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Abstract

This thesis addresses the problem of reconstructing static objects in 2D and 3D transmission com-
puted tomography (CT). After reviewing the classical CT reconstruction theory, we discuss and
thoroughly evaluate various novel reconstruction methods, two of which are original.

Our first original approach is for 2D CT reconstruction from full-scan fan-beam data, i.e., for 2D
imaging in the geometry of diagnostic medical CT scanners. Compared to conventional methods, our
approach is computationally more efficient and also yields results with an overall reduction of image
noise at comparable spatial resolution, as demonstrated in detailed evaluations based on simulated
fan-beam data and on data collected with a Siemens Somatom CT scanner. Part two of this thesis
discusses the problem of 3D reconstruction in the short-scan circular cone-beam (CB) geometry,
i.e., the geometry of medical C-arm systems. We first present a detailed comparative evaluation of
innovative methods recently suggested in the literature for reconstruction in this geometry and of
the approach applied on many existing systems. This evaluation involves various quantitative and
qualitative figures-of-merit to assess image quality. We then derive an original short-scan CB recon-
struction method that is based on a novel, theoretically-exact factorization of the 3D reconstruction
problem into a set of independent 2D inversion problems, each of which is solved iteratively and
yields the object density on a single plane. In contrast to the state-of-the-art methods discussed ear-
lier in this thesis, our factorization approach does not involve any geometric approximations during
its derivation and enforces all reconstructed values to be positive; it thus provides quantitatively
very accurate results and effectively reduces CB artifacts in the reconstructions, as illustrated in the
numerical evaluations based on computer-simulated CB data and also real CB data acquired with
a Siemens Axiom Artis C-arm system.

Kurzfassung

Diese Arbeit behandelt das Problem der Rekonstruktion statischer Objekte in der 2D und 3D
Transmissions-Computertomographie (CT). Wir geben einen Überblick der klassischen CT Rekon-
struktionstheorie und diskutieren und evaluieren anschliessend mehrere neue CT Rekonstruktions-
methoden; zwei dieser Methoden sind originär.

Unser erstes originäres Verfahren ist für die 2D CT Rekonstruktion aus Vollkreis-Fächerstrahl-
daten, das heisst, für 2D Bildgebung in der Geometrie diagnositischer medizinischer CT Scanner.
Unser Verfahren ist im Vergleich zu herkömmlichen Methoden recheneffizienter und liefert aus-
serdem Ergebnisse mit reduziertem Bildrauschen bei vergleichbarerer Ortsauflösung, was anhand
ausführlicher Untersuchungen mit simulierten Daten und mit Daten eines Siemens Somatom CT
Scanners demonstriert wird. Teil zwei dieser Arbeit behandelt das 3D Rekonstruktionsproblem in
der Teilkreis-Kegelstrahlgeometrie, das heisst, in der Geometrie medizinischer C-Bogen Systeme.
Wir präsentieren eine detaillierte Vergleichsstudie innovativer Methoden, die kürzlich in der Li-
teratur für die Rekonstruktion in dieser Geometrie vorgeschlagen wurden, sowie des Verfahrens,
das in vielen existierenden Systemen Anwendung findet. Unser Vergleich basiert auf quantitati-
ven sowie qualitativen Bildqualitätskenngrössen. Wir leiten anschliessend eine originäre Teilkreis-
Kegelstrahlrekonstruktionsmethode her, die auf einer neuen, theoretisch exakten Faktorisierung des
3D Rekonstruktionsproblems in eine Menge unabhängiger 2D Inversionsprobleme beruht. Jedes In-
versionsproblem wird iterativ gelöst und liefert die Objektdichte auf einer einzelnen Ebene. Unser
Faktorisierungsverfahren bezieht im Gegensatz zu den vorher untersuchten Methoden keinerlei geo-
metrische Annäherungen während seiner Herleitung mit ein und erzwingt, dass alle rekonstruierten
Werte positiv sind. Es liefert daher quantitativ sehr akkurate Ergebnisse und eine effektive Reduzie-
rung von Kegelstrahlartefakten, was in den numerischen Auswertungen mit simulierten Daten und
mit Daten eines Siemens Axiom Artis C-Bogen Systems veranschaulicht wird.
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Chapter 1

Introduction

1.1 Computed Tomography

This thesis addresses specific research topics in the field of recovering human body struc-
tures from X-ray projection data in medical examination. The historical starting point to
this examination method can be traced back into the 1890s, when the high-energetic electro-
magnetic rays that are nowadays known as X-rays were discovered [8]. One of the pioneers
who carried out first experiments was the German physicist Wilhelm Conrad Roentgen,
who was able to generate and measure X-rays and who managed to demonstrate, in 1895,
that these rays, which are able to traverse most solid objects, can be used to create pho-
tographic impressions of interior object structures that are otherwise hidden to the human
eye [77]. This was an exciting discovery [8], and over the years, examination of objects using
X-rays has found its way into various fields of application, including the field of security
systems, the field of non-destructive evaluation of industrial objects and – in particular –
the field of medical imaging [71].

In the early days of X-ray examination and also in the contemporary application, the
fundamental design of systems used for X-ray examination is based on the following concept:
X-rays are generated in a ray source, sent through the object under investigation, so that
they project the object structure onto some X-ray sensitive material, such as chemical film,
that transforms incoming X-radiation into an image. Hence, the natural capability of X-
ray systems is to acquire projection images of the investigated object and these projections
can be collected from one or more viewing directions, as desired. The individual images
may then be interpreted by a specialist and for a long time, this described examination
method, known as projection radiography, was the method commonly used in the practical
application [30, 85].

Over the last few decades, however, X-ray examination systems have become more and
more sophisticated [30, 48]. Electronic control, for instance, allows the user to approach
different viewing directions quickly, automatically and with high precision. Nowadays,
projection images can be acquired using high-resolution digital detectors that involve semi-
conductor technology instead of using chemical film [71]. These and other refinements in the
mechanical design and the acquisition process naturally created a desire for more complex
imaging applications [30, 71, 70], such as

i) quantitative measurements, for instance, precise determination of the density, the
length or the volume of structures within the investigated object,
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2 Chapter 1. Introduction

ii) volumetric visualization, for instance, graphically illustrating the 3D surface of the
object or of parts of the object, possibly using specific color schemes to encode addi-
tional information, or

iii) computer-aided image interpretation, for instance, assisting the user in detecting
or locating specific features in the investigated object.

These applications significantly increase the practical benefit of X-ray examination systems,
but they require information about the actual structure of the object; pure knowledge about
individual projection images, as can be collected with an X-ray system, is not sufficient.
Hence there is some discrepancy between the information that can be naturally obtained
during examination and the information needed to carry out the desired applications listed
above. This discrepancy is effectively tackled by the concepts of transmission computed
tomography (CT) .

The objective of CT is to convert a set of projection images of an object, obtained from
various viewing directions, into a representation of object structure [39]. This conversion,
which is illustrated in Figure 1.1, is a highly non-trivial task. First, a data model is required
that formally describes the physical data acquisition and therefore establishes a link between
the object structure on one side and the X-ray measurements on the other side. The data
model that became the standard for X-ray CT relates each sample of the acquired data
to the integral density of the object along one geometric measurement line. This model
is approximate in a sense that it disregards some second-order physical effects occurring
during X-ray acquisition, such as X-ray scatter, but it relates the reconstruction problem
to the task of inverting a system of integral equations and thus to a mathematical theory
that may provide potential solutions to the reconstruction task.

Figure 1.1: The principle of computed tomography. (A) An X-ray system acquires
projection data from the investigated object that is shown on the left (3D illustration
from [3]). (B) The sequence of projection images is then converted into a structural
representation of the initial object using a CT reconstruction algorithm.

The key challenge in the pursuit of recovering object structure from projection data
is thus to invert this system of integral equations. The algorithms used to accomplish
this inversion play a core role in the design of a CT X-ray system [21], since they directly
influence whether or not the X-ray system is capable of carrying out the complex imaging
applications, as desired.
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1.2 CT Image Reconstruction in the Medical En-

vironment

The concepts of CT have been applied on medical imaging systems for more than 30 years.
One of the first prototype systems for CT imaging was developed by Godfrey Hounsfield
and first commercially-available systems were introduced by the British company EMI [12].
Since then, the CT technology contributed to significant advancements in medical diagnosis
and intervention by providing improved or entirely new imaging techniques; examples of
these techniques are given, for instance, in [48, 70, 71, 59].

We here focus on CT imaging with two popular medical X-ray systems, namely the CT
scanner and the medical C-arm system. These systems are used in almost complementary
fields of application and they show distinct capabilities in the way projection data can be
acquired.

Figure 1.2: Examples of X-ray CT systems commonly used in the clinical environ-
ment. (Left) A diagnostic CT scanner from the Siemens SOMATOM Sensation family
[5]. (Right) A medical C-arm device from the Siemens AXIOM Artis family [2].

The CT scanner (one state-of-the-art system is shown in the left side of Figure 1.2) has
been primarily designed for diagnostic applications [47]. In CT scanners of the 3rd gener-
ation, which is the generation most widely used nowadays, the X-ray source is mounted,
together with the detector, on a ring-shaped rail. The detector is typically of curved shape
and consists of many X-ray sensitive elements. In previous scanner generations, these ele-
ments were aligned in a single row; detectors of modern scanners, however, possess several
rows (some of them for instance up to 256 or more, dependent on the clinical use) each
of them consisting of up to 1000 detector elements. The CT scanner is capable of ac-
quiring X-ray projections with the source-detector assembly performing one or more full
rotations around the patient. Dependent on the medical application, the patient bed may
be in fixed position or also shifted with respect to the source-detector rail during the scan.
The CT scanner can provide 3D reconstruction results or also one or more individual 2D
cross-sections through the patient, as desired [48].

The medical C-arm system, on the other hand, is designed to support interventional
procedures, for instance, by providing image-based guidance in minimal-invasive surgery.
On these systems, X-ray source and detector are mounted on opposite sides of a C-shaped
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arm and the mechanical design of this arm is focussed on providing very flexible motion
around the patient bed. The C-arm system differs in some aspects fundamentally from
the diagnostic CT scanner. C-arm systems, for instance, do not in general allow X-ray
projections to be acquired along a full rotation around the patient. Also, modern C-arm
systems possess a large, digital flat-panel detector that, e.g., consists of several million
X-ray sensitive elements arranged in a 2D grid that covers an area of about 30 cm×40 cm
[2]. Another important fact is that C-arm systems were initially designed exclusively for
acquiring 2D projections from various points of view [60] – the concepts of 3D CT were
introduced as a standard feature of C-arm systems in the late 1990s [88].

The practical benefit of these two medical CT systems depends on the quality of the
image reconstruction. For a long time, image quality issues were dominated not by the
reconstruction algorithm but by the fact that the physical processes during data acquisition
deviate to some respect from the data assumptions of the reconstruction algorithm – this
inconsistency yields reconstruction artifacts. However, due to improvements in hardware
and data processing, this mismatch between the data model and physical reality was reduced
successively so that nowadays, the performance of the reconstruction algorithm becomes
increasingly decisive for the resulting image quality. Considering the fact that CT image
reconstruction on many existing systems is carried out using methods that are variations of
approaches introduced more than 20 years ago [71], the consideration of novel reconstruction
approaches may be the key for improving the overall system performance.

1.3 Scope and Original Contribution of this Thesis

In this thesis, we present and thoroughly evaluate various novel approaches to achieve image
reconstruction from static objects on medical X-ray CT systems. The new methods come
with advantages in image quality and/or efficiency compared to the conventional approaches
that are typically considered in existing CT systems. Two of these presented methods are
original and some of their concepts have been published in peer-reviewed journals; see
[27, 29].

In the first part of this thesis, we derive and evaluate a novel analytic method for 2D
image reconstruction from projection data measured in the geometry of the diagnostic CT
scanner. Our novel approach is primarily designed to be computationally more efficient
compared to classical approaches, by avoiding the application of a specific weighting factor
during computation. In addition to that, it also yields improvements in the noise char-
acteristics of the resulting images without noticeably sacrificing resolution. In the second
part of this thesis, we consider 3D image reconstruction in the geometry of medical C-arm
systems and present, in a uniform way, three methods recently suggested in the literature to
accomplish that task. We describe a methodology for detailed comparison of image quality
in C-arm CT and use this methodology to compare these three reconstruction methods
to each other, but also to the reconstruction method currently in use in many existing
C-arm systems. We then derive a novel, original approach for image reconstruction from
C-arm data that comes along without any geometric approximations during its derivation,
in contrast to the methods described before. It thus aims at achieving higher accuracy in
the reconstruction results, in particular compared to the method currently used in most
C-arm systems. Our new method involves analytic steps and also a 2D iterative scheme to
recover 3D object density, and is furthermore designed to naturally cope with some degree
of truncation in the acquired projection images.
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Each of the two original reconstruction methods that we present in this thesis is carefully
derived from known theory, thoroughly numerically evaluated against other competitive
methods using computer-simulated CB data and also tested for image reconstruction from
projection data acquired with commercially-available X-ray CT systems.

1.4 Outline of this Thesis

This thesis is structured as follows. Chapter 2 describes the standard CT data model,
which is a prerequisite for the considerations in the subsequent chapters. The main body
of this thesis, which follows this introductory chapter, is divided into two parts that are
about image reconstruction in the 2D scenario (chapters 3 and 4) and in the 3D scenario
(chapters 5, 6 and 7), respectively. Each of these parts starts with a chapter that reviews the
classical theory of image reconstruction in the respective scenario. In these review chapters,
we give derivations of the fundamental concepts wherever appropriate, and also present
numerical examples to illustrate the corresponding theory. In the subsequent chapters of
each part we thoroughly present our original contributions, in the following sequence:

Chapter 4 presents our novel, original filtered-backprojection method for 2D image re-
construction in the geometry of the diagnostic CT-scanner. In sections 4.2 and 4.3, we derive
our method and point out its differences from the conventional approaches. Our novel ap-
proach is thoroughly evaluated and compared to the analytic reconstruction method of Noo
et al. [67] in section 4.4. The evaluation is based on computer-simulated data and carried
out in terms of spatial resolution, image noise and computational efficiency. Section 4.5
presents an evaluation based on real projection data acquired with a commercially-available
CT scanner. Final discussions and conclusions are given in section 4.6.

