respect
computed at each decomposition level. The approximatié their corresponding values in the similarity image. Deta
coef cients C; at decompossition levelare again computed by coef cients representing high freq_uency structure infation
ltering the approximation coef cients of the previous dmo- are preserved, while noisy coef cients are suppressed.
position levell 1 with the lowpass lter in both directions. 1) Correlation Coef cient: One popular method for mea-
The detail coefcients are ltered with the one-dimensidnasuring the similarity of noisy data is the computation of
highpass only in one direction respectively, resultingvim t the empirical correlation coef cient, also known Bearson's
detail imagedVvH andWV . In contrast to DWT and SWT, no correlation It is independent from both origin and scale and
lowpass ltering orthogonal to the highpass Itering ditem its value lies in the intervdl 1;1], where 1 means perfect cor-
is performed. Diagonal detail coefcients are not neede@lation, 0 no correlation and 1 perfect anticorrelation [35].
for perfect reconstruction because no downsampling stepTigis correlation coef cient can be used in computing thealoc
performed. For the reconstruction, however, an additiongimilarity between two images, by taking blocks of pixels in
lowpass ltering orthogonal to the highpass Itering ditean @ de ned neighborhood around each pixel in the two images
is necessary for the detail coef cients, in order to compgas and computing their empirical correlation coef cient.
for the missing diagonal detail coef cients [34]. This concept can be extended by comparing images of
wavelet coef cients. In order to estimate the probability f
each detail coefcient of the wavelet decomposition to in-
clude structural information, we propose the computatiba o

Detail coef cients gained from the multiresolution wavelesimilarity image at each decomposition level, as illugdain
decomposition of the input images include structure infarmFigure 3. The similarity image is of the same size as the detai
tion together with noise. The goal of the correlation anialis images at that decomposition level, meaning that for each
to estimate the probability of a detail coef cient correspge detail coef cient a corresponding similarity value is callated.
ing to structural information. This estimate is based on the An important factor is the selection of the pixel regions
measurement of the local frequency-dependent similarfity ased for the local correlation analysis. A very close cotinac
the input images. between the detail coef cients and the similarity values ca

D. Correlation Analysis
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be obtained if the approximation coef cients of the prevsou
decomposition level 1 are used for correlation analysis at
level I, where the original image is the approximation image
at levell = 0. For the similarity valueS,(x;) the correlation
coef cient is computed between the approximation coefrtie
Cas1 1 andCg, 1 within a local neighborhood s around
the corresponding positior; ; of the current positiorx,
according to:

Cov(Ca: 1 Cg:
S(x)= p V(Cai 1;Cri 1)

p , 7 (a) Haar,l =1 (b) Haar,| =2
Var(Ca;y 1)Var(Cgy 1)

with covariance

X
Coaih= = (ax) a) bx) b; (8
n X2 x
and variance
1 X )
Var(a) = - (a(x) a&°; (9) (c) CDF9/7,1 =1 (d) CDF9/7,l =2
X2 x

Fig. 4. Similarity measurement based on correlation coeftsamsing the
Haar and CDF9/7 wavelet for the rst two decomposition leveiDWT.

wheren de':nes the number of pixels in the neighborhood

anda= % x2 , &(x) denes the average value withiny.

With this de nition it is possible to directly use thoseadapted, leading to:
approximation coef cients for the correlation analysishieh

- . ) " _ . 2 1s
mainly inuenced the detail coefcient at positiorx; = x = X 1 Pl o1 Xk 1) 5
(X1:1;X21) through the computation of the wavelet transforma-
tion. The multiresolution wavelet decomposition is congalt A mod jx 1 Xkt 12 ' =0 :
iteratively. Thus, the detail coefcients at level are the ' '
result of the convolution of the approximation image at leve 8 k27129 : (11)

I 1 with the respective analysis lowpass and highpass lters.
During the computation of the inverse wavelet transfororati ) .
the approximation image at levél 1 is reconstructed by where the overall number of pixels used for correlation -anal
summing up the approximation and detail coef cients at lev¥SiS IS kept constant across the decomposition levels.

| Itered with the synthesis lters. The wavelets we used, Figure 4 shows an example of the similarity measurement
all lead to spatially limited lIters. Consequently, a détaibased on the correlation coefcients for the rst two de-
coef cient at a certain position is in uenced by a xed numbe COMposition levels of DWT. The results are compared for

of pixels from the approximation image and has in uence thvo different wavelets: the Haar and the Cohen-Daubechies-
a de ned region of pixels in the approximation image due tgauraue (CDF9/7) wavelet. White pixels correspond to high
the reconstruction. Therefore, we de ne, to be a squared correlation and black to low correlation. It can be seen that

neighborhood according to: especially in regions of edges high correlations are ptesen
Additionally, it can be seen, that the area with high cotieta

n s o] at an edge increases from the rst to the second decompositio

x = X1 kg1 X 1(K)j 5;8k2f 1,29 ; level. The reason for this is that at the second decompo-

(10) sition level lower frequencies with larger spatial extensi
where the lengtts of the four analysis and synthesis Itersare analyzed. Furthermore, two important differences eetw
(¢, A, g, h) is, without loss of generality, assumed to be¢he different wavelets, which in uence the nal result can
equal and even. Consequently, the number of pixels udeel seen. Firstly, for longer reaching wavelets the region
for the correlation analysis is adapted to the length of tleround edges where high correlations are obtained in@ease
wavelet lters. This is necessary in order to ensure th&econdly, in homogeneous regions the correlation result is
those coef cients, which include high frequency inforneati smoother. The Haar wavelet is the shortest existing wavelet
of an edge can be preserved. Care must be taken if rediihe corresponding analysis and synthesis Iters have attteng
dant wavelet transformations without downsampling areluseof s = 2. Thus only those coef cients very close to the edge
Then, analogously to the upsampling of the wavelet Itersnclude information about the edge and the pixel region
the pixel regions used for correlation analysis also nedukto can be chosen to be very small without destroying the edge.
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respect to Equation (12). The similarity can then be measure
by computing the angle between the corresponding gradient
vectors. The goal is to obtain a similarity value in the range
[ 1;1], similar to the correlation computations of eq. 7.
Therefore, we take the cosine of the angle:

