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Abstract—In this paper, we introduce a new algorithm for 3-D
image reconstruction from cone-beam (CB) projections acquired
along a partial circular scan. Our algorithm is based on a novel,
exact factorization of the initial 3-D reconstruction problem into
a set of independent 2-D inversion problems, each of which cor-
responds to finding the object density on one, single plane. Any
such 2-D inversion problem is solved numerically using a projected
steepest descent iteration scheme. We present a numerical eval-
uation of our factorization algorithm using computer-simulated
CB data, without and with noise, of the FORBILD head phantom
and of a disk phantom. First, we study quantitatively the impact
of the reconstruction parameters on the algorithm performance.
Next, we present reconstruction results for visual assessment of
the achievable image quality and provide, for comparison, results
obtained with two other state-of-the-art reconstruction algorithms
for the circular short-scan.

Index Terms—Image reconstruction, X-ray tomography.

I. INTRODUCTION

VER the past few years, cone-beam (CB) X-ray com-
O puted tomography (CT) has become a powerful imaging
technology in the clinical arena. Among all possible scanning
modes, circular motion of the X-ray scanning device relative to
the interrogated object remains one of the most attractive ones.
This is because a circular scan is easy to implement, mechani-
cally robust and allows fast data acquisition.

Unfortunately, with the circular acquisition geometry, Tuy’s
data sufficiency condition for exact and stable reconstruction
[1], [2] is not satisfied for the points that lie outside the plane
of the X-ray source trajectory. This means that reconstruction
of a 3-D volume of interest (VOI) is an ill-posed problem al-
most everywhere [2]. Therefore, a numerically stable recovery
of the object density in the entire VOI from noisy data can only
be achieved by sacrificing some accuracy in the image results. A
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reconstruction algorithm can only be useful for practical appli-
cations if it performs an efficacious trade-off between numerical
stability and accuracy.

For the closed circular trajectory (full-scan), an attractive
algorithm is given by the approach suggested in 1984 by
Feldkamp et al. (FDK) [3]. However, not every CT device can
acquire data along a full-scan. In particular, the mechanical
design of C-arm systems typically prevents data acquisition
over more than 330°. Moreover, for various physical reasons
including dose and scanning time, most scanning protocols
on C-arm systems are restricted to a short-scan of 210°-240°.
Hence, FDK cannot be applied to C-arm systems.

Finding an efficacious algorithm for the short-scan geom-
etry turns out to be a challenging task. To give one example,
a popular algorithm that is used by many state-of-the-art C-arm
systems is a modification of FDK (short-scan FDK) [4]. The
short-scan FDK method uses ray-based weighting schemes [5],
[6] to approximately equalize redundancies in the acquired CB
data. These weighting schemes, however, use a significant geo-
metric approximation: they neglect the cone angle of the ac-
quired CB data samples. Therefore, data points that are in gen-
eral distinct are considered as redundant and this approximation
typically yields a significant amount of CB artifacts in the recon-
struction results.

Within the last few years, various methods have been
suggested to yield improvements in image quality when re-
constructing from short-scan CB data. Some of them use the
reconstruction obtained with short-scan FDK as an intermediate
result and subsequently aim at correcting, in postprocessing
steps, or using iteration schemes, the CB artifacts occurring in
the FDK-based reconstruction; see e.g., [7]-[9]. Other methods
are based on original reconstruction formulae [10]-[16] that
allow less severe geometric approximations, if any, and a more
precise handling of data redundancies, so that the level of CB
artifacts is reduced compared to short-scan FDK.

In this paper, we present a novel, efficacious reconstruction
algorithm for the short scan circular trajectory. This algo-
rithm is based on a theoretically-exact factorization of the 3-D
short-scan CB reconstruction problem into a set of independent
2-D inversion problems, each of which corresponds to finding
the object density on one plane. The algorithm uses an iterative
method to solve the 2-D inversion problems on a one-by-one
basis and achieves reconstruction of the entire VOI by com-
bining the results of all considered planes. Two important
properties of our factorization approach, which distinguishes it
from the other previously-mentioned methods, are its ability to
enforce all reconstructed values to be positive and to perform
reconstruction without involving geometric approximations.
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These properties make the factorization approach similar to 3-D
iterative reconstruction approaches. The latter are, however,
computationally more demanding; the factorization approach,
in contrast, is more efficient, as it involves only 2-D iterations.

This paper is organized as follows. Section II presents the
data acquisition geometry and introduces the notation used
throughout the rest of this paper. The factorization theory un-
derlying our reconstruction approach is described in Section III.
Section IV explains the numerical scheme used for finding solu-
tions to the 2-D problems and describes a constrained iterative
inversion algorithm. In Section V, we present a numerical
evaluation of the factorization reconstruction approach using
computer-simulated CB data and a discussion of the results.
The main body of this paper ends with Section VI that provides
further, general discussions and conclusions about our research.

II. GEOMETRY AND NOTATION

This paper follows the standard convention to refer to a point
in space using the vector x = (z,, 2)T, where x,y and z are
the coordinates of a Cartesian world coordinate system attached
to the patient. Here and in the following, the symbol T denotes
the transpose of a matrix or vector.

Let the function f(x) denote the spatial distribution of the
X-ray linear attenuation coefficient of the object of interest. The
region occupied by this object is denoted with €2¢, and thus
f(x) = 0forall x ¢ Q. We assume that a good estimate
of the convex hull of Q2 is known prior to reconstruction.