Chapter 6 is focussed on 3D image reconstruction in the circular short-scan cone-beam
acquisition geometry with a flat detector, i.e., in the geometry of most modern C-arm sys-
tems, which is formally introduced in section 6.2. We then present four state-of-the-art
methods suggested for image reconstruction from short-scan circular cone-beam data, in
sections 6.3, 6.4 and 6.5, and compare the image quality achievable with these methods
in section 6.6. Our comparative image quality study is based on a uniform evaluation
framework and carried out in terms of spatial resolution (section 6.6.1), contrast-to-noise
ratio (section 6.6.2), cone-beam artifacts (section 6.6.3) and axial truncation artifacts (sec-
tion 6.6.4). Section 6.7 gives conclusions and discussions about our comparison study.

Chapter 7 presents our novel, original factorization approach for circular short-scan
cone-beam reconstruction. The general theoretical background of our method is illustrated
in section 7.2. We then suggest, in section 7.3, a numerical scheme to implement from this
theory a practical cone-beam reconstruction algorithm. The performance of this factoriza-
tion algorithm is then evaluated and compared to that of the methods described earlier in
this thesis. Section 7.6 is about reconstruction from cone-beam data collected with a clinical
C-arm system. It first describes specific aspects of the geometry of existing C-arm systems
and presents modifications we considered in our algorithm to cope with these geometric
aspects. Reconstruction results of a physical thorax phantom are shown in section 7.6.3
and final discussions on our factorization approach are given in section 7.7.

In the final chapters of this thesis, we present an overall conclusion about our research
and give an outlook about possible future theoretical and algorithmic developments of the
specific topics discussed in this thesis and of the field of CT image reconstruction in general.
Note finally that we use a notation scheme where a symbol is in general restricted to the
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chapter in which it is introduced. Some symbols are, however, used throughout various
chapters; these symbols are summarized in the glossary at the end of this thesis.



Chapter 2

The Data Model in CT

This chapter briefly describes the standard data model of X-ray CT, i.e., the model used to
establish a formal relation between the measured data and the object under investigation.
This formal relation is essential for the development of reconstruction algorithms, and thus
also forms the backbone of the algorithms discussed in the following chapters.

Projection data acquired with modern CT systems is the result of an X-ray source
that emits X-ray photons and many X-ray sensitive detector elements with each element
measuring incoming radiation. Clearly, source and detector elements need to be located
on distinct sides of the investigated object; in medical CT devices, which are the focus of
this thesis, the distance between these two entities is about 1 to 1.5 meters, thus providing
enough space for the patient to be conveniently placed in between. Compared to this
geometric scale, both the X-ray focal spot and each considered detector element are tiny
objects with typically only about one millimeter width and length [71].

Let us focus on one arbitrary sample of the X-ray data set from now on, i.e., on the
measurement obtained at one single detector element at one point in time; the formal de-
scription of this data sample is based on a simplification on the real physical processes.
First, it is assumed that both, focal spot of the X-ray source and the considered detector
element are punctiform. In other words, X-ray photons are assumed to diverge from an in-
finitessimately small area centered on the actual X-ray focal spot and all photons registered
by the detector element are assumed to pass through the central point on that finite size
detector region. The ray that connects the points representing X-ray source and detector
element will be referred to as a measurement ray in the following and will be denoted using
the symbol L. It is furthermore assumed that the source emits monochromatic X-radiation
and that the direction in which each X-ray photon advances in space remains unchanged
after emission. The number of photons sent from the source point along the considered line
L will be denoted by the integer NS and the amount of photons eventually registered at
the detector element as ND. The ratio of these two photon counts, ND and NS , contains
information about the attenuation characteristic of the material along L as will become
clearer below.

Let the value µ ≥ 0 denote the linear X-ray attenuation coefficient of the investigated
object. Values of µ are commonly expressed in a scale (the Hounsfield scale [71]) that is de-
fined relative to the attenuation of water, for which we use the value µwater = 0.01836mm−1

throughout this thesis. The linear attenuation coefficient is converted into values of the
Hounsfield scale as [47]

µ− µwater

µwater
× 1000. (2.1)

7



8 Chapter 2. The Data Model in CT

Consequently, the absence of attenuating material corresponds to a value of−1000 Hounsfield
units (HU), while the attenuation of water is given, for instance, as 0 HU. The attenuation
coefficients of important structures of the human body, such as those of bones or of different
organs, are given in [71].

Beer’s law [71] then introduces the following relation between the object attenuation
coefficient and the X-ray photon measurements:

ND = NS e
−

tD∫
tS

µL(t) dt

. (2.2)

In (2.2), µL(t) denotes the attenuation coefficient of the object along the considered mea-
surement ray L, while t is here the coordinate that defines locations on L. The values tS
and tD denote the positions of the source and the detector element along L, respectively;
see Figure 2.1 for an illustration.

Figure 2.1: Illustration of one exemplary measurement ray L. A total of NS photons
are emitted from the X-ray source along this ray; they are attenuated by the material
along L so that only ND photons are finally registered by the detector element.

In words, following the CT data model, each X-ray measurement contains information
about the integral of the object X-ray attenuation coefficient1 along the corresponding
measurement ray, and this integral is obtained as

tD∫

tS

µL(t) dt = ln
NS

ND
. (2.3)

Note that (2.3) has to be understood in an approximate sense, since some subordinate
physical effects are disregarded in the presented model. These effects include the impacts of
finite size X-ray source and finite size detector elements on the measured data as well as the
impacts of multi-energetic X-radiation and of photon scatter [71]. Equation (2.3), however,
significantly supports the design of reconstruction algorithms, because it allows us to relate
the task of image reconstruction to the task of inverting a system of integral equations
of the object density function. The ray-integral data model thus establishes a link to a
well-understood mathematical field that may provide practical solutions to the CT image
reconstruction problem. This model is, however, only used for the design of reconstruction
algorithms, whereas for numerical evaluation of the algorithmic performance, we involve
in general projection data that contains several physical effects, as we will explain in the
corresponding evaluation sections of this thesis. Note also that the geometric arrangement

1Throughout this thesis, we will frequently use the term object density instead of the expression
linear X-ray attenuation coefficient. Technically, this is an abuse of the English language (these two
entities are not necessarily identical), but it helps us to keep the terminology within this thesis less
cumbersome.
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of all measurement rays occurring during the X-ray CT data acquisition significantly deter-
mines both feasibility and difficulty of this reconstruction task [39], as will become clearer
in the following chapters.
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Chapter 3

Classical Theory for Image
Reconstruction in Two Dimensions

This chapter introduces the classical theory about reconstruction of 2D objects from 1D
projection data. The plane on which these objects are defined will be referred to as the image
plane from now on. A Cartesian, right-handed world coordinate system with coordinates
x and y is introduced on the image plane such that an arbitrary position can be addressed
using the coordinate vector x = (x, y)T. Note that here and throughout the rest of this
thesis, the superscript T denotes the transpose of a matrix or vector.

The spatial density distribution of the investigated object on the 2D image plane will
be described using the function f(x). It is assumed that the object is of finite size and
furthermore approximately centered on the origin of the world coordinate system. More
specifically, the object is assumed to fit entirely into a circular region of radius Ro around
the world coordinate origin; this region will be denoted as Ωf from now on, so that

f(x) = 0 for all x /∈ Ωf := {x |
√

x2 + y2 ≤ Ro}. (3.1)

3.1 2D Radon Transform and Its Inversion

Section 3.1 deals with the problem of image reconstruction from integral data that is ac-
quired with measurement lines aligned parallel to each other. This specific scenario corre-
sponds to the least complex geometry discussed in this thesis and is referred to as the 2D
parallel-beam geometry from now on. Note that direct data acquisition in this geometry is
not very practical and has only be considered in CT scanners of the first generation [47].
However, this scenario is interesting from a theoretical perspective, because image recon-
struction in the 2D parallel-beam geometry is a direct application of the theory of Radon
integral transforms [46] that has been introduced by Johann Radon in 1917 [76].

3.1.1 2D Parallel-beam Geometry

Consider an arbitrary set of parallel lines in the image plane. This set may be specified,
following the scheme used in [4], by the unit vector θ = (cos θ, sin θ)T that is perpendicular
to all lines in the set. In this notation, parameter θ corresponds to the angle that vector
θ describes with the x-axis, measured in counterclockwise direction. One specific element
among all lines in the set defined by any θ can be addressed by its signed distance s ∈ R

11
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from the origin (0, 0)T in the direction of θ. The selection of parameters θ and s then
defines one specific line in the image plane that will be denoted as

L(θ, s) := {x |x · θ = s} . (3.2)

y

R

x

s

f x

s

f

Figure 3.1: Illustration of the 2D parallel-beam geometry. The investigated object
f(x) (dark gray) is contained in the circular region Ωf of radius Ro. One black,
example line L(θ, s) is shown, which is orthogonal to θ, parallel to θ⊥ and has distance
|s| from the origin of the 2D image plane.

3.1.2 The 2D Radon Transform

The 2D Radon transform [46, 63] of a function f is defined as

Rf(θ, s) =
∫∫

x∈L(θ,s)

f(x) dx =
∫∫

R2

f(x) δ(x · θ − s)dx

=

∞∫

−∞
f(sθ + tθ⊥)dt.

(3.3)

In this definition, δ denotes the Dirac delta function and · the inner vector product [11].
Hence, the Radon transform operator delivers a function Rf that contains information
about integrals of f along lines, such that the value Rf(θ, s) corresponds to the integral of
f along the line L(θ, s). Following the data model described in section 2, this value of the
2D Radon transform directly corresponds to the X-ray measurement sample acquired with
detector element and X-ray source both located on L(θ, s); this measurement sample will
be denoted as p(θ, s). Data acquisition in the 2D parallel-beam geometry thus yields direct
access to values of the 2D Radon transform and we have

p(θ, s) = Rf(θ, s). (3.4)

Function p will be denoted as 2D parallel-beam data in the following and 2D parallel-beam
data at fixed θ will be called a 2D parallel-beam projection of the object at projection angle
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θ. Clearly, any line L(θ, s) with |s| > Ro has no intersection with the object due to the
initial assumption (3.1), and consequently

p(θ, s) = 0 for |s| > Ro. (3.5)

Therefore, if p(θ, s) is given for all s ∈ [−Ro, Ro], the entire set of potentially non-zero
values of the 2D Radon transform of f at parameter θ are known. The 2D parallel-beam
projection at the corresponding projection angle will be called non-truncated from now on.

Consider the following example for an illustration of the 2D Radon transform operator
[4]. Let

fcirc(x) =

{
1 if

√
x2 + y2 ≤ Rcirc

0 otherwise
(3.6)

define a circular object of homogeneous density 1 that is centered on the world coordinate
origin and has radius Rcirc ≤ Ro. Substituting fcirc for f in the second line of (3.3) and
computing the length of intersection between the circular object and measurement lines L,
as depicted in the left side of Figure 3.2, leads to the 2D Radon transform of fcirc as

Rfcirc(θ, s) =

{
2
√

R2
circ − s2 if |s| ≤ Rcirc

0 otherwise.
(3.7)

In this example, Rfcirc(θ, s) is independent of θ; the parallel-beam projection of fcirc at an
arbitrary projection angle is illustrated on the right side of Figure 3.2.

Rcirc s

x

y

f

Rcirc

s

s

circf x

−Rcirc 0 Rcirc
0

2Rcirc

s [mm]

R
 f(

θ,
s)

Figure 3.2: Illustration of the 2D Radon transform operator. (Left) The gray circle
corresponds to the homogeneous object of radius Rcirc, which is entirely contained
in Ωf . We illustrate for one example line L(θ, s) how to obtain the length of its
intersection with the object. (Right) 2D parallel-beam projection of fcirc at arbitrary
projection angle θ ∈ [0, π].

The following list summarizes properties of the 2D Radon transform operator that are
important for the derivations presented in the remainder of this chapter [4]. The interested
reader may find further details about the 2D Radon transform, for instance, in [46, 63, 19].

Basic properties of the 2D Radon transform :
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• Linearity:

R
(

N∑

i=1

cifi

)
(θ, s) =

N∑

i=1

ciRfi(θ, s) (3.8)

• Periodicity:
Rf(θ + 2πk, s) = Rf(θ, s); k ∈ Z (3.9)

• Redundancy:
Rf(θ + π,−s) = Rf(θ, s) (3.10)

The linearity of the operator R follows from its definition in (3.3) and from the
linearity of the integral operation. The 2π periodicity in θ and the redundancy
property, on the other hand, are a direct result from (3.3) and from the characteristics
of the involved trigonometric functions.

2D Radon transform and object modification :

• Object translation:
The 2D Radon transform of objects f(x) and f0(x) that are related to each other
through a translation with the translation vector x0, such that f(x) = f0(x−x0),
satisfies the following relation [4]:

Rf(θ, s) =
∫∫

R2

f0(x− x0)δ(x · θ − s) dx

=
∫∫

R2

f0(x′)δ(x′ · θ + x0 · θ − s) dx′

=
∫∫

R2

f0(x′)δ(x′ · θ − (s− x0 · θ)) dx′

=Rf0(θ, s− x0 · θ).

(3.11)

• Linear object distortion:
If the object f can be related to a reference object f0 through a non-singular
linear transformation, such as a rotation or a dilation, i.e., if f(x) = f0(Ax)
with A ∈ R2×2 and detA 6= 0, it can be shown that

Rf(θ, s) =
∫∫

R2

f0(Ax)δ(x · θ − s)dx

=
1

detA

∫∫

R2

f0(x′)δ(A−1x′ · θ − s)dx′

=
1

detA

∫∫

R2

f0(x′)δ(x′ ·A−T θ − s)dx′

=
1

detA
1

‖A−T θ‖
∫∫

R2

f0(x′)δ
(

x′ · ψ − s

‖A−T θ‖
)

dx′

=
1

detA
1

‖A−T θ‖Rf0

(
ψ,

s

‖A−T θ‖
)

,

(3.12)



3.1. 2D Radon Transform and Its Inversion 15

where ψ = (cosψ, sinψ)T = (A−T θ)/‖A−T θ‖. In (3.12), detA denotes the
determinant of matrix A and ‖ · ‖ denotes the Euclidean vector norm.