W Wl + Wy, Wg)

S =¥ = (13)

2 2 2
H \Y H \Y
WA;I + WA;I WB;I + WB;I

where the index A refers to the rst and B to the second input
image. An example of the results of the similarity compuatati
with the gradient approximation method is shown in Figure 5
again for the rst two decompostion levels of the DWT and the
Haar and CDF9/7 wavelets. Here it can already be seen that
the masks look more noisy than for the correlation coef tien
based approach shown in Figure 4. The difference between
the Haar and CDF9/7 wavelet are very small. The edges,
however seem to be better detected in combination with the
Haar wavelet. These observations will also be con rmed by
our quantitative evaluation Il1.
This kind of similarity measurement has also been used
(c) COF9/7,1 =1 (d) CDF9/7,1 = 2 by Tischenko [20] in combination with tha-trous wavelet
Fig. 5. Similarity measurement based on approximated gradiesing the decomppsmon. AS alrea_'dy explained abOV‘?' only horionta
Haar and CDF9/7 wavelet for the rst two decomposition level<DWT. and vertical detail coef cients are computed in the casehef t
a-trous algorithm. However, the additional lowpass Iteyior-
thogonal to the highpass ltering direction in the case of DWT
Consequently noise can also be removed close to the edgesl SWT is advantageous with respect to edge detection. The
In contrast to that, the CDF9/7 wavelet results in Iters obnly problem is that the gradient approximation, as intzd
lengths = 10. Thus, coef cients farther away from the edgeso far, in the case of DWT and SWT, can sometimes lead
still include information that should be preserved. Thigiag to visible artifacts. Figure 6(a) and the difference images
explains the reason for adapting to the lterlength. Edges Figure 6(c) show four example regions where this problem
are preserved, but the noise reduction around high contragh be seen using the Haar wavelet.
edges decreases as a consequence. Because of the increadaticeably, artifacts predominantly emerge where diagona
pixel region, however, a stronger smoothing can be achieveitiuctures appear in the image, and their shape, in general
in homogeneous regions. The smaller the number of pixdlgther justi es the assumption that diagonal coef ciersise
used for correlation analysis, the higher the probabilitstt falsely weighted down. The different sizes of the artifeants
noise is wrongly detected as structure. This is re ectechim t due to errors at different decomposition levels. Suppoessi
higher number of white spots in combination with Haar. Thes# correlated diagonal structures at a coarser level inagsn
observations are also con rmed by our experimental evalnat a larger region in the reconstructed image. The reason for
in section Ill. these types of artifacts is that diagonal patterns existchwh
2) Gradient Approximation:The core idea of a gradient-lead to vanishing detail coef cients in horizontal and vVeat
based similarity measurement is to exploit the fact that tigérection. If the norm of one of the approximated gradient
horizontal and vertical detail coef cient&V! and WY can vectors is too small or even zero, no reliable informatioatsb
be interpreted as approximations of the partial derivativéhe existence of correlated diagonal structures can beneiota
of the approximation imag€, 1. In the case of the Haar from Equation (13).
wavelet, for example, the application of the highpass ier  The simplest solution for eliminating such artifacts is to
equivalent to the computation of nite differences. Codéants Weight only the detail coef cientsV" andW,¥ based on the
in W show high values at positions where high frequencigémilarity measuremer, and leave the diagonal coef cients
in the x, -direction are present, while coef cients WY have WP unchanged. As expected, this avoids artifacts in the
high values where high frequencies in thedirection can be resulting images, but, unfortunately, noise included ie th
found. If these two aspects are considered together, wengetdiagonal coef cients is not removed, leading to a lower sign

(a) Haar,l =1 (b) Haar,| =2

approximation of the gradient eld of; 1: to-noise ratio in the denoised images. Equation (13) shbais t
oG, ! the similarity value is computed only frov! andW,¥. The
c .= @ wfHt 12 diagonal coef cients do not in uencs;. The idea of extending
Fera= @G 1 w,Y (12) the approximated gradient vector (see Equation (12)) by the
2 diagonal coef cients to a three dimensional vector does not

The detail coef cients in horizontal and vertical directiof lead to the desired improvements. In the cases of vanishing
both decompositions approximate the gradient vectors widetail coef cients in the horizontal and vertical direationo
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values are to 1, the higher the probability that structure is
present. Consequently, the detail coef cient at the cqoes!-

ing position should remain. The lower the similarity valtieg
higher the probability that the corresponding detail coafnt
includes only noise and, therefore, should be suppressed. W
now have to de ne a weighting functioh(S,), that maps the
values in the similarity images to weights in the rafg@gel]
These weights are then pointwise multiplied to the averaged
detail wavelet coef cients of the two input images:

(a) artifacts (b) no artifacts 1
Wg, = 5(WA;| + Wg ) f(S); 812[L1nax]; (15)

obtaining the detail coef cient8Vg, of the output image R.
The approximation images of the two input images are only
averaged:

CR;lmax = (CA;l max + CB;' max ) 0:5: (16)

The simplest possible method for a weighting function is
to use a thresholding approach. If the similarity vafjeat a
certain position is above a de ned value the weight is 1 amrd th
(c) difference, artifacts (d) difference, no artifacts detail coef cient is kept unchanged, otherwise it is set ooz
Fig. 6. Artifacts due to weighting down correlated diagonatfcients Generally, the use of continuous weighting functions, w&her
with the gradient approximation method - (a) four detailedaeg showing no hard decision about keeping or discarding coef cients is

artifacts, (b) same image regions without artifacts, (Cedéhce between noise o qyjired, leads to better results. In principle one can use
suppressed and original image regions showing artifacjdifférences free

of artifact after appropriate weighting of diagonal detkf cients. any continuous, monotonically decreasing function withge
[0; 1], such that 1 maps to similarity values close to 1. We use

. ) ) ) the weighting function
guantitative relation between the diagonal coef cient: ca

be obtained. Moreover, the extension of the approximated
gradient vector by the diagonal coef cient is more errorgo
A diagonal coefcient can be interpreted as a second order
derivative because of highpass Itering to both directionghich has a simple geometric interpretation. In the case of
and is, therefore, very sensitive to noise. Mixing it witte ththe gradient approximation method, the similarity values c
horizontal and vertical detail coef cients generally lsatb respond to the cosine of the angle between the gradientrgecto
less reliable similarity measurements. In the case of the correlation coef cients, the similaritglwe