While CB data is acquired, the X-ray source-detector as-
sembly rotates around the interrogated object so that the focal
spot of the source describes a circular trajectory. This trajectory
is represented with the function a(\) = (Rcos )\, Rsin A, 0)T,
where R denotes the radius of the circular scan. The parameter
A varies in [Amin, Amax] and corresponds to the polar angle of
the source. Since this paper focuses on short-scans, we require
Amax > Amin + 27. Moreover, the geometric setting is such
that the curve a()\) lies completely outside the convex hull of
Q. It is here assumed—however without restriction of gener-
ality—that the rotation axis of the scanning device coincides
with the axis of the coordinate z (the z-axis) and that the plane
of the circular scan (PCS) is at z = 0.

We assume that the X-ray detector is flat and that it is
at fixed distance D from the source during the entire scan.
For a given ), the detector plane is spanned by the vectors
e,(\) = (—sin )\, cos A, 0)T and e, = (0,0,1)T. Note that
e, () is tangent to the source trajectory at a(A) and that e,
coincides with the axis of rotation of the scanning device (the
z-axis). A third vector e, ()\) = (cosA,sin\,0)T can be
introduced, which is normal to the detector plane and points
from the detector towards the source. Locations on the detector
are described using two Cartesian coordinates in the detector
plane: © € [Umin; Umax] and U € [Umin, Umax|, Which are mea-
sured along the axes e, () and e, (), respectively. The origin
(u,v)T = (0,0)T corresponds to the orthogonal projection of
a()\) onto the detector plane.

CB data acquisition yields integrals of the object density
along rays, with each ray connecting a point on the source
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trajectory to a point on the detector. Following the introduced
notation and using the unit vector a to denote ray directions,
the CB data function can be written as

oo

sha) = [ dtfa(n) + ta) 1)
0
or equivalently, to better emphasize the detector geometry, as

Im(A u,v) = g(\ a(A, u,v)). 2)

In this equation, the function
wey(A) +ve,(A) — Dey(N)
Vu? 40?2 + D?

gives the direction of the ray diverging from a()) and inter-
secting the detector plane at coordinates (u, v).

a(Au,v) =

3)

III. RECONSTRUCTION THEORY

The objective of CB reconstruction can now be formally de-
scribed as recovering the object function f(x) with x € Qy
from the CB data function gy, (A, u,v) with A € [Amin, Amax)s
U € [Umin, Umax]> A0d U € [Umin, Umax]. In this work, we tackle
this problem by first factorizing this 3-D reconstruction task
into a set of independent 2-D inversion problems. This section
presents a detailed description on how this factorization is ob-
tained and on its usefulness for 3-D CB reconstruction.

A. Plane of Interest P

We target reconstruction within planes that are parallel to the
z axis and intersect the source trajectory at two locations. Let
‘P be such a plane of interest. We use A1 and A2 to specify the
locations where P hits the source trajectory. By construction,
a(A1) and a(Ag) belong to P and Ay < A1 < A2 < Apaxe

In the following, several entities will be introduced that are
closely related to P. Some of these entities correspond to geo-
metric parameters that provide further description on P. Others
correspond to functions which are defined on P and take an es-
sential role in the reconstruction algorithm. To keep the notation
clear, all these entities will be described from now on with sym-
bols that contain a hat.

A selection of P implicitly imposes another coordinate
system for the image domain. This system is described with
the orthonormal system of vectors &, = (cosf,sin 6,0)T,
& = (sinf,—cosf,0)T, and &, = (0,0,1)T; see Fig. 1. By
definition, & = (A1 + A2)/2 is the angle between the y-axis
and P, measured in the counterclockwise direction, and &, is
normal to P.

We use § to denote the (signed) distance from P to the origin
x = (0,0,0)T; 5 is measured in the direction of &, and is such
that § = &, -a(\1). Hence, a point x belongs to P if x - &5 = §.

To specify locations on P, we use Cartesian coordinates ¢
and z, measured along the directions €; and €., respectively.
The point (¢,2)T = (0,0)T is at the orthogonal projection of
the point x = (0,0,0)T onto P, and ¢ increases when moving
towards a(A;). The quadruple (A1, Aa,t,2)T then refers to a
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Fig. 1. Tllustration of geometric entities on the plane of interest 2, which is
orthogonal to PCS and intersects the source trajectory at a(A;) and a(,).

point of the image volume, the Cartesian coordinates of which
are provided by the function

x(t,z) = 8és+té + ze,. 4

B. Image Reconstruction On P

The object density on P, i.e., the 2-D function

A~

f(t,2) = f(x(t,2)) )

is now recovered using a two-step scheme. In step one, an inter-
mediate function is calculated for points on P as

Az

7 1 ® K

b(t,z) = /d)\ MQFO\»” %) (6)
A1

where gr is a partial derivative of CB data, namely

7]
)‘7 ) = a- ) )‘7 ’ (7)
gr (A, u,v) aqg(q a(X,u,v)) -

and where ©* and v* denote the detector coordinates of the CB
projection of X(¢, z) at a given \. X

In words, the 2-D intermediate function b(¢, z) is obtained by
first differentiating CB data with respect to the parameter of the
source trajectory at fixed ray direction. The differentiation re-
sult is then backprojected onto P while using only the data over
A € [A1, A2]. These algorithmic steps resemble those of clas-
sical FBP methods. However, an important difference lies in the
filtering step, which, according to (7), corresppnds to a local
operation. Consequently, to accurately obtain b at coordinates
(t,2)T, it is sufficient to know, for each A € [A1, \2], the func-
tion g on the rays that pass through a neighborhood of x(¢, z).
The union of all points (¢, 2)T for which g satisfies this suffi-
ciency condition defines a region, which we call ;.