From the properties (3.8), (3.11) and (3.12) of the 2D Radon transform and the result
of (3.7), 2D parallel-beam data can be readily constructed for any object that consist of the
superposition of an arbitrary number of ellipses with arbitrary sizes, positions, rotations
and densities. An object that belongs to this category is the Shepp-Logan phantom [46],
which consists of 10 ellipses that are arranged to coarsely represent a cross-section through
a human head. The density function of the Shepp-Logan phantom is shown on the left side
of Figure 3.3.

2D parallel-beam data are commonly presented in a sinogram, i.e., a 2D image based
on a Cartesian θ − s coordinate system, which is composed by mapping each value of the
function p onto a gray value and assigning this gray value to the corresponding point in the
sinogram space. This thesis follows the convention that a sinogram column corresponds to
one 2D parallel-beam projection, whereas one row of the sinogram visualizes 2D parallel-
beam data at fixed s. The sinogram of the Shepp-Logan phantom for θ ∈ [0, π] and
s ∈ [−Ro, Ro] with Ro = 90 mm is presented on the right side of Figure 3.3.
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Figure 3.3: The 2D Shepp-Logan phantom. (Left) The object density function of
the phantom in the grayscale window [0 HU, 40 HU]. (Right) Sinogram displaying
the 2D parallel-beam data p(θ, s) of the Shepp-Logan phantom with θ ∈ [0, π] and
s ∈ [−90, 90] mm.

3.1.3 Concept of Backprojection

The backprojection operator R# transforms parallel-beam data p(θ, s) into the image
R#p(x). This operator is defined implicitly by the relation [4]

< Rf, p >=< f,R#p > (3.13)

where < ·, · > denote scalar products that are in the 2D parallel-beam geometry given as

< Rf, p >=

π∫

0

∞∫

−∞
Rf(θ, s)p(θ, s) ds dθ (3.14)
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and
< f,R#p >=

∫∫

R2

f(x)R#p(x) dx. (3.15)

Using the definition of the 2D Radon transform (3.3) in (3.14) and applying the change of
variable x = sθ + tθ⊥ of Jacobian 1 yields

< Rf, p > =

π∫

0

∞∫

−∞

∞∫

−∞
f(sθ + tθ⊥) dt p(θ, s) ds dθ

=

π∫

0

∫∫

R2

f(x)p(θ, x · θ) dx dθ.

(3.16)

Changing the order of integration in (3.16) and using the definitions (3.13) and (3.15) results
in

R#p(x) =

π∫

0

p(θ, θ · x) dθ, (3.17)

which is the wanted expression for the backprojection operator.
In order to obtain a valid backprojection result at a point x according to (3.17), 2D

parallel-beam data need to be known for all θ ∈ [0, π) and within each parallel-beam
projection at s = x · θ. The computation of R#p(x) thus requires integral data associated
to all lines that contain x. On the other hand, if 2D parallel-beam data are known for
θ ∈ [0, π] and s ∈ [−Ro, Ro], the function R#p can be computed everywhere in the image
plane.
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Figure 3.4: The effect of the backprojection operator R#. (Left) Result of back-
projecting the 2D parallel-beam data of the Shepp-Logan phantom. (Right) The
outcome of applying the 2D Laplacian high-pass filter to the backprojection result
shown in the left image, presented in a compressed grayscale window.

The left side of Figure 3.4 shows the result of backprojecting the 2D parallel-beam data
of the Shepp-Logan phantom. As can be seen from this example, the resulting function does
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not correspond to the object density f . However, the following relation can be established
[46]:

R#Rf(x) =

π∫

0

Rf(θ, θ · x) dθ =

π∫

0

∞∫

−∞
f

(
(θ · x)θ + tθ⊥

)
dt dθ

=

π∫

0

∞∫

−∞
f(x + tθ⊥) dt dθ =

∫∫

R2

1
‖x− x′‖f(x′) dx′.

(3.18)

Hence, R#Rf corresponds to the result of convolving f with the 2D low-pass filter kernel
1/‖x‖. Discontinuities in the object density function f can be determined by applying
the 2D Laplacian operator on R#Rf [4], see the right side of Figure 3.4. This approach,
however, does not allow a quantitative recovery of the object density.

3.1.4 Classical Inversion Formula for the 2D Radon Trans-
form

In the following, an inverse of the 2D Radon transform operator is derived. This result is
based on a link between the 2D Fourier transform in x of the object density function and
the 1D Fourier transform in s of the 2D parallel-beam data at projection angle θ. These
Fourier transforms are given respectively as [46]

Fxf(ξ) =
∫∫

R2

f(x)e−2πiξ·x dx and FsRf(θ, σ) =

∞∫

−∞
Rf(θ, s)e−2πiσs ds (3.19)

with the subscript parameter denoting the argument in which the transform is applied.
The link between these two functions, which is known as the 2D Fourier slice theorem, is
obtained as

FsRf(θ, σ) =

∞∫

−∞
Rf(θ, s)e−2πiσs ds

=

∞∫

−∞

∞∫

−∞
f(sθ + tθ⊥)e−2πiσs dt ds

=
∫∫

R2

f(x)e−2πiσθ·x dx

= Fxf(σθ).

(3.20)

The inversion formula for the 2D Radon transform is now derived in a similar fashion
as in [4] by first expressing the object as the inverse 2D Fourier transform of Fxf , i.e., as

f(x) =
∫∫

R2

Fxf(ξ)e2πiξ·x dξ (3.21)

with ξ = (ξ1, ξ2)T. The change of variable from Cartesian to polar coordinates

ξ1 = σ cos θ, ξ2 = σ sin θ (3.22)
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of Jacobian |σ| and the use of the 2D Fourier slice theorem (3.20) transforms (3.21) into

f(x) =

π∫

0

∞∫

−∞
|σ|Fxf(σθ)e2πiσθ·x dσ dθ

=

π∫

0

∞∫

−∞
|σ|FsRf(θ, σ)e2πiσθ·x dσ dθ

(3.23)

and thus into an analytical inversion approach for the 2D Radon transform, which is based
on the following steps:

Step 1 – 1D Filtering: 2D parallel-beam data at fixed θ are filtered in s to obtain

pF (θ, s) =

∞∫

−∞
Fshramp(σ)Fsp(θ, σ)e2πiσs dσ (3.24)

=

Ro∫

−Ro

hramp(s− s′)p(θ, s) ds′ (3.25)

with the filter kernel hramp defined in frequency and spatial domain, respectively, as

Fshramp(σ) = |σ| and hramp(s) = lim
b→∞

b∫

−b

|σ|e2πiσsdσ. (3.26)

The function hramp is of infinite support and known as the ramp filter kernel [46].
Note that the limits of integration in (3.25) were adjusted to−Ro and Ro, respectively,
and that this adjustment became possible because of the bounded support of p.

Step 2 – 2D Backprojection: Backprojection of the filtered parallel-beam projections
onto the image plane using the operator R# yields the object density function as

f(x) =

π∫

0

pF (θ, x · θ) dθ. (3.27)

The analytical filtered backprojection (FBP) inversion method presented in (3.25)-(3.27) is
referred to as the classical 2D Radon inversion method from now on. For a valid recovery
of the value of f at a single point x, this method requires filtered parallel-beam data pF

to be known for all projection angles θ ∈ [0, π), using in every projection the sample at
x · θ. On the other hand, the values pF at any fixed angle θ can only be computed if the
corresponding parallel-beam projection is non-truncated, because the convolution equation
(3.25) corresponds to a global filter operation. In order to allow object density to be
recovered at a single point, the 2D Radon inversion formula thus requires non-truncated
projections for θ ∈ [0, π), or, in other words, the integral data associated to every line
intersecting the object. Note that if recovery of f according to (3.25)-(3.27) can be achieved
at some point x, then it is achievable everywhere within Ωf .
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3.1.5 Parallel Beam Reconstruction Formula for Redundant
Data

In the previous section, an inversion formula for the operatorR was given that requires non-
truncated parallel-beam data for θ ∈ [0, π]. If p is, for instance, known over an interval θ ∈
[0, θmax] with π < θmax < 2π, however, the 2D parallel-beam data contains redundancies.
That means that data samples at coordinates (θ, s) and at (θ + π,−s) are identical, which
follows from (3.10); see Figure 3.5 for illustration.
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Figure 3.5: Sinogram illustrating the 2D parallel-beam data p(θ, s) of the Shepp
Logan phantom for θ ∈ [0, 270◦]. The points marked with A correspond to redundant
data samples, as do the points marked with B. The data sample at C, however, is
contained only once in p.

A straight-forward extension of the classical 2D Radon inversion formula for recovery of
f by simply adjusting the limits of integration in (3.27) to 0 and θmax does not lead to valid
results. This is, because 2D Radon data that are contained twice in the parallel-beam data
set would contribute more to the final reconstruction than non-redundant data samples.
For a valid reconstruction, these contributions have to be normalized, or in other words,
the total contribution of each 2D Radon value to the final reconstruction has to be unity,
independently of how often this 2D Radon value is contained in the parallel-beam data
set. This normalization may be achieved by multiplying p prior to data filtering with a
weighting function m(θ, s) that has to be smooth, 2π-periodic in the angular parameter θ
and that needs to satisfy the condition

m(θ, s) + m(θ + π,−s) = 1 (3.28)

while m(θ, s) = 0 for parameter θ that describes sets of parallel lines for which no integral-
data is known. In words, the weighting factors for pairs of parameters θ and s describing the
same geometric line L have to add up to 1 and function m needs to vanish for parameters
for which p is not known. The inversion formula that provides valid reconstruction from
redundant 2D Radon data is then given as [4]

f(x) =

θmax∫

0

∞∫

−∞
hramp(x · θ − s)m(θ, s)Rf(θ, s) ds dθ. (3.29)
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A common additional constraint in this context is to require that m(θ, s) ≥ 0 so that each
measured data sample has positive contribution to the final reconstruction.

3.1.6 Numerical Reconstruction Algorithm

In the practical context of 2D CT, reconstruction of object density is usually carried out
from sampled 2D parallel-beam data. CT scanners of the first generation [71, 48], for
instance, consisted of an X-ray source and one detector element and therefore acquired one
measurement ray, i.e. one sample of p, at a time. During the scan, the source-detector
assembly was translated and rotated, which allowed function p to be determined within the
desired intervals in θ and s, but only at a finite number of sampling positions depending
on the increments of the scanner motion. This section presents a numerical FBP algorithm
based on the results of Section 3.1.4 to compute from the discrete 2D parallel-beam data
an estimate of the true object density. This estimate will be denoted as fe where the
superscript e emphasizes that the entity is computed from sampled data. For convenience,
but without loss of generality, we assume that the sampling in both s and θ is uniform with
discretization steps given as ∆s and ∆θ, respectively.
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Figure 3.6: The ramp filter hb
ramp with rectangular band-limitation, presented in

spatial domain. The black markers illustrate the sampling positions at which the
kernel is discretized using the discretization scheme explained in the text.

The suggested numerical reconstruction algorithm achieves data filtering through dis-
cretizing (3.25) at positions k∆s with k ∈ Z. Furthermore, the ramp filter kernel in (3.25)
is replaced with the bandlimited ramp-filter kernel that has rectangular apodization

hb
ramp(s) =

b∫

−b

|σ|e2πiσsdσ =
b

πs
sin 2πbs +

cos 2πbs− 1
2π2s2

(3.30)

in order to avoid aliasing in the filter result. In compliance with Shannon’s sampling
theorem [46] the bandwidth is set to 1/(2∆s), so that:

hb
ramp(s) =

1
2∆sπs

sin
( πs

∆s

)
+

1
2π2s2

(
cos

( πs

∆s

)
− 1

)
. (3.31)
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Figure 3.6 shows the filter kernel hb
ramp with the positions where this kernel is evaluated

using the suggested discretization scheme. For improved computational efficiency, the 1D
convolution in (3.25) is carried out using standard signal processing techniques, i.e., using
multiplication in frequency domain and using the fast-Fourier transform (FFT) and the
inverse FFT to convert between the domains.

The backprojection step of the reconstruction formula is here implemented by approxi-
mating the integral in equation (3.27) with a discrete sum according to the rectangular rule
for numerical integration. We furthermore use linear interpolation in s in order to obtain
for each projection angle the data sample at x · θ from the filtered parallel-beam projection
pF , which is required for reconstruction at x.
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Figure 3.7: Illustration of the numerical algorithm for reconstruction from discretized
2D parallel-beam data. (Left) Intermediate reconstruction results obtained by back-
projecting only data corresponding to (A) the first projection at θ = 0◦ and data
corresponding to (B) 5, (C) 10 and (D) 20 projections with projection angles that
are multiples of 36◦, 18◦ and 9◦, respectively. (Right) Final reconstruction result f e

obtained using all 360 projections in the grayscale window [0 HU, 40 HU].

The steps of the numerical algorithm presented in this section are illustrated on the
reconstruction of the Shepp-Logan phantom from its 2D parallel-beam data. Projection
data was simulated for 360 projection angles with ∆θ = 0.5◦ and using in each parallel-
beam projection 400 samples in s with ∆s = 0.5mm. Reconstruction was obtained on
a Cartesian grid in x and y with isotropic sampling ∆x = ∆y = 0.5mm. Intermediate
reconstruction results using only a subset of the parallel-beam projections are presented in
the left of Figure 3.7, whereas the final reconstruction result fe(x) is shown on the right
side of this figure.
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3.2 2D Fan-Beam Transform and Its Classical In-

version Formula

The considerations in the previous section provided a general introduction into the con-
cepts of analytical reconstruction theory. Most practical CT scanners used for 2D imaging,
however, do not acquire data in the parallel-beam geometry. Data acquisition happens with
measurement rays that occur in groups of fans on the image plane rather than in parallel
sets [47]. This described scenario will here be referred to as the 2D fan-beam geometry,
and image reconstruction in this geometry will be discussed below.