In order to avoid artifacts while still reducing noise in thean be interpreted as the cosine of the angle between-the
diagonal coef cients, we propose weighting only the detaflimensional vectors and b freed by their mean, whera
coef cients W and WY depending on the similarity mea-de nes the number of pixels in x. Equation (17), therefore,
surement computed from Equation (13). The diagonal dett#hds to a simple cosine weighting, shifted and scaled to the
coef cients are then treated separately. The new weightimgterval [0; 1], where the powep controls the amount of noise
function for the diagonal coef cients is based on the follogs suppression. With increasing values the function goes to 0

p
f(S)= S(5+1)  2[01]; (17)

correlation analysis betweeWAD;' and WBD;I : more rapidly, but still leads to weights close to 1 for simitia
WD, WP values close to 1. The in uence of the paramgbeon noise

SP = zA:l Bil 5 (14) @and resolution has been evaluated in section Ill-A.5 and is
WR T+ Wp, shown in Figure 11. In all other experiments we get 1, to

have a simple cosine weighting function.
Using this extension for a separate weighting of diagonefco  we now have described all the different steps of the noise
cients, denoising results are free of artifacts (see FégBifd)). reduction method, as shown in Figure 1. We described how
Note that, equations (7, 13, 14) are only de ned for nony generate the input images and B, explained different
zero denominators. However, in all three cases it can pgssibilities for wavelet decomposition, introduced a rsém-
assumed that no relevant high frequency details are presgiity measure between the wavelet coef cients of the inpu
if the denominator is O and, therefore, the S|m||ar|ty vaisie images based on correlation ana'ysis’ presented an &rtifac

set to 0. free extension to gradient-based approximations of catioel
o ) analysis and proposed a technique for weighting the avdrage
E. Weighting of Coef cients details. The nal step is to reconstruct the noise suppisse

The result of the correlation analysis is a set of similarityesult imageR by an inverse wavelet transformation from the
imagesS, with values in the rang¢ 1;1] The closer the averaged and weighted wavelet coef cients.
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addition to noisy projections (with Poisson distributedseo
according to quantum statistics), ideal, noise-free data c
also be produced. All slices are of sis&2 512 and were
reconstructed within a eld of view 020 cmusing: a) a sharp
Shepp-Logan (S80) ltering kernel, leading to a pixel noise
of approximately7:6 HU in the homogeneous image region in
the reconstruction from the complete set of projectiongl an
b) a smoother body kernel (B40), leading to a pixel noise
of approximately5:2 HU. The MTFs of all used kernels are
shown in Figure 8. The standard dgviation of noise in the
separately reconstructed images is aboBtimes higher. Two
examples (10 and 100 HU) are shown in Figure 7. For both
contrast levels, one of the noisy input images, reconsdict
from every second projection, together with the ideal, &ois
free image, reconstructed from the complete set of prajesti
are shown.
2) MTF Computation: First, we want to investigate the
capability of the noise reduction algorithm to detect edgks
a given contrast in the presence of noise. We are interested i
how the local modulation transfer function (MTF), measuaed
an edge, changes due to the weighting of wavelet coef cients
(c) no noise,100 HU (d) noisy, 100 HU during noise suppression. It is possible to determine thé&MT
directly from the edge in an image. For this purpose, we
manually selected a xed region &#0 125 pixels around
an edge (with a slope of approx. 4 degrees). The slight tilt
of the edge allows a higher sampling of the edge prole,
which is additionally average along the edge. The derivatio
of the edge pro le leads to the line-spread function (LSH)eT
Fourier transformation of the LSF results in the MTF, which
is additionally normalized so thaITF(0) = 1 . Reliable
measurements of the MTF from théslge techniquean only
be achieved if the contrast of the edge is much higher than the
pixel noise in the images [37]. Ideally, one should measure
MTF on noise-free images. However, we are interested in
Fig. 8. MTFs of different reconstruction kernels. measuring the quality of edge preservation based on the
contrast of the edge in the presence of noise. In order tdenab
the measurement of a smooth MTF curve, usually, several
[1l. EXPERIMENTAL EVALUATION noise realizations are needed (the number of images needed f
giable results increases, if the contrast of the edgecases).
owever, the same results can be achieved even faster using
the simulated data described above. We want to measure the
impact of the weighting in the wavelet domain during noise
suppression to the ideal signal. For that purpose, in aghditi
to the noisy input images, which are a superposition of ideal
In order to evaluate the performance of the noise reductisignal and noise, an ideal image, free of noise, is simulated
methods, mainly two aspects are of interest: the amount arid reconstructed. The noise-free image is also decomposed
noise reduction and, even more importantly, the presematiinto its wavelet coef cients. The weighting image is geneth
of anatomical structures. from the similarity computations from the wavelet coef nis
1) Phantom:For our experiments we used reconstructionsf the noisy input images, as explained in the previous cecti
from a simulated cylindrical water phantom & 15cm), In order to measure the impact of the weighting to the ideal
with an embedded, quartered cylindar & 6cm). The signal, the detail coefcients of the noise-free image are
contrast of the embedded object in comparison to watgointwise multiplied with the computed weights. The image
varied between 10 and 100 HU. The dose of radiatiggained from the inverse wavelet transformation of the wieidh
(100 mAs=1160 Projectiong is kept constant for all simu- coef cients of the noise-free image shows the in uence & th
lations, leading to a nearly constant pixel noise in the howoise suppression method on structures directly. Edgeishwh
mogeneous area of the water cylinder. All simulations wemere detected as correlated structures, are preservedetige
performed with theDRASIM software package provided byhas not been detected correctly, the edge gets blurredhwhic
Karl Stierstorfer [36]. The advantage of simulations isttima in uences the MTF.

(a) no noise 10 HU (b) noisy, 10 HU

Fig. 7. Reconstructed simulated phantom images using S8@lkern

For the evaluation of the described methods, experimef
both on phantom data and clinically-acquired data were p
formed.