Actual image reconstruction is achieved in step two, by
making use of a fundamental relation linking the intermediate
function to the sought object density function. This fundamental
relation is derived in its general form in [17], using equations

— — =

(taz) (ty200)

Fig. 2. Illustration of functions f andbonP. (Top) An example realization of
the 2-D intermediate function b in the region €2; (delineated with a dashed line).
(Bottom) The corresponding object density function f , in its support §2;. The
value of b at Q, as indicated in the top figure, is related according to (8) to the
values of f along the lines £, and £ illustrated in the bottom figure. Here,
(tx;-2zx;) and (tx,, zx, ) define, respectively, the points a(A1) and a(Az)
using the coordinates on P.

based on integration by parts that avoid the derivative with
respect to A in (7) but brings in boundary terms. Considering
our geometric assumptions and using the coordinate system
introduced on P, the relation can be expressed as

lA)(t7 2)

™

_ / drhia(t = 1) (f(r.21(0) + f(7. ()
- @®)

with hg (t) denoting the Hilbert kernel, i.e., the inverse Fourier
transform of H (1) = —isignr. The functions zq(7) and zo(7)
are used to describe two oblique filtering lines on P, as de-
picted in Fig. 2. These functions are defined such that the points
X(7, z1(7)) are on the line £ connecting a(A1) to X(¢, z), while
the points X(7, z2(7)) are on the line Lo connecting a(\z) to
X(t, z). See Appendix A for a derivation of (8) from the initial
relation provided in [17] and also for the expression of z;(7)
and zo(7).

To understand (8), picture its left-hand side (LHS) as the value
of b at one fixed point Q in P. Then, draw the two lines, £
and Lo, that connect this point to the source positions a(A;)
and a(Az). These lines are within P, as shown in Fig. 2. The
right-hand side (RHS) of (8) is the addition of the outcomes at
Q of the convolutions of f with the kernel iy along these two
lines. Altogether, (8) thus corresponds to an integral equation
that relates one value of b to many values of f . Both, b and f
are 2-D functions and consequently, image reconstruction on P
corresponds to a 2-D problem, namely to solving (8) for f.

We note that the feasibility of finding this solution depends
on the support of f, which we denote as (2 Iz and on the region
(; in which the intermediate function is known. Here, (2 7 is
defined by the intersection of the object support {2 and P. If {2 ¢
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Fig. 3. Drawing (a) is a 3-D illustration of a specific data acquisition scenario.
Drawings (b) and (c) show the CB projection with the source at points A and
B, respectively. The detector is indicated as a black delineated rectangle. The
projection of €25, i.e., of the object support in the plane of interest, is shown as
a dark region. Although the entire object €2 is truncated, the projection of €2;
is covered by the detector for each A € [\, A2]. Therefore, the 1ntermed1ate
function b can be computed over the region 2.

is restricted to PCS so that ) 3 contains only points with z = 0,
the theory of finite Hilbert inversion states that reconstruction is
possible if bis known over the support of f [18]. We hypothesize
in this paper that this condition can be extended to a general 2 Iz

i.e., that a recovery of f is possible if b is known over the entire
support of f , which requires (2 i C (2;. Note in this context that
the CB data g,,, does not have to be non-truncated. As long as the
CB projection of region {2 onto the detector plane is contained
within the measured area fumin, Umax] X [Umins Umax] for each
A € [A1, Ag], there is enough information to compute b over
the support of f—and therefore, following our hypothesis, to
reconstruct f . See Fig. 3 for an illustration.

C. Volume Reconstruction

The previous section described how to recover the object den-
sity in one plane of interest. From there, reconstruction in 3-D
can be accomplished in a straightforward manner.

Consider all planes on which reconstruction is possible ac-
cording to Section III-B and carry out the required algorithmic
steps to obtain f on each such plane. Combination of these
planar results using interpolation schemes simply yields the ob-
ject density for any 3-D VOI that lies in the union of the con-
sidered planes. Hence, 3-D reconstruction is accomplished by
finding solutions to a set of 2-D problems on a one-by-one basis.

From a practical viewpoint, however, the consideration of all
possible planes is not feasible nor attractive since a lot of redun-
dant information could be obtained. Furthermore, the issue of
combining the planar results can be handled more efficiently if
the considered planes do not intersect each other in the object
region. For these reasons, we focus here on planes that are par-
allel to each other. We note that this choice may not be optimal in
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terms of noise, but it highly simplifies the numerical implemen-
tation. Since each planar reconstruction is achieved using Carte-
sian coordinates ¢ and z, and since the considered planes are par-
allel to each other, a direct assembling of the planar reconstruc-
tions immediately yields the object density function f on a 3-D
Cartesian grid, as typically desired in 3-D image reconstruction.
More specifically, from now on, we focus on a one-parametric
family of planes with normal vector &, = (cosf,sinf,0)T
where f = (Amin + Amax)/2, and use as plane parameter the
signed distance from the origin x = (0,0, 0)T, measured along
€;. For volume reconstruction, we use thus the planes

&)

where IV, is the number of planes and s4;.,¢ denotes the signed
distance parameter of the first considered plane, Py. We re-
quire Sgtart > Smin With $min = a(Amin) - €5 in order to have
sufficient data for reconstruction on any P, according to Sec-
tion III-B. The integer p > 0 is the plane index and As defines
the distance between two adjacent planes.