3.2.1 The 2D Fan-Beam Geometry

Diagnostic CT scanners may be used to acquire 1D projection data by sending X- rays from
the X-ray focal spot through the image plane; these rays pass the object and eventually
interact with an appropriately located X-ray detector [71, 47]. During the scan, X-ray source
and detector typically rotate as a single assembly around the object under investigation, so
that projections are acquired with the X-ray focal spot moving along a circular trajectory
on the image plane. The radius of this trajectory will be denoted using the symbol R
and since the source is necessarily located outside the object region Ωf , we have R > Ro.
Without loss of generality, it is here assumed that the circular trajectory is centered on the
image plane origin (0, 0)T and that the source is located on the positive x-axis at the start
of the scan. The function

a(λ) = (R cosλ,R sinλ)T (3.32)

then gives the source location during acquisition; the trajectory parameter λ corresponds
to the source polar angle and may take values λ ∈ [0, λmax] in our geometric set-up.

a

x

y

f

R

max

a

a 0

x

Figure 3.8: Illustration of the 2D fan-beam geometry, where a ray is described with
parameters λ and γ. The quantity λ ∈ [0, λmax] corresponds to the polar angle of the
ray source and γ denotes the ray fan-angle.

It is assumed that data acquisition is carried out with a curved detector [71], i.e., a
detector where each element has fixed distance D from the point a(λ). The rays that
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connect the source point with all detector elements form a fan and for each such fan, a
central ray can be identified, i.e., the ray that passes through the origin of the image plane
(0, 0)T. Each ray within one fan may then be addressed using the fan angle γ ∈ [−γm, γm]
that it describes with the central ray, where γ increases in the clockwise direction. The
quantity γm denotes the absolute value of the fan-angle of the ray that intersects with the
first or last element of the detector, respectively. We assume that the detector is large
enough so that all rays that diverge from the source and intersect the region Ωf also hit
the detector and this condition will be met if γm = asin(Ro/R).

For a description of the 2D fan-beam data let us furthermore introduce the two unit
vectors

eu(λ) = (− sinλ, cosλ)T (3.33)
ew(λ) = (cosλ, sinλ)T. (3.34)

Note that the vector eu(λ) is tangent to the source trajectory at a(λ) while ew(λ) gives the
direction from the origin (0, 0)T towards the source a(λ). The unit vector along the ray
described with parameters λ and γ is then given as

α(λ, γ) = sin γ eu(λ)− cos γ ew(λ). (3.35)

3.2.2 The 2D Fan-Beam Transform

According to the data model of section 2, measurements in the fan-beam geometry then
yields samples of the function

g(λ, γ) =

∞∫

0

f (a(λ) + tα(λ, γ)) dt. (3.36)

Function g will be referred to as fan-beam data from now on and fan-beam data at fixed λ
will be called a fan-beam projection. Due to the geometric assumptions introduced in the
previous section

g(λ, γ) = 0 for |γ| > γm (3.37)

so that all acquired fan-beam projections are non-truncated.
Since a(λ) is always outside the region Ωf , either the ray facing in direction α or the one

facing in direction −α will never intersect the object. Consequently, the limits of integration
in (3.36) can be modified to

g(λ, γ) =

∞∫

−∞
f (a(λ) + tα(λ, γ)) dt (3.38)

without changing the fan-beam data function. This modification allows us to establish a
link between samples of fan-beam data and 2D Radon data, as described below. A specific
selection of parameters λ and γ defines one specific ray, and thus also one specific line
L on the image plane. The unit vectors parallel and orthogonal to this line L are given,
respectively, as

θ⊥(λ, γ) = α(λ, γ) and θ(λ, γ) = cos γeu(λ) + sin γew(λ). (3.39)
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Following this geometric property and the definition in (3.38), the fan-beam data sample
g(λ, γ) thus coincides with the value of the 2D Radon transform Rf(θ(λ, γ), s(λ, γ)) with
the arguments given as

θ(λ, γ) = λ +
π

2
− γ and s(λ, γ) = a(λ) · θ(λ, γ) = R sin γ. (3.40)

source polar angle λ [°]

fa
n 

an
gl

e 
γ 

[°
]

−80 −80 −80

−40 −40 −40

0 0 0

40 40 40

80 80 80

10

10

50

50

50

90

90

90
13

0

13
0

13
0

17
0

17
0

17
0

21
0

21
0

0 30 60 90 120 150 180 210
−20

−15

−10

−5

0

5

10

15

20

Figure 3.9: Fan-beam data of the Shepp-Logan phantom for λ ∈ [0◦, 220◦] and γ ∈
[−20◦, 20◦], while using R = 30 cm. The dotted lines indicate for some locations in
the image the corresponding parallel-beam coordinate s (in mm) and the dashed lines
similarly the corresponding values of θ (in degrees).

Fan-beam values and values of the 2D Radon transform are thus directly related to each
other; the corresponding data functions p and g therefore possess similar properties, such
as 2π periodicity in the first argument. One important characteristic of fan-beam data,
which may be derived in a straight-forward way from the geometry defined in this section
is the property

g(λ, γ) = g(λ + π − 2γ,−γ) (3.41)

that describes the distribution of redundancies in the function g [46].
Visualization of fan-beam data may be achieved using a concept similar to that of

sinograms introduced in section 3.1.2. Values of g are mapped onto gray values and are
visualized in a 2D image based on the Cartesian alignment of coordinates λ and γ. More
specifically, a column of this 2D image corresponds to data at fixed λ, i.e., to one fan-beam
projection, whereas one row contains fan-beam data at fixed γ. Figure 3.9 illustrates fan-
beam data of the Shepp-Logan phantom for λ ∈ [0◦, 220◦], γ ∈ [−20◦, 20◦] and using the
scan radius R = 30 cm.

3.2.3 Classical Inversion Formula for the 2D Fan-Beam Trans-
form

The previous subsection demonstrated that measurements in the fan-beam geometry are
directly related to samples of the 2D Radon transform. Fan-beam image reconstruction
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may thus be achieved by a rather straight-forward application of techniques derived in
section 3.1.4. It can be shown that using the 2D Radon inversion formula for redundant
data (presented in section 3.1.5) and applying the change of variables (θ, s) → (λ, γ), which
has been defined in (3.40), directly leads to the following analytical inversion formula for
the 2D fan-beam geometry [4, 46]:

f(x) =

λmax∫

0

R

‖x− a(λ)‖2

π/2∫

−π/2

hramp (sin(γ∗(x)− γ)) cos γ m̃(λ, γ) g(λ, γ) dγ dλ. (3.42)

The quantity

γ∗(x) = atan
(

x · eu(λ)
R− x · ew(λ)

)
(3.43)

in this formula denotes the fan angle of the measurement ray that diverges from a(λ) and
contains x, the function hramp is the ramp filter kernel and m̃ is a redundancy weighting
function. Note that here and in the following, the superscript ∗ is used to denote a function
that depends on λ, without explicitly listing this argument.

The redundancy weight m̃ in (3.42) is similar to the function m in the 2D parallel-beam
geometry: it equalizes the contribution of every 2D Radon value contained in the set of
fan-beam data for the final reconstruction. Function m̃ needs to be smooth in γ [46], 2π-
periodic in λ and is assumed to be 0 at parameters λ for which no ray-integrals have been
measured. Equalization will then be achieved if m̃ satisfies the normalization condition

m̃(λ, γ) + m̃(λ + π − 2γ,−γ) = 1, (3.44)

which follows directly from the redundancy property (3.41) of the fan-beam data function.
Equation 3.42 will be referred to as the classical analytical fan-beam inversion formula

throughout this thesis. It has FBP structure and may be decomposed into the following
three steps:

Step 1 – Data Weighting: Fan-beam data are multiplied with the redundancy weight-
ing function and a cosine term to yield weighted fan-beam projections

gW (λ, γ) = m̃(λ, γ) cos γ g(λ, γ). (3.45)

Step 2 – 1D Filtering: The weighted fan-beam projections are filtered in γ using the
kernel of the ramp filter to obtain filtered projections

gF (λ, γ) =

γm∫

−γm

hramp(sin(γ − γ′))gW (λ, γ′)dγ′. (3.46)

Step 3 – 2D Weighted Backprojection: The function gF is backprojected onto the
image plane using a weighting factor that is inversely proportional to the square of
the distance between the source position a(λ) and the point x where reconstruction
is to be achieved to obtain

f(x) =

λmax∫

0

R

‖x− a(λ)‖2
gF (λ, γ∗(x)) dλ (3.47)

with the function γ∗ defined in (3.43).
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In order to obtain valid reconstruction of f at any point x ∈ Ωf using the classical
scheme described above, we require filtered fan-beam projections for a scan with at least
λmax = π + 2γm [46, 47], which is referred to as a short-scan. Note also that data filtering
at any λ can only be achieved if the corresponding projection is non-truncated, which is
guaranteed when g(λ, γ) is known over the interval γ ∈ [−γm, γm]. The redundancy weight
used for reconstruction can be selected somewhat flexibly within the constraints imposed
by the normalization and the smoothness conditions. One possible explicit espression for
function m̃ can, for instance, be given as 1

m̃(λ, γ) =





sin2
(

π
4 · λ

γthres+γ

)
if 0 ≤ λ < 2(γthres + γ),

1 if 2(γthres + γ) ≤ λ < π + 2γ,

sin2
(

π
4 · π+2γthres−λ

γthres+γ

)
if π + 2γ ≤ λ < π + 2γthres,

0 if π + 2γthres ≤ λ < 2π.

(3.48)

The weighting function defined in this equation gives a contribution of 1 to each ray integral
that is measured only once and nicely balances the contributions of redundant data samples,
using the property of the trigonometric functions, so that the weights corresponding to data
samples considered twice for reconstruction sum up to unity.
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Figure 3.10: Illustration of the Parker weighting function which is used to account
for data redundancies in fan-beam data g.

The parameter γthres in (3.48), which may here take values γm ≤ γthres ≤ π/2, provides
some control about the amount of data used for reconstruction. For γthres = γm, equation
(3.48) corresponds to the redundancy weighting function suggested by Parker [75], which
is widely used for fan-beam reconstruction from a short-scan trajectory, i.e., for λmax =
π + 2γm. Figure 3.10 illustrates the Parker weighting function for γm = 20◦. For the case
that fan-beam projections are acquired over an interval in λ exceeding a short-scan, the use
of γthres = (λmax−π)/2 was suggested [79], so that all known values of g receive a non-zero
contribution to the final reconstruction; the resulting weighting function will be referred to
as the generalized Parker weight from now on.

1Note that in the equation, we only define one period of the redundancy weighting function,
which is 2π periodic in λ.
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3.2.4 Numerical Reconstruction Algorithm

From the results of section 3.2.3, a numerical algorithm may be given for image reconstruc-
tion from fan-beam data in practical CT applications. CT data acquisition allows in general
the function g to be determined only at a finite number of sampling positions. Here it is
assumed that the polar angles λ of the source of two adjacent fan-beam projections differ by
the fixed increment ∆λ and that furthermore the rays within one fan-beam projection are
uniformly sampled in γ; the angular sample spacing between two adjacent rays is denoted
as ∆γ. This section presents a numerical algorithm to compute from this sampled fan-beam
data function an estimate of the object density. This estimate will be denoted as fe.
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Figure 3.11: Illustration of the numerical 2D fan-beam reconstruction algorithm.
(Left) Intermediate results obtained by backprojecting only (A) 1 (B) 5 (C) 10 or
(D) 20 filtered fan-beam projections, respectively, which are evenly distributed over
the known interval [0, 220◦]. (Right) Final reconstruction result f e obtained using
440 fan-beam projections, presented in the grayscale window [0 HU, 40 HU].

The numerical algorithm achieves data filtering by first modifying (3.46) using the
identity [46]

hramp (sin(γ∗(x)− γ)) = hramp

(
γ∗(x)− γ

γ∗(x)− γ
sin(γ∗(x)− γ))

)

=
(

γ∗(x)− γ

sin(γ∗(x)− γ)

)2

hramp(γ∗(x)− γ)

= h̃ramp(γ∗(x)− γ)

(3.49)

that can be derived using the scaling property of the ramp filter kernel:

hramp(as) =

∞∫

−∞
|σ|e2πiσas dσ =

∞∫

−∞

1
a2
|σ′|e2πiσ′s dσ′

=
1
a2

hramp(s)

(3.50)
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that holds for any a 6= 0. Equation (3.49) then enables us to express the data filtering
equation as a 1D convolution in γ of the weighted fan-beam data with the modified ramp
filter

hγ
ramp(γ) =

(
γ

sin γ

)2

hramp(γ) (3.51)

In our implementation, the function hramp(γ) in (3.51) was substituted with its band-
limited version using bandwidth 1/(2∆γ); see section 3.1.6 for details. The resulting filter
equation is discretized at the sampling positions k∆γ with k ∈ Z and 1D convolution is
again efficiently carried out by multiplication of the involved functions in frequency domain;
see again section 3.1.6. Backprojection is achieved by discretizing (3.47) and using linear
interpolation in γ to obtain in each filtered fan-beam projection the value at the required
sampling position γ∗(x).

The steps of the resulting numerical algorithm are illustrated by reconstruction of the
Shepp-Logan phantom. Fan-beam data of the phantom were simulated over a short-scan
of λ ∈ [0◦, 220◦) using ∆γ = 0.1◦, ∆λ = 0.5◦ and R = 300 mm. The estimate fe of the
object density was computed on an isotropic sampling grid on the image plane with ∆x =
∆y = 0.5mm. The left image in Figure 3.11 shows intermediate results of backprojecting
this filtered data into the image plane while using only 1, 5, 10 or 20 filtered projections
that are evenly distributed over the simulated interval in λ. The right side in this figure
displays the reconstruction result fe that was obtained using all 440 fan-beam projections
in a compressed grayscale window.



Chapter 4

Fan-Beam Reconstruction without
Backprojection Weight

4.1 Introduction

Filtered-backprojection is a common way to achieve image reconstruction in 2D X-ray CT,
see, for instance, the classical inversion methods for the 2D parallel beam geometry and 2D
fan beam geometry, as explained in sections 3.1.4 and 3.2.3, respectively.

This chapter addresses the issue of FBP image reconstruction from fan-beam data. Fan-
beam reconstruction may be carried out directly, by applying the FBP in the measurement
geometry, see chapter 3.2.3 or the methods in [7, 14, 46, 56, 66, 74], but also indirectly, by
first rebinning the 2D fan-beam data into the 2D parallel-beam geometry and then using a
2D parallel- beam reconstruction method to recover the object density function [10, 46, 73].