A. Noise and Resolution
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(a) Grad - ATR (b) Corr - ATR
(c) Grad - DWT (d) Corr - DWT
(e) Grad - SWT (f) Corr - SWT

Fig. 9. MTF for varying contrast at the edge using the CDF9&velet. Comparison of correlation coef cient approach (Tand gradient approximation
(Grad) in combination with different wavelet transformaton
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3) Evaluation of Edge-Preservationin our rst test, the that the resolution in the original image using the B40 kerne
in uence of the noise suppression method to the MTF is evék lower than for the S80 kernel. In addition to that, the aois
uated with regard to the contrast of the edge. We used phantiewvel is also lower (see next section on noise evaluatioimgus
images, as described above, reconstructed with the S88lkerthe B40 kernel. Due to the better signal-to-noise-levelhia t
with varying contrasts at the edge (10, 20, 40, 60, 80 amiput images the edges can be better preserved when using
100 HU). The noise suppression method is performed for tig40. All other effects are similar for both cases. First df al
rst three decomposition levels using a CDF9/7 wavelet.lln awe can see that the clear differences betweenGbe and
cases a continuous weighting function is utilized, as priegsk Grad methods decrease when using the Db2 and the Haar
in Equation (17). The MTF is computed for the modi edwavelet. The results of th&rad approach get better with
noise-free images and compared to the MTF of the idedécreasing length of the wavelet lters. More speci caltige
image, without modi cations, reconstructed from the coatpl better the highpass lIter of the wavelet is in spatially Ibziag
set of projections. The results of this test are illustratestiges, the better the results of tBead method. For the Haar
in Fig. 9, allowing a comparison of the different waveletvavelet, we can see thaty even exceeds the;, value of the
transformation methods and tk®rr andGrad approaches for ideal image. This can be attributed to the discontinuityhef t
similarity computation. Ideally, the noise reduction nath wavelet, which can lead to rising higher frequencies during
do not inuence the MTF in any respect. Speci cally, thenoise suppression.
edge is not blurred. If the corresponding MTF falls below the 4) Evaluation of Noise ReductionThe same phantom
original ideal curve, this indicates that the edge is smedth images are used for evaluating the noise reduction rate. The
Alternatively, the MTF raises if some frequencies are ampluse of simulations has the advantage that we have an ideal,
ed. As seen in Fig. 9 theCorr method leads to better edgenoise-free image. Therefore, noise in the images can bdylea
detection in comparison to th@rad approach for all cases. separated from the information by computing the differance
This can be explained by the better statistical propertigken from the ideal image. The effect of the noise reduction
similarity evaluation based on correlation coef cientaween algorithm can be evaluated by comparing the amount of noise
pixel regions. More values are included in the correlatioin the noise-suppressed images to that in the average of the
computations and, therefore, the results are more relidfde input images. We used two different regions, ed®® 100
expected, the approximated gradients are more sensitivepigels, and computed the standard deviation of the pixelesl
noise. For all methods we can see that decreasing edge stonirathe difference images. The rst region was taken from a
results in decreasing MTF. This clearly shows that decngasihomogeneous area. Here the achievable noise reductioofrate
CNR lowers the probability that the edge can be perfectthe different approaches can be measured. The second region
detected. However, one can see that with increasing contragas chosen at an edge because the performance near the edge:
the MTF gets closer to the ideal MTF. In the case of@wr differs for the various approaches. Sometimes a lower noise
method the difference to the ideal MTF, even for a contrastduction rate is achieved near higher contrast edgeseTher
of 60 HU, is very small. TheGrad approach, in contrast, fore, it is interesting to compare the noise reduction rates
does not reach the ideal MTF even for an edge contrastexfges for different contrasts. Furthermore, the noiseatéuiu
100 HU. One can also observe that the performances fates are evaluated for the two different reconstructianéds
the three different wavelet computation methods are quii880 and B40).
similar. The two nonreducing transformations give slightl In the homogeneous image region, no noticeable changes
better results in case of theéorr method, at least for higher are observed when the contrast of the objects is changed.
contrasts. In combination with th&rad method, ART and Therefore, the measurements in cases of 100, 60 and 20
SWT slightly outperform DWT. The redundant informatiorHU are averaged. Table | presents the noise reduction rates
included in nonreducing wavelet transformations, such®R A (percentage values) measured in the homogeneous image
and SWT, smooths the edge detection results. The similanggion. The rst clear observation is that the noise supgices
is evaluated for all coef cients. The reconstruction frohet for the Corr method is much higher than that for tii&rad
weighted redundant data, therefore, leads to smoothettgesumethod. The computation of correlation coef cients betwee
On the other hand, the additional lowpass lItering orthogion pixel regions taken from the approximation images leads to
to the highpass ltering direction, in the case of DWT andmoother similarity measurements. This is also noticeable
SWT, improves the edge detection results. Altogether, thisgarding the weighting matrices in Fig. 5 in comparison to
explains why SWT, which combines both positive aspectBig. 4. An interesting observation is that, for tBead method,
gives best results. the noise reduction rates do not vary for the different weteel

An even better comparison of the results can be obtainkd contrast to that, when using th@orr approach, slightly
regarding the 5o values. This is the resolution for whichincreased noise suppression can be achieved for longdr-reac
the MTF reaches a value d@f5. In Fig. 10, 59 is plotted ing wavelets. By increasing the length of the wavelet Iters
against the contrast of the edge for the different methols Tlarger pixel regions are used for the similarity computadio
time, three different wavelets (Haar, Db2 and CDF9/7) afhis avoids the case where noisy homogeneous pixel regions
compared. Two different convolution kernels (S80 and B4@ye accidentally detected as correlated. In contrastaittatiat
were used for image reconstruction (see MTFs in Fig. 8he approximated gradient vectors in noisy homogeneoues pix
Using a smoothing kernel changes the image resolution, regions can sometimes point to the same direction cannot be
well as the noise characteristics. From Fig. 10 it can be sesmluced by using longer reaching wavelets. The comparison
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() Haar - S80 (b) Db2 - S80 (c) CDF9/7 - S80

(d) Haar - B40 (e) Db2 - B40 (f) CDF9/7 - B40

Fig. 10. The 50 values in dependence on contrast at the edge for differerticietand wavelets.