Pp:{X|X'és:Sstart+pA5-/p:0,1,...,Np}

IV. NUMERICAL ALGORITHM

In this section, we suggest a numerical algorithm to achieve
image reconstruction on a plane P according to the theory of
Section III-B. The basic principle of this algorithm is to first
compute a discrete representation of b and to accurately transfer
the initial, continuous 2-D inversion problem (8) into a discrete
setting. Next, an iterative scheme is used to compute an estimate
f ¢ for the planar object density f in (8).

A. Computation of the Intermediate Function

In the first part of the algorithm, the intermediate function b
on P is computed by following the steps of Section III-B. The
required CB data differentiation according to (7) is implemented
using the robust method suggested in [19]. This method involves
a differentiation parameter e, which controls the trade-off be-
tween resolution and noise in the results [19]. Throughout this
paper, ¢ is fixed to the value e = 0.01, so that we expect b to be
of high spatial resolution. The integration in A over the backpro-
jection interval in (6) is replaced by a first-order approximation,
i.e., a summation of the differentiated data at the known samples
in A according to the trapezoidal rule. For efficiency reasons, the
intermediate function is immediately computed for the entire set
of planes P, at once in our implementation, yielding, for each
of these planes, an approximation b° of the true function b. The
accuracy of be depends on the noise in the acquired CB data and
the discretization effects occurring during computation. For the
remainder of Section IV, we focus again on just one plane P.

B. Discretization of the 2-D Inversion Problem

The functions f and b on the plane of interest are both dis-
cretized, over their respective regions €2 F and €2;, using a Carte-
sian sampling pattern in ¢ and z. The sampling density for both
functions is assumed to be equivalent, with the distance between
two adjacent samples specified by At in ¢ and by Az in z. How-
ever, the sampling grids used for f and b are shifted with re-
spect to each other along the ¢-axis by At /2. More precisely,
the function f is sampled at coordinates (iAt, jAz)T with in-
tegers ¢ and j, while b is sampled at interleaved coordinates
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(iAt+ At/2, jAz)T. This shift allows an improved realization
of the required 1-D convolutions in the discrete setting, as will
be explained below. To better emphasize the discrete character
of the resulting entities, the following index notation is used

fii = f(iat, jAz)
bi,j = b(ZAt—I-At/QJAZ) (10)
We discretize (8) in the following form:

b7, =mAt Y b <<L -k+ %) At)
k=imin

X (f(kAL, 21 (kAL)) + f(kAt, zo(kAL)))  (11)

where the superscript o denotes a free parameter that allows us
to modify the smoothness of the applied discretization scheme.
Integer k covers the interval [Z,,in, imax] that is bounded by the
minimum and maximum value of index ¢ among all samples
fi; jin £ 7 The restriction of the bounds of summation in (11)
became possible since we assume as an a priori knowledge that
fi.; = 0 everywhere outside the region 2.

The LHS of (11) corresponds to a discrete 1-D convolution
of the known samples of b, namely

2 2
S —cC ~
b7 ; =U(o) Z exp (Tﬂ) bi—c,j-

c=-2

(12)

Hence, 137 ; is asmooth version of IA)Z j» obtained with a Gaussian
kernel of standard deviation o At that has been discretized at the
five sampling positions —2A¢, —At, 0, At, and 2A¢. The factor
U(o) allows for a correct normalization of the discrete kernel
and is given as

Ulo) = (13)

2 _e2
C:Z_:Z P < 202 )

Low-pass filtering of the function IA)Z ;j is used to decrease dis-
cretization errors in the 2-D intermediate function, and thereby
provide improved input data for the planar reconstructions.
While reducing discretization errors, we note that this low-pass
filtering also reduces resolution. We counteract this resolution
issue by including a similar Gaussian filtering in the RHS of
(11). More precisely, the convolution kernel, A%, in (11) is
defined as

202

h%(t) = U(o) Z exp <_—02> hY, (t — cAt) (14)

c=—2

with U(o) given by (13). This means that h%(¢) is a Gaussian-
smoothed version of the band-limited Hilbert kernel hY (¢) that
is based on rectangular apodization and a cutoff frequency of
1/(2At). The expression of hY,(¢) is

1 1 it
— — COoS —
7t At

Bt (1) = (15)

imin Imax

Fig. 4. The applied discretization scheme on P: Az and At define the density
of the sampling pattern. The small, dashed circles show all N'; sampling posi-
tions considered for fl- .j»while the indices 7min and 7,5 describe, respectively,
the leftmost and rightmost sampling points of fl- .; along coordinate ¢. We illus-
trate one filtering line, which passes through a sampling position for b (bright
square). In order to obtain, from the sampled f, data at the positions of the black
solid circles on this filtering line, we use a linear interpolation in = between the
two adjacent samples in f; ;.

and we note that according to (11) and (14), this function is
only evaluated at coordinates for which the cosine term van-
ishes. This avoids oscillations in the discretized filter kernel and
contributes to better resolution and less aliasing artifacts in the
reconstruction results [20].