Both approaches, direct and indirect, have their pros and cons, and are currently in
use in medical CT scanners. One drawback of indirect approaches is that the rebinning
step comes with additional computational cost. Furthermore, rebinning requires in general
interpolation in order to yield 2D parallel-beam data with a sampling beneficial for the
application of a 2D parallel-beam reconstruction method; this interpolation is expected to
have negative impact on the spatial resolution achievable in the reconstruction result.

On the other hand, one disadvantage of the direct FBP approach is that the backpro-
jection step includes a weighting factor that varies with both, the source polar angle λ and
the point x where reconstruction is to be performed. This weighting factor is often seen
as a source of noise increase [96], and also makes backprojection in the direct approach
more computationally demanding and more difficult to code in hardware than the indirect
approach [10, 73].

This chapter is focussed on the direct FBP approach and presents a novel FBP formula
for image reconstruction from 2D fan-beam data collected over a full 2π scan, which is
derived from the alternative inversion formula for fan-beam data suggested by Noo et al.
[66]. Our novel formula operates directly in the fan-beam geometry, so that it does not
require any data rebinning, and it also comes along without the spatially varying weighting
factor during backprojection.

29
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4.2 Alternative Inversion Formula for the 2D Fan-

Beam Transform

In [66], Noo et al. suggested a direct fan-beam inversion formula that is different from the
classical approach introduced in section 3.2.3. Noo’s alternative formula is based on the
classical 2D parallel beam inversion method

f(x) =

π∫

0

pF (θ, θ · x) dθ with pF (θ, s) =

∞∫

−∞
hramp(s− s′)p(θ, s′) ds′ (4.1)

and derived using the following two concepts:

Concept 1 - Decomposition of the ramp filter hramp :

In Fourier domain, the ramp filter may be developed into

Fshramp(σ) = |σ| = σ signσ =
1
2π

(−i)signσ 2πiσ

=
1
2π
Fshhilb(σ)Fshder(σ)

(4.2)

where hder and hhilb denote the kernels of the differentiation operator and of the
Hilbert transform, respectively, which are given as

hder(s) =

∞∫

−∞
2πiσ e2πiσs dσ (4.3)

and

hhilb(s) =

∞∫

−∞
(−i) signσ e2πiσsdσ. (4.4)

Hence, ramp filtering of a 1D function may be alternatively achieved by applying
subsequently but in arbitrary order the following operations: data differentiation,
convolution with the kernel of the Hilbert transform and data weighting. The filtering
in (4.1) can thus be expressed as

pF (θ, s) =
1
2π

∂

∂s
pH(θ, s) (4.5)

with pH(θ, s) denoting the Hilbert transform of 2D parallel beam data in the param-
eter s:

pH(θ, s) =

∞∫

−∞
hhilb(s− s′)p(θ, s′) ds′. (4.6)

Hence, an alternative expression of the 2D parallel beam inversion formula (4.1) is
given as

f(x) =
1
2π

π∫

0

∂

∂s
pH(θ, s)

∣∣∣∣
s=x·θ

dθ. (4.7)
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Concept 2 - Hilbert transform in angular parameter γ :

Image reconstruction according to (4.7) requires values of the function pH , which
may be obtained according to (4.6). However, as shown in [66], samples of pH may
also be obtained directly in the fan-beam geometry, namely by using the convolution

pH(θ, a(λ) · θ) =

π∫

−π

hhilb(sin(θ − γ)) g(λ, γ) dγ. (4.8)

In order to proof the identity in (4.8), we use the fact that sin(θ−γ) = −α(λ, γ)·θ with
α(λ, γ) defined in (3.35), which follows directly from the theorems of trigonometric
functions, and develop the right hand side in (4.8) as

π∫

−π

hhilb(sin(θ − γ)) g(λ, γ) dγ =

π∫

−π

hhilb(−α(λ, γ) · θ) g(λ, γ) dγ

=

π∫

−π

hhilb(−α(λ, γ) · θ)
∞∫

0

f(a(λ) + tα(λ, γ)) dt dγ

=

π∫

−π

∞∫

0

t hhilb(−tα(λ, γ) · θ)f(a(λ) + tα(λ, γ)) dt dγ

=
∫∫

R2

hhilb((a(λ)− x) · θ)f(x) dx

=
∫∫

R2

∞∫

−∞
δ(s− x · θ) hhilb(a(λ) · θ − s)f(x) ds dx

=

∞∫

−∞
hhilb(a(λ) · θ − s) p(θ, s) ds = pH(θ, a(λ) · θ).

(4.9)

The step from line 2 to line 3 in this derivation involves the scaling property of the
Hilbert kernel, namely the identity t hhilb(ts) = hhilb(s) for t 6= 0, which can be
derived analog to the scheme in (3.50). Furthermore, to obtain line 4 from line 3,
we use the change of variable x = a(λ) + tα(λ, γ), which comes with a Jacobian that
cancels out the factor t in front of the expression of the Hilbert kernel function. Note
that the calculation of the value pH(θ, s) according to (4.8) requires a non-truncated
fan-beam projection with the source at polar angle λ that satisfies a(λ) · θ = s.
Geometrically, we thus require integral data associated to all rays that diverge from
a(λ) and that intersect Ωf . Requirement on the data is therefore different from that
of the conventional filter equation (4.6), which requires integral data to be known for
all lines that are orthogonal to θ and that intersect Ωf .

Using the two concepts listed above, Noo et al. derived an alternative direct FBP
formula for reconstruction from fan-beam data g(λ, γ). For a full-length derivation of this
formula, we direct the reader to [66]. Reconstruction from full-scan fan-beam data using
Noo’s alternative formula is achieved as

f(x) =
1
2π

2π∫

0

w(λ, x)
‖x− a(λ)‖

γm∫

−γm

hhilb(sin(γ∗(x)− γ)) ĝ(λ, γ) dγ dλ (4.10)
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In this equation

γ∗(x) = atan
u∗(x)

D
with u∗(x) =

D x · eu(λ)
R− x · ew(λ)

(4.11)

denotes again the fan-angle of the ray diverging from a(λ) and passing through x. To
understand the expression for γ∗(x) we use here, picture a linear detector, parallel to eu(λ)
and at distance D from the source. The quantity u∗(x) then describes the coordinate,
measured along eu(λ), where the ray through x intersects this detector, and the relation
between u∗(x) and D gives access to the fan-angle of this ray. Furthermore, the symbol ĝ
in (4.10) is defined as

ĝ(λ, γ) =
(

∂

∂λ
+

∂

∂γ

)
g(λ, γ) (4.12)

and it can be shown that ĝ(λ, γ) is the result of differentiating the fan-beam data with
respect to λ while fixing the ray direction [66].

Function w(λ, x) in (4.10) plays the same role as function m̃(λ, γ) in (3.42), namely to
allow for a proper, explicit handling of redundancies in the fan-beam data. In contrast with
(3.42) however, the redundancy weighting in (4.10) applies after the convolution and can
thus be carried out in the image domain as part of the backprojection step. This feature
allows a definition of the redundancy weight individually for every point x, which provides
increased flexibility in the way data redundancies can be handled. In particular, points that
are on the same backprojection ray can be assigned distinct weights without affecting the
FBP structure of the reconstruction, which is not possible with the classical FBP inversion
method presented in section 3.2.3.

As in the classical method, w(λ, x) must satisfy a normalization condition for (4.10)
to be valid: the total contribution to the final reconstruction of each line passing through
x must be unity. A common choice for the full-scan is w(λ, x) = 1/2 and this choice is
referred to as the uniform weighting approach in the following. However, other choices are
possible, as will be discussed in the next section.

4.3 Fan-Beam Reconstruction with No Backpro-

jection Weight

Consider the redundancy weighting function

w(λ, x) =
‖x− a(λ)‖
2R cos γ∗

(4.13)

as a candidate for reconstruction using the alternative fan-beam FBP formula (4.10). The
idea is to let the contribution of a given ray to the reconstruction of f(x) depend on
the Euclidean distance between x and the source position during the backprojection. As
will become clearer below, among all measured rays through x, the suggested weight gives
preference to the fan-beam rays emerging from the source positions that are most away from
x. This preference is accentuated with the distance of x from the origin. For reconstruction
at x = (0, 0)T, however, all rays through x are treated equally.

To show that (4.13) defines a valid weighting function, it needs to be demonstrated that
it normalizes the contribution from any line through any point x in Ωf to one. Consider
the reconstruction of f at such a point. Then, for any arbitrary source position a(λ), there
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Figure 4.1: Geometric illustrations of the redundantly measured line L. The line
integral corresponding to L is obtained at source parameters λ and λc. The absolute
value of the fan angle to the line L is identical in both views, λ and λc.

exists a complementary source parameter λc, such that x, a(λ) and a(λc) are collinear
and define a line L (see Figure 4.1). The integral along L is acquired twice, at source
parameters λ and λc, respectively. From equation (4.13) which defines the weight that each
measurement on L receives, and from the relation γ∗c = −γ∗ (see Figure 4.1), it can be
shown that

‖x− a(λ)‖
2R cos γ∗

+
‖x− a(λc)‖
2R cos γ∗c

=
‖x− a(λ)‖+ ‖x− a(λc)‖

2R cos γ∗

=
‖a(λc)− a(λ)‖

2R cos γ∗
= 1 .

(4.14)

The result in (4.14) proves that the weighting scheme in (4.13) achieves the required nor-
malization to unity of the contribution from each line through x. Hence, the function w
suggested in (4.13) defines a valid weighting scheme. Moreover, since w is proportional
to ‖a(λ) − x‖, it cancels out the backprojection weight 1/‖a(λ) − x‖ in the alternative
fan-beam FBP inversion formula (4.10). This means that the computationally costly step
of applying the backprojection weight in a direct FBP reconstruction can be avoided. In
compensation, the convolved fan-beam data just needs to be multiplied by 1/(2R cos γ)
prior to backprojection. Substituting the suggested weighting function (4.13) into (4.10)
yields the novel direct FBP formula for reconstruction from full-scan fan-beam data:

f(x) =
1

4πR

2π∫

0

gF (λ, γ∗) dλ (4.15)

where

gF (λ, γ) =
1

cos γ

γm∫

−γm

hhilb(sin(γ − γ′)) ĝ(λ, γ′) dγ′ (4.16)

with ĝ given by equation (4.12). This formula has no backprojection weight.
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4.4 Numerical Evaluation

This section presents a numerical evaluation of the suggested direct fan-beam FBP in-
version formula with no backprojection weight, which we refer to as the efficient formula
from now on. This evaluation is based on simulated fan-beam data and involves quanti-
tative and qualitative figures-of-merit, such as spatial resolution, signal-to-noise ratio and
computational efficiency.

More specifically, the performance of the efficient formula is compared to that of the
alternative fan-beam FBP formula (4.10) with uniform weights (namely, w(λ, x) = 1/2).
This selected candidate for comparison, which will be referred to as the uniform-weighting
formula, has been shown to yield better image quality than the classical fan-beam inversion
method [94].

Many geometric factors can affect image quality in fan-beam tomography. These factors
include the focal spot size, the anode angle, the size of detector elements, the type of X-ray
emission (pulse or continuous), and the source-to-origin distance. This evaluation is based
on fan-beam geometry parameters that are representative of current medical CT scanners;
these parameters are summarized in table 4.1.

Table 4.1: Parameters of the fan-beam geometry considered for numerical evaluation
of the reconstruction algorithm.

X-ray source
dimensions (width×height) 1.2 mm × 0.9mm
anode angle 7.0◦

X-ray emission continuous
Detector

# of pixels 672
pixel dimensions 1.4083 mm × 1.4083mm
detector offset 0.352075mm
source-to-detector distance D = 104 cm

Trajectory
radius of the circle scan R = 57 cm
# of projections 1160

4.4.1 Implementation Details

The two formulae under comparison were implemented using the same discretization rules.
The computation of ĝ(λ, α) in equation (4.12) was performed using the scheme described
by equation (46) in [69]. Data filtering in both, the efficient and the uniform-weighting
formula was achieved by using the identity

hhilb

(
sin(γ − γ′)

)
=

γ − γ′

sin(γ − γ′)
hhilb

(
γ − γ′

)
= hcurved

hilb

(
γ − γ′

)
(4.17)

with
hcurved

hilb (γ) =
γ

sin γ
hhilb(γ). (4.18)
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This identity allows the filtering operation required in each reconstruction formula to be
expressed as a 1D convolution and filtering can thus be carried out efficiently using FFTs, as
explained before. Furthermore, the kernel hhilb in (4.18) was substituted by a bandlimited
Hilbert kernel hb

hilb that involves rectangular apodization and bandwidth 1/(2∆γ). The
expression of hb

hilb(γ) is given as

hb
hilb(γ) =

b∫

−b

(−i)sign σ e2πiσγdγ =
1

πγ
(1− cos 2πbγ) =

1
πγ

(
1− cos

(
πγ

∆γ

))
(4.19)

Note that the discretization of the filter equation in both formulae at positions k∆γ with
k ∈ Z leads to a sampling where hb

hilb(m∆γ) = 0 for m = 2k because of the cosine term
in (4.19). The computation of a sample of gF thus involves only half of the samples of ĝ.
To circumvent this issue and obtain an improved numerical scheme [32], we discretize at
positions k∆γ +∆γ/2 with k ∈ Z, so that all sampled values of the discrete filter kernel are
non-zero [69]; see Figure 4.2. Note that doing so, we obtain the filtered fan-beam data on
a sampling grid which is shifted along coordinate γ by ∆γ/2 with respect to the sampling
grid of ĝ.
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Figure 4.2: Two distinct sampling schemes for the bandlimited Hilbert kernel hb
hilb

with rectangular bandlimitation. (Left) Sampling at locations k∆s with integer k,
(right) sampling at locations k∆s + ∆s/2. In each diagram, the gray curve corre-
sponds to the function hb

hilb and the black circles illustrate the used sampling positions.

Details on our implementation of the backprojection step are given in section 4.4.4.