TABLE | TABLE I
PERCENTAGE NOISE REDUCTION IN A HOMOGENEOUS IMAGE REGION PERCENTAGE NOISE REDUCTION RATES IN AN EDGE REGION
Grad Corr Grad Corr

S80 ATR DWT SWT | ATR DWT SWT S80 ATR DWT SWT | ATR DWT SWT

Haar 269 229 26.0] 421 39.2 407 Haar 254 212 241|384 353 370

Db2 274 229 26.3| 462 449 457 100HU  Db2 252 216 241| 400 39.0 396

CDF9/7 || 276 232 265| 482 479 481 CDF9/7 || 259 215 245|360 356 36.0
Haar 265 221 252| 401 379 389

B40 ATR DWT SWT | ATR DWT SWT 60HU  Db2 26.6 216 24.8| 421 411 418

Haar 566 220 54| 380 363 383 CDF9/7 || 27.0 217 254|390 380 389
Haar 266 21.7 25.1| 40.7 381 394

Db2 261 225 259| 435 422 432 20HU  Db2 266 221 o54| 438 423 433

CDF9/7 || 27.0 227 26.2| 455 449 454 : : : : : :

CDF9/7 || 27.1 224 25.4| 432 425 43.1

B40 ATR DWT SWT | ATR DWT SWT
. Haar 229 198 224 330 311 326

of the three wavelet transformation methods shows that DW -E.OOHU Db2 21.8 19.3 220! 34.8 34.1 34.7
again has the lowest noise suppression capability, while SWT CDF9/7 || 223 192 222| 294 288 297
i ; Haar 253 212 240| 358 33.6 350

and ATR perform cpmparably. This show_s that nonredumrg 60HU  Db2 a4 106 231| 377 365 374
Wavelgt .tranSformatlonS are better for noise SuppreSSlmn d CDF9/7 253 19.9 23.7| 32.7 31.7 32,6
to their inherent redundancy. All these observations can pe Haar 251 203 24.0[ 360 341 354
made for both convolution kernels. The difference is, tmat { 20HU  Db2 248 203 242) 390 371 388

CDF9/7 || 25.7 21.0 24.4| 369 357 36.9

the images with lower noise level, due to the reconstruction
with a smoothing kernel like the B40, the noise reduction
rate is approximately 3 percent points in the case of the

Corr method and less than 1 percent point in the case of thg comparable. In the case of ti&ad method, we can
Grad method below the noise reduction rate in the more ”0i%)gain observe that nearly no differences between the eiifter
images reconstructed with the S80. wavelets can be obtained. Generally, we can see that with
Table Il lists the noise reduction rates achieved in the eddecreasing contrast at the edge, more noise in the locahneig
region, again using the two different convolution kernklsre, borhood of the edge can be removed. The reason for this is
the results are compared for three different contrasts et that the lower the contrast, the lower the in uence of theeedg
edge. Most of the observations we made for the homogenednghe correlation analysis. However, one difference betwe
image region are also valid for the edge region. @arr the two similarity computation methods becomes clear. For
approach clearly outperforms therad method. The DWT the Grad approach the increment in noise suppression with
shows the lowest noise suppression, whereas ART and S\WHcreasing contrast at the edge is quite similar for all Vedse
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Fig. 11. Noise-Resolution-Tradeoff: Comparison of higimtcast resolution Fig. 12. Noise-Resolution-Tradeoffsg polotted against CNR for different
and standard deviation of noise in homogeneous image regiodifferent reconstruction kernels. Denoising con guration: 3 levéeNs with CDF9/7
denoising methods using Db2 wavelet. The powewithin the weighting wavelet andCorr method.

function (17) is used for varying the amount of noise suppoass

In a second test, the in uence of the reconstruction kernel

This does not hold for theCorr approach. Here, we canto the noise-resolution-tradeoff was evaluated. Differes
see that by increasing the spatial extension of the wavetginstruction kernels can be selected in CT, always leading t
lters, the difference between the noise suppression rate s noise-resolution-tradeoff. Smoothing reconstructiemkls
100 HU increases in comparison to 20 HU. This means thaiplicate lower noise power, but also lower image resotutio
for higher contrast, more noise close to edges remains in #he we have already seen during the discussion of noise and
image if longer reaching lters are utilized. The reason foresolution in the last two sections the reconstruction éern
this is that the size of the pixel regions used for the coti@a also in uences the results of the denoising method. Theegfo
computations are adapted to the lter lengths of the wageleive compared the noise-resolution-tradeoff for differerton-
This is needed in order to ensure that all coef cients, whicktruction kernels (see Fig. 8) with and without the appiarat
include information of an edge, are included in the simijari of the proposed denoising method. We used again the phantom
computations, as already remarked during the discussionimfges described in section IlI-A.1 with varying contrasts
Fig. 4. The effect is that edges with contrast high above tlege reconstructed with B10, B20, B30 and B40 kernel. We
noise level dominate the correlation computation, as losg then compared the contrast-to-noise ratftNR = c¢= ) and
they occur within the pixel region. As a result, nearly noseoi resolution (o) of the original and denoised images. We used
is removed within a band around the edge. The width of tle3 level SWT with CDF9/7 wavelet and ti@orr method for
stripe depends on the spatial extension of the waveletslterthe comparison shown in Fig. 12. The dashed lines correspond

5) Noise-Resolution-Tradeofftvithin the last two sections to the original and the solid lines to the denoised images.
we presented a very detailed, contrast dependent evaluafi@ch line consists of ve points corresponding to the castta
of noise and resolution. For easier comparison of the difl0, 20, 40, 60, 80 and00HU) devided by the respective
ferent denoising approaches, noise-resolution-tradewffes standard deviation of noise measured in a homogeneous
are plotted in Fig. 11. The phantom described in section llimage region. Ideally the denoising procedure would only
A.1 with an edge-contrast of 100 HU, reconstructed with tHecrease the CNR without lowering resolution. This would
S80 kernel, was used for this experiment. Thg values mean that the solid lines are just shifted to the right in
are plotted against the standard deviation of noise, me@mparison tho the corresponding dashed lines. The oliberve
sured within a homogeneous image region. T@err and behavior, however, was more complex and corroborates the
Grad method in combination with DWT, SWT and ATR areresults presented in the previous sections:

compared, all using the Db2 wavelet and 3 decomposition The sharper the kernel (high resolution, low CNR), the

levels. The powelp within the weighting function (17) was higher the improvement in CNR that can be achieved by
used for varying the amount of noise suppression. The 10 applying the proposed method.

points within each curve correspond to the powers= The smoother the kernel (low resolution, high CNR),
f 5:0; 4:5; 4:0; 3:5; 3:0; 2:5; 2:0; 1:5; 1:0; 0:5g from left to right. the better the edge-detection and thus the preservation
In summary the following obervations can be made: of resolution in the denoised image.