Going back to relation (11), we finally note that the function
f on its RHS is in general evaluated at points that are not on the
sampling grid for f , as illustrated in Fig. 4. In order to obtain
for example the value f(kAt, z1(kAt)), we use a linear inter-
polation in z between the two samples fk ; and fk j+1 that are
closest to this location. R .

From now on, the discretized 2-D functions f; ; and b7 ; will

be represented using the vectors f € RY7 and b° € R™,
respectively. This 1-D representation is easily achieved by
defining a function (4, j) — r that maps a sample (i, j) of the
2-D Cartesian grid to an element 7 of the corresponding vector.
In this notation, N is the total number of samples for b7 in i
and j together and similarly, N ; is the total number of samples

used for f . Then, for each sample of l;“, relation (11) can be
written in the form

b7 = MY (16)

where B? denotes element r of the vector b” and MY denotes
the row r of a matrix M € IR™»*"7_ The components of M?
include both, the values of the filter kernel h% (¢) and the inter-
polation weights for f ,as occurring in (11). A finite dimensional
approximation of the relation between all samples of b and f

on P is thus given by the linear system of equations

b’ = M°f. (17)
Image reconstruction on P can now be accomplished by solving
(17) for f.

In the rest of this paper, emphasis on the smoothing parameter
sigma is dropped to simplify the notation. So, from now on, b
will be used for b? and M will be used for M°.
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TABLE 1
GEOMETRY PARAMETERS

radius of the source trajectory [mm] R =750
scan interval [°] Amin = 18, Amaz = 222
detector-source distance [mm] D = 1200
discretization along trajectory [°] AX=04

detector pixel size [mm] Au=0.8, Av=0.8

08

06

04 | \

02 r

singular value

1000 2000 3000 4000 5000 6000 7000

index

Fig. 5. Singular values of an example matrix M (see text for the geometry
parameters), obtained using a discretization of At = Az = 2 mm.

C. Stability and Numerical Inversion Scheme

The numerical stability of the reconstruction problem on P
can be investigated by studying the singular values of the system
matrix M in (17). Using o = 0 and the acquisition geometry pa-
rameters of Table I, we composed M for the plane P defined by
p = 0and sgart = 0 mm, then computed its singular values; see
Fig. 5. Note that we used the same number of samples, namely
7528, for both b and f . Hence, M was square. Note also that the
samples were distributed in a region of shape similar to that of
2; in Fig. 4, using At = Az = 2 mm, and that the maximum
half cone-angle in P was about 11.3°.

We observe from Fig. 5 that M is nonsingular and that its con-
dition number is approximately 33, and therefore unexpectedly
small. We attribute this phenomena to the band-limitation mod-
eled in M, which was necessarily introduced when discretizing
the continuous problem. The fast decay of the singular values
in the last 10% of the graph in Fig. 5, however, is an indica-
tion that solving (17) for f truly corresponds to an ill-condi-
tioned problem. This ill-posedness is problematic in practical
scenarios, where we have only access to an approximation b*
of the 2-D intermediate function. To obtain a meaningful recon-
struction from contaminated data, we focus on finding a regular-
ized solution to a constrained least-square formulation of (17).
Two constraints are considered. .

1) CRAY: Knowledge about integrals of f along rays that di-

verge from a(\;) and a(\2) and that are entirely contained

in P. These integrals are part of the acquired CB data g,,, .
2) CPOS: Knowledge that f is a nonnegative function.
Hence, we set up the constrained optimization problem as

minimize O(f) := [|[Mf — b¢||3 + o?||Cf — ¢°||3
subject tof >0. (18)

The first term of O(f) accounts for the congruence between the
reconstruction and the given intermediate function, while the
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second term is a penalizing term that incorporates the linear con-
straint CRAY. Each row of the matrix C contains an equation
to compute a ray integral from the discrete f , while the vector
¢¢ contains the corresponding integral values, i.e., samples of
the function g,,. The impact of CRAY is adjusted using pa-
rameter . We note that finding an appropriate value for « is
a difficult problem, which will be addressed in more details in
Section V-B.

To simplify the notation for the remainder of this section, the
equivalent form of the objective function

O(f) = |Af - d°|l3

=fTATAf — 2fTATd® + d°Td° (19)
is used, where
_[™m v _ [ be
A= [QC] andd® = {aée}' (20)
The gradient of O(f) is given as
VO(f) = 2AT(Af — a°). (21)

We estimate the solution of (18) by applying a projected
steepest descent iteration scheme [21], [22] during which a
sequence of intermediate estimates f@ e RN with integer
iteration index ¢ > 0 is computed. The initial estimate is set to
£(© = 0 and the updating equation is

flatD) — p(f'(Q) + w@Dul?) (22)

using the update direction
u®@ = —vO (@) (23)

and the update step-width
@ _ 1 ||U(Q)||§ (24)

" 2]Au@|

To understand the scheme described by (22) to (24), note that in
each iteration, £(9) is first updated in the direction of the steepest
descent of the quadratic functional O at point £(4), which is
a natural selection when pursuing minimization. The update
step-width according to (24) guarantees that £ 4 w@u@
minimizes O on the line through £(9) with direction u(®) [22].
The operator P in (22) describes the orthogonal projection onto
the convex set of vectors with nonnegative entries. This projec-
tion assures that each intermediate estimate satisfies the non-
linear constraint CPOS.