4.4.2 Evaluation of Spatial Resolution

Predicting differences in spatial resolution performance between the efficient and the uniform-
weighting formulas is not straightforward. By omitting the distance-dependent backprojec-
tion weight, the efficient formula gives more weight to fan-beam rays for which the source is
further away from the point of interest x. Using the rule of magnification, we could there-
fore predict a decrease in spatial resolution compared to the uniform-weighting formula,
especially in regions far away from the origin of the image coordinate system. However,
the efficient formula also favors fan-beam data for which the discretization in λ, i.e., the
distance between two adjacent source positions, appears under a smaller angle. Hence, the
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low-pass effects of continuous X-ray exposure could be less prominent for the efficient for-
mula, and could overall make the efficient formula better in terms of resolution. Altogether,
argumentation can thus be given in favor of each reconstruction formula. To clarify the
issue, a thorough evaluation was performed of the two formulas in terms of spatial resolu-
tion by determining the point spread function (PSF) corresponding to each reconstruction
formula at various locations within the region Ωf .

Figure 4.3: Point spread function (PSF) obtained at position r = (0.5 cm, 0 cm)T

(left two images) and at position r = (24.5 cm, 0 cm)T (right two images). In each
image pair, the PSF corresponding to the uniform-weighting formula is on the left
side, while the PSF for the efficient formula is on the right side.

To obtain the PSF at a specific location r = (x, y)T, a cylindrical object with a tiny
circular base was placed at r. Then, we simulated fan-beam data of this object and achieved
from this data reconstruction on a fine Cartesian grid in x and y which was centered at
r. The cylindrical object is intended to be an approximation of the 2D Delta function
(Dirac impulse). Its radius was selected as 0.15mm, which is almost 10 times smaller than
the width of each detector pixel, and its attenuation coefficient was set to 12.2mm−1. A
ray passing through its center suffers an attenuation equivalent to the attenuation caused
by a homogeneous water cylinder of 200mm diameter. Due to discretization effects, the
reconstruction of the cylindrical object looks like a blurred spot rather than a disk with a
perfectly delineated boundary and this spot is here used as the estimate of the PSF at r.
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Figure 4.4: Mean value and standard deviation of FWHMs obtained from 256 radial
profiles through the PSF. These quantities are shown as a function of d, the distance
from the PSF to the origin. (left) Using the uniform-weighting approach. (center)
Using the efficient formula. (right) Ratio of the FWHMs (‘uniform-weighting’ over
‘efficient’).

Let us denote by PSF data the fan-beam data of the tiny cylindrical object. To simulate
PSF data, all finite-size geometric entities were represented by several points rather than



4.4. Numerical Evaluation 37

just by their midpoint. In other words, fan-beam data simulation was carried out in an
upsampled scenario and the resulting data was subsequently binned to obtain PSF data
corresponding to the desired sampling pattern and geometric dimensions. In the upsampling
scenario, each detector pixel was divided into 14× 14 square pieces uniformly covering its
area, and similarly, the focal spot of the X-ray source was divided into a grid of 3 × 3
subspots. Furthermore, to account for the effect of continuous X-ray emission during data
acquisition, 5 projections were simulated for each fan-beam projection, using 5 different
positions for the focus-detector assembly. These positions were uniformly distributed over
2π/1160 around the nominal position for the desired projection. In total, 8820 line integrals
were computed to simulate each PSF data sample, and binning proceeded by first converting
these line integrals into attenuation factors.

The PSF estimate at an arbitrary position of interest r was obtained on a Cartesian
grid of 64 × 64 square pixels of side 0.04mm. For a detailed analysis, profiles of the PSF
were extracted along half-lines, with each half-line starting at r and describing some angle
ω with the x-axis. Let p be the distance from r along each half-line; typically, the extracted
profiles are monotonously decreasing functions of p with maximum value at p = 0 i.e.,
at point r. Hence, a coordinate phalf may be defined where half the maximum value is
reached. This coordinate, phalf , characterizes the spatial extent of the PSF as a function
of angle ω and we call 2phalf the full-width at half maximum (FWHM) of the PSF in the
direction given by ω. If the PSF were a radial function, the FWHM would be independent
of ω. However, this is not the case in the presented evaluations. Hence, the FWHM was
computed for 256 profiles corresponding to ω values uniformly sampled over the interval
[0, 2π). The mean value and the standard deviation of the obtained 256 FWHMs were then
used as a characterization of the achievable spatial resolution at r.

Due to the symmetry of the full-scan reconstruction problem, the spatial resolution
is essentially a radial function i.e., a function of the distance d from the origin only. To
compare the resolution given by the two formulas over the complete object region Ωf , PSFs
were generated and evaluated as explained above at 25 different distances d, starting at
d = 0.5 cm and incrementing in steps of ∆d = 1.0 cm. For convenience, all PSFs were
located on the positive side of the x-axis.

Figure 4.3 shows the PSFs obtained with the uniform-weighting formula and the efficient
formula at two locations, d = 0.5 cm and d = 24.5 cm. Variations in the PSF shape across
Ωf are presented in Figure 4.4, using the FWHM concept. This figure also includes a plot
of the ratio between the FWHM given by each formula at each sampled ω; both, mean and
standard deviation of this ratio are displayed.

The results show that both formulas yield a very similar resolution across the imaged
region. Near the origin, a nearly radial PSF of FWHM smaller than 1.2mm is obtained.
As d increases, the mean of the FWHMs continuously increases to reach a value of approx-
imately 1.9mm at the edge of Ωf . Furthermore, the standard deviation of the FWHMs
over all profile angles gets larger, indicating a decrease in PSF symmetry. This decrease
appears slightly worse when using the uniform-weighting formula. The ratio between the
FWHMs shows there is less than 2% difference in resolution between the uniform-weighting
formula and the efficient formula. This difference is in favor of the efficient formula in
region d < 200 mm, and in favor of the uniform-weighting formula in region d > 200mm.
In length unit, the worst difference in FWHM is 0.025mm.
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4.4.3 Evaluation of Image Noise

Discretization errors and noise propagation were investigated using reconstructions from
noisy fan-beam data of a slice through the FORBILD thorax phantom. For this investi-
gation, the size of the phantom was enlarged using a bigger ellipse for the body contour;
the new ellipse was of size 49 cm by 28 cm, and was centered at (0 cm, 2 cm)T. The recon-
structions were performed from 800 distinct noise realizations, each on a Cartesian grid of
square pixels of side 0.75 mm. Thus, 800 images were obtained from each reconstruction
formula. Variations in the intensities of each pixel across these 800 images give statistics
on the uncertainty that can be expected in the reconstruction of the real, sought density
function at each pixel location, due to data noise.

Data simulation for each noise realization was performed as in section 4.4.2, using
upsampling and then binning to model all geometric factors. The upsampling parameters
were the same as in section 4.4.2, except for the detector pixels which were represented each
by a Cartesian grid of 3×3 subpixels (instead of 14×14), to speed up the simulation. Poisson
noise was added to the noise-free fan-beam data after binning to the desired dimensions,
assuming an emission of 150, 000 photons per ray. See [89] for a nice description about the
noise model for CT measurements.

Figure 4.5 (left) shows the mean of the 800 reconstructions obtained from each formula.
These means are displayed using a highly compressed grayscale to exhibit the discretization
errors. Compared to the ground-truth, which is also displayed in Figure 4.5, we observe
that both formulas perform very well. However, the uniform-weighting formula yields a bit
more discretization errors away from the origin (see the regions within the dashed circles).

Figure 4.5 (right) shows the reconstructions obtained from each formula when using
only a single set of noisy data. In each figure, differences in noise level that increase with
the distance from the origin can be observed between the two reconstructions. To analyze
further these differences, we computed on a pixelwise basis the standard deviation across the
800 reconstructions obtained from each formula. Figure 4.6 shows the resulting standard
deviation images, and Figure 4.7 shows the ratio between these images, again computed
pixelwise. These figures show that each formula delivers a similar standard deviation near
the image plane origin, but away from this origin the efficient formula performs better.
At a distance of 15 cm from the origin, reconstructions from the uniform-weighting formula
show a 5% higher noise level compared to the efficient formula and this percentage increases
rapidly with the distance from the origin; the percentage is 20% at 20 cm and as high as 40%
at 25 cm. Hence, the efficient formula is more robust to noise than the uniform-weighting
formula, and the difference in robustness is not negligible off-center.

Technically, noise properties should be compared at equal spatial resolution, which is
not achieved according to the results in section 4.4.2. However, these results show that
resolution, if not equal, is at least very similar, so much that the gain observed in standard
deviation may not be the cause of differences in resolution. In particular, note that if the
difference in resolution was thought to be the cause of the difference in standard deviation,
than this latter difference should follow the shape of the PSF plot in the right side of
Figure 4.4. Nevertheless, we have investigated resolution matching through a modeling
of the PSFs as Gaussian functions. As expected, this investigation yield no measurable
difference in standard deviation.
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Figure 4.5: Reconstructions of the slice z = 0mm through the FORBILD thorax
phantom with enlarged body contour. (left) Comparison between the ground truth
and the mean over 800 reconstructions obtained from distinct noise realizations;
grayscale: [−20 HU, 20 HU]. (right) Comparison between the ground truth and the
reconstruction obtained from a single noisy data set; grayscale: [−110 HU, 100 HU].
In each case, left and right, the top image is the ground truth, the middle image is
the result from the uniform-weighting formula, and the bottom image is the result
from the efficient formula. The three dashed circles in the middle image of the left
column indicate regions where the reconstruction with the uniform-weighting formula
exhibits slight differences in discretization errors.

4.4.4 Evaluation of Computational Efficiency

The efficiency of the two reconstruction formulas was evaluated using direct counting of the
number of required additions, multiplications and divisions, as well as using measurements
of execution times on three different systems. We concentrated this evaluation on the
backprojection step since this step is typically the most demanding one, and since the
significant difference between the two reconstruction formulas lies in the backprojection
step.

Clearly, any evaluation of efficiency depends on the amount of sophistication attached to
the implementation of the reconstruction formulas. For example, a direct implementation
of the uniform-weighting formula based on (4.10) is bound to be much slower than a direct
implementation of the efficient formula because the backprojection weight in (4.10) requires
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Figure 4.6: Standard-deviation images obtained from reconstructions of the FOR-
BILD thorax phantom with enlarged body contour; 800 distinct Poisson noise real-
izations were considered with 150, 000 photons per ray. (left) Result for the uniform-
weighting formula. (right) Result for the efficient formula.
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Figure 4.7: Close inspection of the standard-deviation images in Figure 4.6. (left)
Noise behavior comparison using pixel-wise computation of the ratio between the
standard deviation images (‘uniform-weighting’ over ‘efficient’). (right) Profile along
the line y = 0 mm of the ratio image shown to the left.

the computation of a square root for each source position for each pixel. We aimed at a
deeper comparison and decided to use the following relation in the implementation of the
uniform-weighting formula [69]:

‖a(λ)− x‖ =
R− x cosλ− y sinλ

cos γ∗
. (4.20)

Using this relation gives a much more efficient implementation of the uniform-weighting
formula as the square root is avoided and the cos γ∗ factor can be taken care of prior to
backprojection by just multiplying the filtered data by cos γ.

Now, note that a direct implementation of both formulas requires the computation
of an inverse tangent to obtain γ∗ from u∗ in (4.11). When using (4.20), this requirement
largely dominates the effort for the backprojection weight in the uniform-weighting formula,
so that little difference could be observed between the two reconstruction formulas. This
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issue was circumvented by resampling the filtered data on a fine grid in u = tan γ prior
to backprojection. This resampling not only eliminates the need to compute the inverse
tangent but also enables us to access data during backprojection using nearest-neighbor
interpolation rather than the more costly linear interpolation.

Input: Filtered data: gF (λ, γ)
Output: Reconstruction: f(x)
g1(λ, γ) = cos γ gF (λ, γ) ;1

g2(λ, u) = g1(λ, tan−1(u/D)) ;2

foreach Projection λ do3

T1 = ∆x sin λ ∗ (D/∆u);4

T2 = ∆x cosλ;5

foreach Row in the image y do6

Initialize NUM , DEN ;7

foreach Column in the image x do8

if (x,y) ∈ ROI then9

W = 1/DEN ;10

û = NUM ∗ W ;11

Uidx = û + U0 ;12

f(x, y)+ = g2(λ, Uidx) ∗ W ;13

end14

NUM = NUM − T1;15

DEN = DEN − T2;16

end17

end18

end19

Input: Filtered data: gF (λ, γ)
Output: Reconstruction: f(x)
g1(λ, γ) = gF (λ, γ)/ cos γ;0.1

g2(λ, u) = g1(λ, tan−1(u/D)) ;0.2

foreach Projection λ do0.3

T1 = ∆x sin λ ∗ (D/∆u);0.4

T2 = ∆x cosλ;0.5

foreach Row in the image y do0.6

Initialize NUM , DEN ;0.7

foreach Column in the image x do0.8

if (x,y) ∈ ROI then0.9

û = NUM/DEN ;0.10

Uidx = û + U0 ;0.11

f(x, y)+ = g2(λ, Uidx) ;0.12

end0.13

NUM = NUM − T1;0.14

DEN = DEN − T2;0.15

end0.16

end0.17

end0.18

Figure 4.8: Pseudo-code for the backprojection step corresponding to (left) the
uniform-weighting formula and (right) the efficient formula. The resampled data
g2(λ, u) is defined with a sampling distance ∆u and the quantity û = u∗/∆u gives
the detector coordinate where x is projected to, measured in multiples of ∆u. The
quantity NUM is the numerator of u∗ in (4.11), divided by ∆u; DEN stands for
the denominator in (4.11). The increments that NUM and DEN experience when
incrementing x at fixed y are defined by T1 and T2. Initialization of NUM and DEN
refers to their calculation from the current value of y and the first sampled value in
x. Finally, note that U0 denotes in pixel units the location where the origin projects
to, so that Uidx gives the index of the sample closest to û.

A sketch of our implementation of the two reconstruction formulas is given in Figure 4.8.
In addition to avoiding the square root and the inverse tangent, these sketches also show
that we aimed at a minimization of the number of operations within the most inner loop,
as this number has major impact on computation time. For the uniform-weighting formula,
1 division (line 10), 2 multiplications (lines 11 and 13) and 4 additions (lines 12, 13, 15
and 16) are required1. For the efficient formula, 1 division (line 0.10) and 4 additions (lines
0.11, 0.12, 0.14, 0.15) are required. Hence, in terms of operations, there is a gain of two
multiplications out of 7 operations total in favor of the efficient formula.