SWT and DWT show better edge-preservation than ATfhe new insight we gained from this analysis is that we can
at the same noise reduction rate in combination with th@hjeve better results with respect to image resolution and

Grad method. CNR using a sharper reconstruction kernel in combination
The Corr method clearly outperforms th®rad method  with our proposed method than using a smoothing reconstruc-
in all cases. tion kernel. For example, we can achieve higher resoluti@h a

There is nearly no difference between the differemfigher CNR for the same input data if the sharper B30 kernel
wavelet transformations if th€orr approach is used. s used in combination with our Iter than using the smoother
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(a) 10 HU (b) 5 HU

Fig. 15. ROC curves resulting from human observer study. Cospa
between noisy (original) and denoised results.

(c) 3HU (d) 1 HU

Fig. 14. Comparison of true-positive rates for differentemlt$ of noisy
(original) and denoised LCP. and contrast was compared between the noisy and denoised
images. We computed the average TPR for all 32 objects
from all noisy images and all observers and compared it to
the average from all denoised images and all observers. In
. Fig. 14 the TPR is plotted for all objects of different costsa
B. Low-Contrast-Detectability and sizes. The closer the TPR is to 1 the better the object

In addition to the quantitative evaluation of noise andias correctly judged to be visible in average. The clearlresu
resolution we performed a human observer study to test h@wthat all objects were judged to be as well or even better
the low-contrast-detectability is in uenced by the apption detectable in the denoised images in comparison to the noisy
of our proposed method. originals. The corresponding false-positive rates (FPR) a

1) Data and Experiment:For our experiments we usedall below 0.03 and in average below 0.005 for both noisy
reconstructions from a simulated cylindrical water phamtoand denoised images. In Fig. 14(a) the TPR for ti@eHU
(r = 14:5cm), with four blocks of embedded cylindrical objects can be seen, where no clear difference between the
objects with different contrastsl@; 5; 3; 1 HU) and different noisy and denoised objects is visible. In case of HéU
sizes (5;12,9;7;5;4; 3; 2cm diameter). A reconstructed sliceand 3 HU objects (see Fig. 14(b) and 14(c)) a clear difference
from this phantom is shown in Fig. 13(a). We simulated anshn be seen. If objects with a TPR above 0.5 are said to be
reconstructed 10 noisy realizations of this phantom, athat detectable, two more objects HU; 3 mm and 3 HU; 5 mm)
same dose level30 mAs), leading to an average pixel noiseare detectable in the denoised images than in the noisy ones.
in the homogeneous water region of= 4:3HU. One noisy The TPR of the3 HU; 4 mm object is also very close to 0.5.
example slice is shown in Fig. 13(b). In addition to this, 20he 1 HU objects were nearly never detected in the noisy
noisy phantoms where some (95 in sum) of the embeddgsages, but in the denoised at least the 15 AAddm objects
objects were missing were simulated and reconstructed) usilere detected correctly in more than 20% of the cases.
the same scanning and reconstruction parameters. For aln a second step, we computed the ROC-curves for the
30 images the corresponding denoised images (with apprasisy and denoised cases based on a thresholding approach
44% noise reduction, leading to = 2:4HU in average) as described in detail in [38]. We rstly computed the averag
were computed. We used 3 decomposition levels of SWdetection rate (number of positive votes that object isolési
in combination with CDF9/7 wavelet together with t@®rr  number of overall votes for this object) for each single imag
method. As an example, in Fig. 13(c) the denoised image &fd object from all observers. Then, a sliding threshold was
Fig. 13(b) can be seen. applied for the noisy and denoised cases separately. Adctbj

For easier accomplishment and evaluation of the experimeyith a detection rate above a certain threshold were set to
we developed a proprietary evaluation tool for low-corttrashpe detected and then the corresponding FPR and TPR was
detectability. This tool showed the images from a list igalculated, leading to the curves shown in Fig. 15. In aoliti
randomized order to the human observer. The observer thenhe curves the area under the curve (AUC) was computed
had to select which objects he can detect by mouse click. Adr the noisy and denoised case. The AUC improved from
47 observers evaluated 40 images, 10 original noisy imag®8326 in case of the noisy to 0.8637 in case of the denoised
where all objects were present, the 10 corresponding demoissamples.
10 noisy images where some objects were missing, and again
the 10 corresponding denoised.

2) Results and Discussiontn a rst step we evaluate
the average true-positive rate (TPR) achieved for themdiffe =~ 1) Data and Description:Fig. 16 shows a comparison of
objects. The performance of detecting objects of diffesgrd the proposed method to a projection based adaptive Itering

B10 kernel without denoising.

g C- Comparison with Adaptive Filtering of Projections
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(a) no noise (b) noisy (c) denoised

Fig. 13. Low-contrast-phantom (LCP) used for human obsestady: (a) ideal noise-free, (b) one noisy example and (cjesponding denoised image
using 3 levels of SWT, CDF9/7 wavelet and tBerr method. Display optionc =5 ,w =12.