It can be shown that the sequence (@ converges towards the
solution of (18) for increasing g [23]. However, at some point
during the iterations, the intermediate estimate may start di-
verging from the true, desired, f due to data noise. We want to
avoid this behavior and therefore suggest to stop iterations early,
when either of the two following conditions is satisfied.

1) The iteration index ¢ reaches a predefined maximum

number Y ax.
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Fig. 6. The impact of  on image quality. The two graphs on the left show the RMSE in regions A and B (see Fig. 7) as a function of «?, while using (left) the
defined stopping rule and (right) a fixed number of 400 iterations. The dashed curves are achieved using CB data with Poisson noise and 25 000 photons per ray,
and the solid curves show results for nonnoisy CB data. The graph on the right illustrates, for the noisy measurments, the convergence of the RMSE in region B for
the three choices (dashed) «? = 1075, (solid) a? = 102, and (dash—dotted) o = 0.85. The circle on each curve indicates the iteration at which the stopping
criterion, which was used for the left diagram, is satisfied. The dashed horizontal line in each figure shows, for comparison, the RMSE obtained in region B with

short-scan FDK and nonnoisy data.

2) The value ||f(@ — £(==1)||., first becomes equal or less
than a certain threshold. This threshold is here defined as
%hrESHf' (@) ||oos i-€., relative to the norm of the current in-
termediate estimate.

Thus, iteration continues up to the maximum index ypyayx if
at least one element of the intermediate estimate is still updated
strongly enough, even if the update in all other elements is al-
ready below the introduced threshold. Note that for our steepest
descent iteration scheme, there exists a number of indications
that our early stopping rule asymptotically defines a regulariza-
tion process [24], as discussed in [25] and [26].

Let IV, denote the iteration index at which the stopping crite-
rion is satisfied. We define

fe .= f(Na) (25)
as the nonnegative approximation to the solution of the con-
strained optimization problem (18) and consider f° as a good
estimate for the vector f that satisfies (17). The inverse of the
mapping defined earlier in this section, r — (4, j), yields ff’ j
from f¢ and therefore a discrete 2-D representation of the re-
constructed object density on P, as desired.

V. NUMERICAL EVALUATION

This section presents an evaluation of our factorization
method based on computer-simulated CB data. We used ac-
quisition geometry parameters that are listed in Table I and are
similar to those of real medical C-arm systems. Furthermore,
the CB data was not truncated in all evaluations presented in
this section, i.e., the CB projection of the region £2; onto the
detector plane was always entirely contained in the measured

arca [uminvumax] X [Umin7 Umax]~

A. Phantom Description

Two mathematical phantoms were considered: a high-con-
trast disk phantom and the FORBILD head phantom (without
ears), which is described online.! The head phantom was po-
sitioned so that its center is 40 mm above the PCS. The disk
phantom consisted of six cylindrical disks embedded in a low-
attenuating cylinder of radius 100 mm and density —900 HU.

Thttp://www.imp.uni-erlangen.de/forbild/english/results/index.htm

Each disk had a thickness of 10 mm, a radius of 80 mm and
the density of water (selected at 0.183 cm™1!). The disks were
centered on the z axis and stacked one above the other with a
center-to-center distance of 20 mm between any two adjacent
disks. The first disk was centered on PCS and therefore, all other
disks were above PCS.

B. Impact of the Iteration Parameters on Image Quality

As described in Section IV, the iterative inversion algorithm
that we use for each planar reconstruction involves the selection
of 4 parameters: «, 0, Vthress and Ymax. Here, we consider a
fixed stopping rule defined with y¢pes = 0.002 and v,0 = 400
and investigate the impact of o and o on achievable reconstruc-
tion quality.

1) Impact of a: We reconstructed the disk phantom on a
single plane of interest for a range of values of o while using the
discretization At = Az = 0.5 mm. The plane P was defined
with Sgtart = 0 mm, p = 0, and we set ¢ = 0.

The reconstruction results were evaluated quantitatively by
computing, as a figure of merit (FOM), the root-mean-squared
error (RMSE) between reconstruction f¢ and the true object
density f within two different regions in P. These regions, de-
noted as A and B, were rectangular with width 100 mm and
height 6 mm and were entirely contained, respectively, in the
bottom disk and in the top disk of the phantom (see Fig. 7). The
left two graphs in Fig. 6 display the RMSE as a function of o2
in regions A and B, for both ideal and noisy CB data (assuming
an emission of 25000 photons per ray). For the first graph,
we used the stopping criterion defined above (Vihres = 0.002
and ymax = 400), whereas the second graph was obtained
using a fixed number of 400 iterations (thus without using the
Ythres Tule). Fig. 6 shows that « has in either case a strong im-
pact on the reconstruction results. This impact is particularly
significant in regions remote from the PCS (top curves in the
graphs). Selecting « too small or too large yields unbalancing
between the two terms of the objective function in (18) that af-
fects convergence and achievable image quality, thus demon-
strating that each term contains crucial information for recon-
struction. Clearly, an optimal selection of o, such as a? = 1072
in the considered experiment can improve image quality and
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region B

region A

trace of
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Fig. 7. The plane P with s¢a,t = 0 mm and p = 0 through the disk phantom.
(Top-left) Illustration of the true density values, of the phantom position relative
to PCS and of regions A and B. (Top-right) Reconstruction using short-scan
FDK. (Bottom) Reconstruction using the factorization approach and parameters
a? = 1072, ¢ = 0 from (left) nonnoisy CB data and (right) CB data with
Poisson noise assuming an emission of 25 000 photons per ray. Visualization in
[-1000HU, 50HU].

convergence speed. These observations seem to apply as well
to noisy data as to nonnoisy data. Also, looking at Fig. 7, we
see that noise is fairly robustly handled.