How the gain observed in the number of operations converts into actual benefits on real
systems is not trivial, as it highly depends on the system architecture, on the status of the

1The division plus the two multiplications could be replaced by two divisions, but the outcome
was slower on the systems we used.
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system at initialization time, on the compiler and on internal optimizations transparent to
the software developer. For illustration, a C-implementation of both formulas was tested on
three different platforms, called Vanda, Hailfire, and Anakin. These platforms all operated
under Linux, and we compiled each code separately on each of them using the C compiler
of the GNU library (gcc) while enabling code optimization using the compiler option -O4.
After compilation, the code was executed 20 times for reconstruction on a Cartesian grid
of 512 × 512 square pixels of side 1 mm, assuming a centered circular object region Ωf

and a water cylinder object of radius 24 cm. The mean CPU time of the 20 executions
was recorded on each of the 3 systems, and is presented in table (4.4.4). Not surprisingly,
significant differences were observed from one platform to the other, with the global gain
in favor of the efficient formula being as high as 43% on Anakin. Note that Vanda has a
32-bit Intel Pentium 4 CPU with 3.40 GHz, 1 MB cache, and 2 GB RAM; Hailfire has a
64-bit AMD Opteron CPU with 2.00 GHz, 1 MB cache, and 7GB RAM; and Anakin has
a 64-bit Intel Pentium 4 CPU with 3.30 GHz, 2 MB cache, and 4 GB RAM.results

Table 4.2: Execution times for the two algorithms (’unif.’ and ’effic.’ denote the
uniform-weighting and the efficient formula, respectively) on 3 different systems as
absolute values (in seconds) and as a ratio (uniform-weighting over efficient).

Filtering Backprojection Total
unif. effic. ratio unif. effic. ratio unif. effic. ratio

Vanda 0.711 0.723 98.3% 4.483 3.873 115.7% 5.194 4.596 113.0%
Hailfire 0.655 0.661 99.1% 3.394 2.842 119.4% 4.048 3.503 115.5%
Anakin 0.707 0.713 99.2% 6.447 3.371 191.3% 7.154 4.084 175.2%
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Figure 4.9: Fan-beam data g(λ, γ) with λ ∈ [0, 2π), γ ∈ [−γm, γm] and γm = 25◦,
acquired from the QRM Antropomorphic Cardio CT Phantom using the commercially
available Siemens SOMATOM Sensation 64 CT scanner.
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4.5 Reconstruction from Real CT Data

This section demonstrates that the direct fan-beam FBP inversion method without back-
projection weight, which has been introduced in section 4.3, can be readily applied for 2D
image reconstruction on existing CT scanners. For this demonstration, we collected fan-
beam data of a physical phantom using the commercially available Siemens SOMATOM
Sensation 64 CT scanner [5], which is currently in use in the clinical environment.
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Figure 4.10: Reconstruction of the QRM phantom from the fan-beam data presented
in Figure 4.9, presented in the grayscale window [−100 HU, 150 HU]. The reconstruc-
tions were obtained using (top) the uniform weighting formula and (bottom) the
efficient formula. Image noise is estiamted using the two indicated square regions
in each image, which are entirely located in the homogeneous water regions. The
numers in each square correspond to the standard deviations of the reconstructed
values within the corresponding region, in units of the HU scale.

The object used during this evaluation was the QRM Antropomorphic Cardio CT Phan-
tom [1]. The QRM phantom has been designed to approximately represent the structure
of a human thorax; it contains artificial lungs, a spine, soft tissue parts and furthermore a
cardiac insert that consists of various cylindrical structures. The maximum width of this
phantom is 15 cm, but for the scan, two cylindrical objects of the density of water were
attached to the phantom sides in order to represent the arms. The scanned region of the
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QRM phantom including these two arm extensions fitted into a circular region of radius
Ro = 24 cm.

Fan-beam data acquisition was carried out for a full 2π-scan and according to the geome-
try parameters of the Siemens SOMATOM Sensation 64 CT scanner, which are summarized
in [5]. The used scanning protocol involved a bowtie-filter [47] that was designed for a water-
cylinder of radius 15 cm. Furthermore, the X-ray tube current was set to 25 mAs, which
yielded a fairly low dose to the scanned object and consequently a high amount of noise in
the fan-beam projections. See Figure 4.9 for an illustration of the acquired fan-beam data
g(λ, γ).

Image reconstruction from this fan-beam data was carried out on a Cartesian sampling
grid in x and y with sample spacing ∆x = ∆y = 0.5mm using the uniform-weighting
and the efficient formula. The reconstruction results, which are illustrated in Figure 4.10,
demonstrate that overall, both methods are fairly robust with respect to data noise and
to other physical effects not consistent with the data model intrinsically assumed by the
reconstruction formulae.
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Figure 4.11: Illustration of the pixel-wise standard-deviation across the reconstructed
values obtained from 100 fan-beam data sets of the QRM phantom. (Left) The
efficient formula, (right) the uniform-weighting formula.

For a closer investigation of the noise level of the results in Figure 4.10, we defined
two regions of square shape and side-length 50mm that are both located entirely inside
the regions of the phantom that represent the arms. These regions are thus about 200mm
away from the origin of the image plane and they comprise only homogeneous parts of
the phantom. Because of noise in the fan-beam data, however, the estimates of f in these
regions are not homogeneous, but rather distributed around the true density. The spatial
standard deviation of the density values reconstructed with the efficient formula are 30.1
and 27.5 units on the HU scale in the left and right region, respectively; see Figure 4.10.
The standard deviations achievable with the uniform-weighting formula measure 34.5 and
31.1 units on the HU scale, which corresponds to a noise increase of about 10% to 15%
compared to the results of efficient formula.

For a more thorough investigation of image noise, we acquired 100 sets of fan-beam
data of the QRM phantom using the experimental set-up described above and followed the
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Figure 4.12: Comparison of noise propagation in the uniform-weighting and the ef-
ficient formula. (Top) The ratio (uniform-weighting over efficient) of the standard
deviation images illustrated in Figure 4.11 on a pixel by pixel basis. The white iso-
curves illustrate the positions at which this ratio achieves values of 101%, 104%,
110%, 120% and 130%. (Bottom) Profile along the x-axis of this ratio of standard-
deviations.

evaluation scheme of section 4.4.3. Obviously, each fan-beam data set contains a distinct
realization of data noise so that reconstruction from these data sets yields 100 estimates
of object density for each reconstruction method. The standard deviation on a pixel-
wise basis across the 100 estimates obtained with the efficient formula are presented in
the standard-deviation image on the left side of Figure 4.11. The result obtained for the
uniform-weighting formula is presented in the right side of this figure. To emphasize the
differences in noise propagation for the two methods, the ratio of the two standard-deviation
images (uniform-weighting over efficient) was computed on a pixel-wise basis. This ratio is
presented for the entire region Ωf in the top of Figure 4.12, while the bottom of Figure 4.12
shows the profile of this ratio along the x-axis. These results illustrate that the two formu-
lae under comparison behave similarly close to the image plane origin and that the efficient
formula outperforms the uniform weighting formula in terms of image noise for increasing
distance from this origin. The maximum gain in noise is about 45% and is obtained close
to the edge of the region Ωf . The differences in spatial resolution in the reconstructions ob-
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tained with the two formulae under comparison, however, are not significant, as illustrated
in Figure 4.13.
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Figure 4.13: Comparison of spatial resolution in the real-data reconstruction. The
top row shows in a grayscale window of [−100 HU, 150 HU] the mean of the recon-
structions from the 100 noisy fan-beam data sets for (left) the efficient formula and
(right) the uniform-weighting formula. (Bottom) Profile through these mean recon-
structions along the x-axis. The black curve shows the result of the efficient formula
(in HU), the dashed, red curve the difference of the reconstructed values between the
two formulae under comparison (a value of 0 means that there is no difference).

4.6 Discussion and Conclusions

In this chapter, we developed a novel direct FBP formula for full-scan fan-beam recon-
struction with no backprojection weight. This formula was derived from the alternative
fan-beam FBP inversion formula of Noo et al. [66]. We then evaluated the performance of
our novel formula against the use of Noo’s formula with uniform weighting of data redun-
dancy. This evaluation was carried out using simulated fan-beam data but also data that
has been acquired with a commercially-available diagnostic CT scanner.

First, a gain in terms of computation time was observed for our novel formula. In a
software implementation this gain varied from 14% to 47% in backprojection effort, de-
pending on the system used, with no significant difference in filtering time. A gain may
also be expected in a hardware implementation, but quantification of this effect was not
performed.

We then studied in high details various aspects of image quality achievable with our no-
backprojection-weight formula from simulated data. We observed a gain in noise properties
compared to Noo’s formula: the standard deviation on the reconstructed values was reduced
by a factor that rapidly increases from 0% at the origin of the image plane to 40% at the
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edge of the region Ωf ; this improvement may be significant for large patients. On the other
hand, spatial resolution and discretization errors appeared for both formulae very similar
across the object support region Ωf .

We also investigated image reconstruction from data collected with a clinical CT scanner
and demonstrated that our novel formula is robust with respect to physical effects not
contained in the underlying ray-integral data model. Moreover, improvements in image
noise were observed compared to the uniform-weighting formula that are quantitatively
almost identical to those determined previously, in the simulation studies. This advantage
makes our formula an attractive candidate for reconstruction in 2D imaging applications
on diagnostic CT scanners.

Note finally that the novel formula has not been compared against the classical fan-beam
FBP method [46], which was described in section 3.2.3. However, a superior performance
may be anticipated, both in computation time and in image quality. The gain in computa-
tion time is straightforward since our formula does not require any backprojection weight,
while the effort in data filtering is essentially the same. For the gain in image quality,
we refer the reader to [94], which shows that the classical formula is less robust to data
noise and discretization errors than the uniform-weighting formula, which we compared the
novel formula to. To achieve this superiority in image quality, it may however be needed
to compute ĝ(λ, γ) in equation (4.12) using the approach suggested in [94] rather than our
discretization scheme.
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Chapter 5

General Theory for Image
Reconstruction in Three
Dimensions

This chapter constitutes the beginning of part two of this thesis that is focussed on image
reconstruction in the 3D scenario, i.e., on the reconstruction of 3D entities. The space
where these entities are defined will be called the image volume in the following. To
address locations in the image volume, a Cartesian, right-handed x-y-z coordinate system
is introduced; an arbitrary position in the image volume may then be specified with the
coordinate vector x = (x, y, z)T.

The spatial distribution of object density is described with the function f(x) ∈ R. It
is assumed that the object under investigation is entirely contained inside a specific region
within the image volume and that an estimate of the convex hull of this region is known.
This convex hull will be denoted using the symbol Ωf and consequently,

f(x) = 0 for all x /∈ Ωf . (5.1)

5.1 3D Radon Transform and Its Inversion

The following briefly summarizes the theoretical background of the 3D Radon transform.
Note that the concepts described in this review section will not necessarily all be involved
in our original contributions; these concepts are, however, a prerequisite for a thorough
understanding of the problem of 3D image reconstruction in CT that is addressed in the
following chapters.

Generally spoken, the Radon transform maps a function defined in Rn onto its integrals
on hyperplanes, i.e., on entities of dimension n− 1 [76, 19] (recall for instance that the 2D
Radon operator discussed in chapter 3 yields line integrals of the function to which it is
applied). Consequently, the Radon transform in 3D describes the mapping of a function
f(x) onto its plane integrals.

5.1.1 3D Radon Transform

Let Π(θ, s) denote an arbitrary plane in the image volume. This plane is described by the
unit vector θ ∈ S2 that is normal to the plane and by the signed distance s ∈ R of the

49
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plane from the origin (0, 0, 0)T, where s is measured along direction θ. The plane Π(θ, s)
will also be referred to as a Radon plane in the following and may be defined as

Π(θ, s) := {x |x · θ = s} . (5.2)

Note that the vector θ may be expressed in terms of its polar and azimuthal angles ϕ and
θ, respectively, as

θ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ)T. (5.3)

See Figure 5.1 for an illustration of one example Radon plane and the geometric entities
associated with it.

Radon plane

z

x

y

s

Figure 5.1: Illustration of the Radon plane Π(θ, s). The unit vector θ, which is normal
to this plane, has polar angle ϕ and azimuthal angle θ. The quantity s describes the
signed distance of the Radon plane from the origin of the image volume.

The 3D Radon transform of a function f can then be defined as

Rf(θ, s) =
∫∫∫

x∈Π(θ,s)

f(x) dx =
∫∫∫

R3

δ(x · θ − s)f(x) dx. (5.4)

In words, the operator R yields plane integrals of the function f to which it is applied, in
a way that the value Rf(θ, s) corresponds to the integral of f on the plane Π(θ, s).

Visualization of the 3D function Rf is more difficult than that of its 2D equivalent,
because now the Radon data depends on three free parameters (here denoted as ϕ, θ and
s). One option to present 3D Radon data is given in Figure 5.2: the 3D image in this figure1

is based on the Cartesian x-y-z coordinate system and encodes values of the function Rf
using a specific color mapping within the image; the arrangement of values in this 3D
domain (the 3D Radon domain) is such that the value Rf(θ, s) is assigned to the point
with coordinates x = s θ.

1The 3D Radon data shown in Figure 5.2 is obtained from the 3D Shepp- Logan head phantom,
which was introduced in [46] as a generalization of the 2D phantom that we have used throughout
chapter 3.
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Figure 5.2: 3D Radon data of the 3D Shepp-Logan phantom. Note that the value at
the origin of the presented 3D Radon domain is undefined.

5.1.2 Analytical 3D Radon Inversion Formula

We now present a derivation of an analytical formula to invert the 3D Radon transform,
i.e., to recover a function f from its 3D Radon data Rf . This derivation is based on the
3D Fourier slice theorem [46]

FsRf(θ, σ) = Fxf(σθ), (5.5)

where the Fourier transforms on both sides of this equation are given as

FsRf(θ, σ) =

∞∫

−∞
Rf(θ, s)e−2πiσs ds and Fxf(ξ) =

∫∫∫

R3

f(x)e−2πiξ·x dx, (5.6)

respectively. Equation (5.5) states that the 1D Fourier transform in s of 3D Radon data at
fixed θ is identical to the profile along θ through the 3D Fourier transform of f . This relation
is obtained by using the definitions (5.4) and (5.6) together with (5.5) and developing

FsRf(θ, σ) =

∞∫

−∞
Rf(θ, s)e−2πiσs ds

=

∞∫

−∞

∫∫∫

R3

f(x)δ(x · θ − s)e−2πiσs dx ds

=
∫∫∫

R3

f(x)e−2πiσ θ·x dx = Fxf(σ θ).