(a) original: =11:1HU (b) proposed method: = 6 :0HU (c) adaptive Itering of projections: =
6:0HU
(d) original: =19:0HU (e) proposed method: =10:2HU  (f) adaptive ltering of projections: =
10:2HU

(9) vertical lineplot through noise-free, (b) and (c) (h) vertical lineplot through noise-free, (e) and (f)

Fig. 16. Comparison of proposed method to adaptive Iteringoafjections. The reconstruction without noise suppressice displayed in (a) and (d).
The proposed wavelet based noise reduction method was dpplig) and (e) and the adaptive Itering of the projectiossshown in (c) and (f). Image

resolution of the Itered images is compared at the same noidect®n rates. In (g) and (h) the corresponding verticaépints through the center of the
two phantoms are compared between the noise-free, adaptired and wavelet denoised images. Display optiens:200 andw = 1000.
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which is used in clinical practice [39]. The 2D-projecticer® D. Clinically-Acquired Data

Itered with a linear lter of xed spatial extension. Thera 1) Data and ExperimentIn order to test the noise re-
weighted sum of the ltered and o_rlglnal NOISY Projectioss Iy, qtion method with respect to its practical usability, the
compgted based on the_ attenuau_on at a respectlve positig plication of the algorithm on clinically-acquired dats i
The higher the attenuation, the higher the noise power ary ispensable. Noise reduction methods are particulaitigal

therefore,'the stronger the s.moothing'being performeds Trﬁ‘] their application to low contrast images. Thus, images
method, like most other noise reduction methods based 9n. 4o minantly including soft tissue are well suited for-per

ltering the projections, has the goal to reach nearly canst ¢ .00 assessment. Theoretically, as already discuseed
noise variance over _aII projections in order to reduce taec higher the contrast of edges, the higher the probability tthe
noise and streak artifacts. edge can be detected and preserved. If the application of the
For the comparison we used reconstructions from two simrethod with speci ¢ parameter settings leads to good result
ulated elliptical phantoms, one homogeneous water phantsfites with soft tissue, the use for higher contrast regiwitis
(r = 10cm) and one eccentric water phantom £ 15cm not be critical. Therefore, we used a thoraco-abdomen scan
and b = 7:5cm). In the center of both phantoms a line{see examples in Fig. 18), acquired at a Siemens Sensation CT
pattern withé Ip=cm was embedded at a contrastldf00 HU.  scanner, for the clinical evaluation. The reconstructibslices
In the eccentric phantom two additional cylindrical obgectat a FOV of38 cm with a thickness o8 mm was performed
(r =2cm) are embedded. All reconstructions to a pixel grigvith a B40 kernel, which is one of the standard kernels for
of 512 512 with FOV of 250cm were performed using this body region.
the B40 kernel. In Fig. 16(a) and 16(d) the original noisy For our clinical experiment, we computed 12 noise-
phantoms reconstructed from the complete set of projestiosuppressed images from the same input images with different
are shown. We measured the standard deviation of noisecam gurations. We used three different wavelet transfaiora
homogeneous regions in north, south, west and east dinectinethods (ATR, DWT and SWT) in combination with two
around the center resulting in an average noisesfl1:1HU different wavelets (Haar and CDF9/7). Furthermore, we used
in the homogeneous, and= 19:0HU in the eccentric water these con gurations together with ti@orr andGrad methods
phantom. We applied both denoising methods to achieve tioe similarity computation. The resulting noise-reducetges
same average noise reduction rate, leading t& 6:0HU and the average of the input images, which corresponds to
in the homogenous and = 10:2HU in the eccentric case, the reconstruction from all projections, were compared by a
and compared resolution. For our proposed method we ugediologist. All images correspond to the same dose level.
3 levels of SWT together with CDF9/7 wavelet and Berr  For simple comparison, we developed a proprietary evalnati
method. tool. A randomized list of comparisons between image pairs

. N . can be performed with this tool. Within each comparison, an
2) Results and Discussiorfig. 16(f) shows that dlrectedJ'mage pair is shown to the radiologist. The initial positioih

noise pointing out the direction of highest attenuation the two images is also randomized. However, the positions of

reduced _and a re_markable NOIS€ suppression can be achl%g wo images can be easily switched by the radiologist, in
by adaptively ltering the projections. However, it can alse order to facilitate the detection of even very small diffeves

nguced t.that gtr_glctulres orthc;_g?nal tci tthe dllrecuon of .igh between the images. The radiologist decides if there is one
attenuation visibly loseé spatial resolution. In compamso , tapreq image (clear winner) or both images are judged

this the wavelet based Itering method preserves strustur f equal quality with respect to some prede ned evaluation
much better and no blurring effects are visible. This can te: iteria

seen well in th_e d_etailed vertical lineplots through themin_ Three different quality criteria were evaluated sepayatel
pattern, shown in Fig. 16(g). Although the same averageenois ..o -onsecutive tests:

reduction rate was obtained, the streak artifacts couldorot - o

completely removed using the wavelet approach. This is the detectability of anatomical structures,

strength of the adaptive Itering method. In contrast tosthi noise in homogeneous image regions,

the adaptive Itering method does not perform well if nearly ~ N0ise in edge regions.

homogeneous objects are present. The goal of the adaptiveeach test, all possible image pairs were compared to each
Itering of the projections is to achieve nearly constaniseo other. Altogether3 78 comparisons were performed. The
variance over all projections. If the noise variance isadsye outcome of these tests is shown in Fig. 17. The dark bars
very similar in all projections, the adaptive ltering doesshow the number of clear winners, normalized to the number
nothing at all, or loses resolution in all directions. Thimide of performed comparisons for one image. The corresponding
seen well in Fig. 16(c). Here, the wavelet based method, light bars are the results of a score system. Three points are
shown in Fig. 16(b), can again achieve a high noise reductigained by a winning image and one point if two images are
rate without loss of resolution. The detailed vertical filegs judged to be of equal quality. This value is again normaljzed
are again shown in Fig. 16(h). Nevertheless, we want this time to the number of maximally reachable points, if the
emphasize that the noise suppression based on the pragctimage won all comparisons.

is a processing step prior to reconstruction, while the pseg 2) Results and Discussionin the rst test (Fig. 17(a)), the
method is a post-processing step, thus making the combimatdetectability of anatomical structures was examined. Gmly

of the two methods possible one case the anatomical structures were judged to be better
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Corr method gives much better visual results in all cases.
There is nearly no difference between the Haar and the
CDF9/7 wavelet.