The right diagram in Fig. 6 presents, for the noisy CB data,
a closer investigation on the convergence properties of RMSE
in region B for three particular choices of a?: o = 1072,
«@? = 1072, and o? = 0.85. We realize that the general develop-
ment of the RMSE during the iteration process is similar for var-
ious a: the intermediate estimates approach the true densities,
reach a minimum distance to them at some iteration index and
then start to diverge. Again, the superiority of a® = 102 be-
comes obvious, because this choice, compared to the two others,
yields 1) better image quality for almost any fixed number of it-
erations and 2) a minimum FOM that is closer to the true density
and reached after fewer iterations. We also note that the stopping
criterion we applied for Fig. 6 (left) is satisfied fairly early, be-
fore the minimum of either of the three curves is reached. On the
other hand, the small improvements expected when continuing
iterations, appear not very attractive considering that up to 10
times more iterations would have to be carried out. The selected
values of Ymax and vthres thus achieve a practical trade-off be-
tween efficiency and image quality. Note that the three investi-
gated choices of « already yield improved CB artifact behavior,
compared to short-scan FDK, after only 10 iterations.

Fig. 7 shows reconstruction results on P and illustrates that
when using the factorization method (with a? = 1072), it is
easily possible to distinguish between the disks and the gaps
at the top of the phantom. This distinction, however, appears
impossible in the short-scan FDK reconstruction, which is pre-
sented in the top right image in Fig. 7.

2) Impact of o: The effect of o was studied using reconstruc-
tions of the FORBILD head phantom within the plane P that is
given by p = 0 and Sgtart = 10 mm. The plane P was again
discretized using At = Az = 0.5 mm and the reconstructions
were obtained with fixed «? = 1072, while using three different
values of o, namely ¢ = 0, 0 = 0.7, and 0 = 1.4. The re-
sults, displayed in Fig. 8, show that an appropriate choice of the
smoothing parameter, such as ¢ = 0.7, can lower the strength
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Fig. 8. Reconstructions of the FORBILD head phantom on the plane P with
Satart = 10 mmand p = 0 in the grayscale window [20HU, 80HU]. From left
to right: using parameters ¢ = 0, ¢ = 0.7, and ¢ = 1.4. Rightmost image:
difference between reconstructions using ¢ = 0 and o = 0.7 in a compressed
window of width 10 units on the HU scale. The bottom edge in each of the
presented images corresponds to PCS.

of horizontal, streak-like discretization artifacts. This improve-
ment is achieved without noticeably reducing resolution (see the
difference image on the right of Fig. 8). A large selection of o
should be avoided, since it would degrade high frequency con-
tents in IA)Z-, j too much. Then, a reconstruction of the object den-
sity fw in its original resolution, as pursued according to (11)
would incorporate a deconvolution task. Since deconvolution is
an ill-posed problem, it is the source of additional artifacts, such
as ringing, as can be seen in the third image of Fig. 8 (for the
selection o = 1.4).

C. Qualitative Evaluation

Here, we present additional reconstructions of the head
phantom for the purpose of visual assessment of image
quality. For comparison, we use results obtained with two
other, state-of-the-art reconstruction methods for the circular
short-scan, namely with 1) short-scan FDK, which we applied
with sinc-apodization of the ramp convolution kernel and with
2) the algorithm suggested in [12, Section II-C], which we refer
to as the virtual PI-line backprojection-filtration (BPF) method
in the following. We stopped the iterations for the factorization
method according to Ypmax = 400 and yipres = 0.002, and
we used =2 = 1072 and ¢ = 0.7, which turned out to be
efficacious parameter values in the evaluations of Section V-B.

In this section, reconstruction was carried out for the entire
3-D VOI, not only a single plane, by following the concepts of
Section III-C and thus considering a set of 220 parallel planes
Pp with Sgtare = 10 mm, As = 0.5 mmandp =0,1,...,219.
Fig. 9 displays slices z = 50 mm and z = 60 mm through the
volume reconstructions, which were obtained from both ideal
CB data, but also from CB data with simulated Poisson noise,
based on 300 000 photons per ray. Fig. 10 shows the reconstruc-
tions on the plane with index p = 136 using noise-free CB data.

Visual inspection of these reconstruction results confirms that
the factorization approach yields a significant reduction in CB
artifacts compared to the other two presented methods. Com-
pared to short-scan FDK, we can almost completely avoid low-
frequency artifacts, such as the dark shadows attached to the
bones in the FORBILD head phantom or the drop in recon-
structed intensities in axial direction. We can also avoid almost
all directed artifacts as well as the geometry distortion occur-
ring in the virtual PI-line BPF method. Because the available
CB data is insufficient for stable reconstruction, the issue of
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Fig. 9. Reconstructions of the FORBILD head phantom in the grayscale window [0HU, 100HU], obtained with (left) short-scan FDK, (center) the virtual PI-line
BPF approach, and (right) the factorization approach. From (top) to (bottom): slice z = 50 mm, no noise; slice z = 50 mm, noisy CB data; slice z = 60 mm, no
noise; slice z = 60 mm, noisy CB data. Noisy CB data here refers to CB data to which we added Poisson noise assuming 300 000 photons per ray. The graphs on
the right present density profiles through the results of the third row, along the dashed vertical lines, located slightly right to the nose. The top profile corresponds
to short-scan FDK, the central profile to the virtual PI-line BPF method and the bottom profile to the factorization approach.