In the last test (Fig. 17(c)), the noise in regions arouncesdg
was compared. This test re ects the results of the quaivitat
evaluation with phantom data. It shows that nearly no noise
is removed in regions of edges if long reaching wavelets are
used in combination with th€orr method. The results of the
Haar wavelet are still judged better for ti@orr method in
comparison to th&rad approach.

The Corr method is clearly preferred considering the results
of all three tests together. However, longer reaching vedsel

(@) Detectability of anatomical structures lead to lower noise reduction around higher contrast edges.
Therefore, a tradeoff between smoothness and spatiaitiocal
of the wavelet must be resolved.

E. Example Images

Two examples of noise suppression on clinically acquired
data are shown in Fig. 18. Zoomed-in images from the
abdomen (18(a)-18(c)) and thorax (18(d)-18(f)) are digpda
For denoising we used 3 levels of a Haar wavelet decom-
position (SWT) in combination with th€orr method. The
original images, which correspond to the reconstructieomfr
the complete set of projections, are compared to the noise

(b) Noise in homogeneous image region suppressed images. Additionally, the differences betwken
original and denoised images are shown. Noticeably, naise i
homogeneous image regions is removed, while structures are
well preserved.

In Fig. 19 two examples of a thorax-abdomen phantom
acquired at a Siemens De nition dual-source CT (DSCT)
scanner are shown. We used the same scan protocol
(100 mAs 120kV, slice-thickness 1:2mm) and reconstruc-
tion parametersHOV = 350; kernel = B30) for both source-
detector systems. The image reconstructed from projextion
acquired at the rst detector is denoted Asand the image
from the second detector is denotedBasThe FOV @6 cm)
of the second detector is smaller than that of the rst detect
Therefore, the sinogram of the B-system is extended at the
outer border with data from the A-system, as explained in
Fig. 17. Results of the clinical evaluation - (a) Detectiapibf anatomical detail in [26]. With this technique two images can be recon-
structures; (b) noise in homogeneous regions and (c) noiselge regions strycted at the full FOV. Inside th26 cm-FOV we have in-
was compared for different con gurations. dependent acquisitions from the two detectors. Conselyyent

noise within these regions can be assumed to be uncorrelated
between the two images. Outside the FO\26fcmonly parts
detected in the original image than in the noise suppressgidthe sinogram derive from independent measurements due
image. In all other direct comparisons of noise reduced &sago the sinogram padding. Therefore, noise in this outerregi
to the average of input images (here denoted as origina), {8 no longer perfectly uncorrelated. Evaluating the catieh
processed images were chosen to be favorable. This sh@Wging theCorr method or comparing the angle between the
that the anatomical structures are well preserved by theenohpproximated gradient vectors in tfrad method still works
suppression method. The separation of information andenojg this outer region. However, only a lower noise reduction
is further improved because of the better signal-to-nas®.r can be achieved because of the increasing correlation betwe
The comparison between the different con gurations show$ and B with increasing distance from th6 cm radius. In
that ourCorr method gives better edge detection results thafig. 19(a) and 19(d) the average images/Aofand B are
the Grad approach. There is no clearly preferred wavelet basifown for two examples. Tha andB images are then used
or wavelet transformation. as input to the proposed noise reduction method (3 levels

In the second test (Fig. 17(b)), the treatment of noise BWT with Db2 wavelet an€orr method). The corresponding

homogeneous image regions was analyzed. Here again, dieaoised results are shown in Fig. 19(b) and 19(e). For

(c) Noise in edge region
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(a) original (b) denoised (c) difference

(d) original (e) denoised (f) difference

Fig. 18. Noise suppression in real clinical images from theéoatren (a)-(c) and thorax (d)-(f). Con guration: SWT, Haar wkt, Imax =3, p=1, Corr
method. Display optionsc = 50, w = 400 for CT-images anad = 0, ,w =50 for difference images.

(a) 100mAs; =18:3HU (b) 100 mAs denoised, =10:4HU (c) 500mAs; =8:9HU

(d) 100mAs; =17:0HU (e) 100 mAs denoised, =9:8HU (f) 500mAs; =8:3HU

Fig. 19. Application of proposed method to Dual-Source-Cfadabdomen (a)-(c) and thorax (d)-(f). Con guration: SWT,Dbavelet|max =3,p=1,
Corr method. Display optionsc = 50, w = 300.
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better comparison high-dose sca®®{mAs are shown in [4]
Fig. 19(c) and 19(f). Within the overlapping FOV, where data
from both detectors has been acquired, a noise reductien rat
of approximately 43% was achieved. Due to the sinograns)
extension of the B-system with data from A, noise outside the
FOV of 26 cmis no longer perfectly uncorrelated. Therefore,
only a lower noise reduction of approximately 25% can bgg)
achieved in regions outside the overlapping FOV.

IV. CONCLUSIONS [7]

In this paper, we have introduced a new, robust and ef cient
wavelet domain denoising technique for the suppression it
pixel noise in CT-images. The separate reconstruction from
disjoint subsets of projections allows the generation ciges [9]
which only differ with respect to image noise but include the
same information. We showed that correlation analysisdase
on the detail coef cients of tha-trous wavelet decomposition[10]
of the input images, as recently proposed by Tischenkowallo
the separation of structures and noise, without assuming or
estimating the underlying noise distribution. We extendgd]
the approach for the applicability with DWT and SWT. The
guantitative and qualitative evaluation showed that cowmige
edge preservation, with only slightly lower noise reductio
can also be achieved with DWT at lower computational
costs. More importantly, a second similarity measuremessg w
introduced which makes use of correlation coef cients.sThi
has lead to improved results with respect to edge preservati
and noise suppression for all wavelet transformations. THe!
performed human-observer study showed that the detdtyabil
of small low-contrast objects could be improved by applying4]
the proposed method. In comparison to a commonly applied
projection based algorithm, the proposed method achieved
higher resolution at the same noise suppression. The ¢iaiuaj1s)
on clinically-acquired CT data proves the practical usgbdf
the methods. (16]

Currently, we are working on the extension of the method {9,,
3D. Improved results with respect to noise and resolutien ar
expected, due to the more reliable correlation analysidOn 3
Further, we are planing more extended clinical tests, dioly
additional human-observer studies, in order to investigae
potential dose reduction.
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