Fig. 10. Reconstruction of the FORBILD head phantom within the plane de-
fined by p = 136, Sstars = 10 mm and As = 0.5 mm, obtained with (left)
short-scan FDK, (center) the virtual PI-line BPF method and (right) the factor-
ization approach. Grayscale window: [0HU, 100HU]. The trace of PCS is at
the bottom edge of each image.

CB artifacts cannot be solved entirely, but the effect of insuffi-
cient CB data can now only be seen in occasional spatially com-
pact, streak-like (high frequency) artifacts, that are tangent to
sharp discontinuities in the object; see, e.g., below the skullcap
in Fig. 10 or around the nose in Figs. 9 and 10.

VI. DISCUSSION AND CONCLUSION

We suggested an efficacious 3-D CB reconstruction approach
for the circular short-scan. This approach involves a novel, the-
oretically-exact factorization of the reconstruction problem into
a set of independent 2-D inversion problems. Each 2-D inver-
sion problem corresponds to finding the object density on one
plane, and we introduced a practical, numerical method to solve
any such problem using a constrained steepest descent iteration
scheme.

A numerical evaluation of our factorization algorithm was
presented using computer-simulated CB data of the FORBILD

head phantom and a disk phantom. Our results showed a sig-
nificantly decreased level of CB artifacts when compared to
short-scan FDK and to the virtual PI-line BPF method of [12],
and also showed good robustness to noise. Moreover, we saw
that a judicious selection of parameters of our algorithm can ac-
celerate convergence and improve image quality.

The factorization method uses for reconstruction on any given
plane only CB data on a super short-scan [11], i.e., on a limited
interval along the source trajectory. For this reason, it is most
likely not optimal in terms of noise. It would be interesting to
find a way to extend the method so that all measured projections
can be beneficially used for reconstruction in each plane. Also,
we expect a dependency of total achievable image quality on the
actual selection of the set of planes. These issues are investigated
at the moment.

A comparison of the factorization algorithm to other recon-
struction approaches recently suggested for the circular short-
scan, e.g., [10], [11], [13]-[15], is of high interest to us and is
the topic of our future investigations. Those comparisons will
cover, in more detail, measurements of achievable spatial reso-
lution and also of signal-to-noise ratio in the reconstruction re-
sults. They will furthermore have to deal with distinct truncation
scenarios to reveal the flexibility of the considered algorithms
with respect to limited data.

We finally note that an extension of the factorization re-
construction method to nonplanar scan orbits can easily be
achieved. In [27], e.g., we proposed such an extension for the
circle-plus-orthogonal-line trajectory by using CB data from
the line scan as additional constraints to the 2-D inversion
problems. An extension like that allows us to overcome the
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problem of insufficient CB data [1], while allowing arbitrary
(sparse) sampling on the additional linear scan segment.

APPENDIX

This Appendix presents how to derive (8) in Section III-B
from [17, eq. (34)]. Reference [17, eq. (34)] gives the funda-
mental relation between the intermediate function b and the ob-
ject density function f, namely

(1/7) b(x) = K* ()2, %), %) — K*(\1,%),x)  (26)

K*(w7x) = K(l7w7s)|l=(x—s)-w (27)

w(A, x) = (fo— a(A))/[lx —a(A] (28)

K(l,w,s) = / dl'#f(s—l—l'w). (29)
w(l =1

Since Section III-B focuses on the reconstruction of points in P
only, we may substitute x = X(¢, z). Considering only the first
term K* := K*(w(\2,%(t,2)),%(t, z)) in the RHS of (26) and
selecting s = a(\2) yields I = ||%(¢, z) — a(A2)|| and therefore

N a(y) 4 1 X(0:2) =aldo)
K*~o/odl'f< ((T)H : ) (30)

[%(t,2) — aQ)]
w([&(t 2) — a()] - 1)

For the argument of f in (3), we have

i | &(L2)—ale) \ L
((A”**nxaa>—augn> :

which shows that the function f in (3) is only evaluated on P.
Introducing coordinates z), = a(\z) - €, and ty, = a(X2) - &;
allows the notation

7 1
K* = / i’ ——
J m([|x(t,z) —a(A2)|| = V')
t—t,

Xf <t>\2 + ll s 2o + ll

&t 2) — a0l |&@¢>—§u»n>

The change of variable I = I'(t — ty,)/||%(t, z) — a(\s)||with
Jacobian ||x(t, z) — a(A2)||/||t — ta,||yields

K= / gi Sent—ty) (t& . +l~m>

m(t —ty, — 1) t—=1x,
7d Sign(t—tAQ)f F(r—t )z—z>\2
= T— T, Z). T — —_—
m(t—7) VA N

where 7 = t, + I. The calculations for the second term in
the RHS of (26) are straightforward. We use that, by definition,
ty, <t < ty,, and introduce

(1) =2a + (T =t )z —2a,)/(E—tx)  GBD
with k& € {1, 2}, which yields (8) from the main text.
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