(5.7)

An analytical inversion formula for the 3D Radon transform may then be given by
expressing the object as

f(x) =
∫∫∫

R3

Fxf(ξ)e2πi ξ·x dξ (5.8)
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and changing variables from Cartesian to spherical coordinates ξ = σ θ, where θ ∈ S2 and
σ ∈ R. This change of variable has Jacobian J(θ, σ) = σ2/2 and transforms (5.8) into

f(x) =
1
2

∫∫

S2

∞∫

−∞
σ2Fxf(σθ)e2πi σθ·x dσ dθ. (5.9)

Note that the factor 1/2 accounts for the fact that the integration over σ and θ considers
every sample in ξ twice and therefore yields twice the quantity defined in (5.8). Inserting
(5.5) into (5.9) yields the analytic 3D Radon inversion formula

f(x) =
1
2

∫∫

S2

∞∫

−∞
σ2FsRf(θ, σ)e2πi σθ·x dσ dθ (5.10)

from which the following two-step scheme for image reconstruction from 3D Radon data
Rf can be given:

Step 1 - 1D Filtering: 3D Radon data at fixed θ is filtered in s to yield the function

pF (θ, s) =

∞∫

−∞
Fsh1(σ)FsRf(θ, σ)e2πiσs dσ, (5.11)

with the filter kernel h1 defined as

Fsh1(σ) = σ2 (5.12)

Note that filtering according to (5.11) may be achieved using either of the two fol-
lowing approaches:

• Filtering with the ramp filter hramp: Since Fsh1(σ) = (Fshramp(σ))2, filtering
can be achieved by the two consecutive convolutions

pF (θ, s) =

∞∫

−∞
hramp(s− s′)

∞∫

−∞
hramp(s′ − s′′)Rf(θ, s′′) ds′′ ds′. (5.13)

• Filtering with data differentiation: In Fourier domain, the operator of the
second-derivative is given as −4π2σ2 = −4π2Fsh1(σ), so that data filtering
can also be achieved as

pF (θ, s) = − 1
4π2

(
∂2

∂s2
Rf

)
(θ, s). (5.14)

Step 2 - Backprojection: The function f is recovered by backprojecting filtered 3D
Radon data into the image volume according to

f(x) =
1
2

∫∫

S2

pF (θ, θ · x) dθ. (5.15)
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Note that the convolution described in (5.13) corresponds to a global filtering operation
and requiresRf to be known over the entire support of s. Filtering using data differentiation
according to (5.14), in contrast, is a local operation which requires only knowledge of values
ofRf in a neighborhood of the sample s at which pF is desired. The latter filtering approach
is thus preferable for practical implementation, and substituting (5.14) into (5.15) yields
the well-known classical analytical 3D Radon inversion formula [46]:

f(x) = − 1
8π2

∫∫

S2

(
∂2

∂s2
Rf

)
(θ, s)

∣∣∣∣
s=x·θ

dθ. (5.16)

Equation (5.16) describes a stable analytical way of recovering the function f from its
3D Radon data; a practical and efficient algorithmic implementation of this formula has
been suggested by [58]. Note that the reconstruction at x requires filtered 3D Radon data
for all θ ∈ S2, using for each θ the sample of pF at (θ, x · θ). Geometrically that means that
image reconstruction at an arbitrary point x according to (5.16) requires the values of Rf
for all Radon planes through a neighborhood of x. In other words, reconstruction of f(x)
based on equation (5.16) thus yields a valid result if the function (∂2/∂s2)Rf is known over
the entire surface of the smallest sphere in 3D Radon domain that contains the origin and
the point x.

5.2 Image Reconstruction in the Cone-Beam Ge-

ometry

In the following, we address the problem of 3D image reconstruction from 2D projections
acquired in the geometry of state-of-the-art medical C-arm systems or multi-row diagnostic
CT scanners.

5.2.1 General Cone-beam Acquisition Geometry

According to the model described in chapter 2, each 2D projection image acquired on X-ray
CT systems provides access to integral values of the object density function along the rays
that connect the elements of the 2D detector to the corresponding X-ray source point; each
of these sets of rays thus forms geometrically a cone-beam (CB) in the image volume.

Here and in the following, we assume that projection data is acquired with the X-
ray source point moving along a connected curve a(λ) in space, which we will call the
source trajectory. The quantity λ corresponds to the curve parameter and is restricted to
λ ∈ [λmin, λmax]. We assume that the source trajectory does not intersect with the convex
region Ωf that encloses the object.

X-ray measurements then yield samples of the function

g(λ, α) =

∞∫

0

f(a(λ) + tα) dt, (5.17)

where α ∈ S2 is used to describe the unit direction of the measurement ray. Note that (5.17)
corresponds to a general definition of CB data; in practice, the set of potential realizations
of the vector α depends on the geometry of the detector that is used for data acquisition,
as will be discussed in chapter 6. Values of g will be called CB data from now on, and CB
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data at fixed λ will be referred to as a CB projection. If all non-zero values of the function
g at fixed λ are known, the corresponding CB projection is called non-truncated.

5.2.2 Cone-Beam Reconstruction in General

This section briefly summarizes the fundamentals about 3D CB reconstruction theory. Our
goal is not to provide a detailed topical review, but to describe the major theoretical
developments as they occurred over the last about 30 years; for further information see
[82, 62, 18, 21, 12] or others.

One of the major difficulties of the 3D CB reconstruction problem lies in the fact that
CB data samples are not related to samples of the 3D Radon transform in a direct and
straight-forward manner. In this respect, the reconstruction problem fundamentally differs
from that in 2D fan-beam tomography: in the fan-beam scenario, data acquisition directly
delivers 2D Radon values so that reconstruction can be easily accomplished by using 2D
Radon inversion formulae with some minor modifications, as shown in chapter 3. In 3D,
however, a direct generalization like that is not possible.

Some of the first methods suggested to achieve CB image reconstruction were based
on approximate inversion formulae. Feldkamp et al., for instance, suggested a practical
reconstruction approach for CB data acquired along a full circular source trajectory [33].
Feldkamp’s approach was derived as a heuristic generalization of the classical 2D fan-beam
reconstruction method; it possesses an efficient FBP scheme and has therefore been con-
sidered in various clinical applications. Over the years, many variations of the Feldkamp
algorithm have been suggested, some of which are described in [82], but these reconstruction
approaches yield in general inexact results, and because they lack a thorough theoretical
foundation, the degree of artifacts arising in the reconstruction results is in general not easy
to predict.

The early 1980s brought some significant breakthroughs in the analytical CB recon-
struction theory, as summarized, for instance, in the review papers [17, 81]. Advance-
ments were mainly driven by the contributions of Tuy [83], Smith [80] and in particular by
that of Grangeat [36], who found a link between CB data and the intermediate function
(∂/∂s)Rf(θ, s), which is related to the object density function through equation (5.16).
For an illustration of Grangeat’s approach, let us consider the function

gG(λ, θ) = −
∫∫

S2

hder(θ · α)g(λ, α) dα, (5.18)

with θ ∈ S2 and with hder(s) denoting the kernel of the first derivative, namely the inverse
Fourier transform of 2πiσ. The value of gG at a given parameter λ can be computed, if the
corresponding CB projection at λ is not truncated. Next, we substitute the function g by
its definition (5.17) so that

gG(λ, θ) = −
∫∫

S2

+∞∫

−∞
hder(θ · α)f(a(λ) + tα) dt dα. (5.19)
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Figure 5.3: Intermediate 3D Radon values that can be obtained from CB data ac-
quired along a circular scan with radius 300mm. (Top) The surface of the illustrated
sphere indicates the region in the 3D Radon domain where the intermediate function
can be obtained from the single CB projection with the source at the black dot. The
dashed circle shows the entire circular source trajectory. (Bottom) Region in the 3D
Radon domain where the intermediate Radon function can be obtained using CB
data from the entire circular scan. Obviously, the values of (∂/∂s)Rf cannot be
obtained at parameters (θ, s) for which the points s θ that are located in the gaps
above and below the origin (with respect to the z-axis).

Applying the change of variables x = a(λ) + tα with Jacobian J(t, α) = t2 and using
the scaling property hder(ts) = (1/t2) hder(s) (which holds for non-zero t) yields

gG(λ, θ) = −
∫∫∫

R3

hder(θ · (x− a(λ)))f(x) dx

= −
∫∫∫

R3

+∞∫

−∞
hder(s′ − θ · a(λ))δ(x · θ − s′)f(x) ds′ dx

=

+∞∫

−∞
hder(θ · a(λ)− s′)Rf(θ, s′) ds′.

(5.20)
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Finally we get

gG(λ, θ) =
∂

∂s
Rf(θ, s)

∣∣∣∣
s=a(λ)·θ

(5.21)

and therefore a scheme to convert CB data g(λ, α) at a fixed λ into samples of the interme-
diate Radon function (∂/∂s)Rf(θ, s), namely into all samples that belong to the surface of
the smallest sphere in the 3D Radon domain that contains both, the origin and the source
point a(λ), as illustrated, for instance, on the top of Figure 5.3. Applying (5.21) to all
acquired CB projections yields (∂/∂s)Rf(θ, s) within a specific region of the 3D Radon do-
main and this region depends on the realization of the source trajectory a(λ). The bottom
of Figure 5.3, e.g., illustrates this region for the case that a(λ) describes a closed circle of
radius 300 mm in the x-y plane around the origin of the image volume. In this case, the
intermediate Radon function (∂/∂s)Rf cannot be obtained in the regions of the 3D Radon
domain that are attached the origin and are symmetric with respect to the z-axis; this data
insufficiency is in general the cause for image artifacts, as will be addressed in more details
in the following section. A similar illustration is given in Figure 5.4, for a partial circular
source trajectory; in this case, the issue of data insufficiencies is even intensified compared
to the full circular scan.

Figure 5.4: The red geometric object illustrates the region in the 3D Radon domain
where the intermediate function can be obtained when the source moves along a
partial circle in the x-y plane (marked as black).

5.2.3 The Issue of CB Data Sufficiency

One important issue in the context of 3D CB image reconstruction is the question under
which circumstances an accurate reconstruction of the value f(x) is possible. Among several
contributions to this issue, which are briefly summarized in [31], Tuy’s formulation of the CB
data sufficiency criterion [83] has gained most attention. Tuy’s sufficiency criterion states
that theoretically-exact and stable CB reconstruction at a point x is only possible, if and
only if almost every plane through x has at least one intersection with the source trajectory
[83, 34]. CB reconstruction in regions in which Tuy’s sufficiency condition is not satisfied
corresponds in general to an ill-posed problem, which cannot be solved in a simultaneously
stable and exact way [34]. The phrase ’in general’ here denotes that reconstruction is to
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be achieved for arbitrary objects f and that no a priori information about the function f
is known.

To understand the criterion described in the previous paragraph, focus again on the
scenario illustrated in Figure 5.3, where the source trajectory a(λ) corresponds to a closed
circle in the x-y plane. Tuy’s sufficiency condition is then satisfied only for points that
belong to the plane of the trajectory. Accurate reconstruction outside this plane is in
general impossible. Image quality is degraded by artifacts (CB artifacts) and the shape
and structure of occurring CB artifacts may vary from one reconstruction algorithm to the
other.

It is interesting to note that if the object density function f satisfies specific homogeneity
criteria, accurate and stable CB reconstruction may be possible even if Tuy’s criterion is
not satisfied; for more details about this issue see e.g. [24].

5.2.4 Reconstruction via Filtered Backprojection

Numerical algorithms for accurate CB reconstruction from data that satisfies Tuy’s suffi-
ciency condition can be composed by a direct implementation of the theory presented in
section 5.2.2 [78]. Applying (5.21) to each acquired CB projection successively delivers
the intermediate Radon function throughout the 3D Radon domain. The application of a
3D Radon inversion algorithm on this intermediate result then simply yields, in a second
step, the wanted object density function. The shortcomings of these straight-forward meth-
ods are that the second step can only be carried out after all CB projections have been
processed, that interpolation steps in the 3D Radon domain are required and that all CB
projections have to be non-truncated.

Subsequent research was thus focussed on deriving CB reconstruction algorithms that
follow the practical FBP scheme, where every CB projection can be processed immediately
after it has been measured. Clack and Defrise [20] and Kudo and Saito [57] suggested
schemes to find such FBP-type CB reconstruction algorithms for a variety of source trajec-
tories; one important ingredient in these schemes is a weighting function, which needs to
be adapted to the considered source trajectory and accounts for redundancies in the inter-
mediate Radon function that can be obtained from the given CB data set. The resulting
numerical CB reconstruction algorithms are based on a shift-variant filtering step and a
subsequent 3D weighted CB backprojection of the filtered data; these FBP methods allow
accurate reconstruction, as long as the considered CB data is non-truncated and also sat-
isfies Tuy’s sufficiency condition. Interestingly, it was shown that the application of these
schemes to a full circular source trajectory yields an algorithm that coincides with the one
suggested by Feldkamp [44, 20], thus setting that heuristically derived method into a firm
theoretical framework.

Another breakthrough in CB reconstruction theory was achieved by Katsevich, who
suggested, in 2003, a novel general scheme to derive image reconstruction algorithms for
theoretically-exact reconstruction from CB data that satisfies Tuy’s sufficiency condition
[50]. This scheme, which is also discussed in [53, 13], is related to the ones described
in the previous paragraph [98]; it e.g. also requires a proper definition of a redundancy
weighting function to find a practical algorithm for a given source trajectory. In contrast
to the previously described scheme, however, Katsevich’s method allows us to compose for
many practically- relevant scenarios FBP algorithms that achieve data filtering by a shift-
invariant 1D convolution along specific filter directions; these algorithms are therefore more
efficient and in general more flexible with respect to truncation in the CB data, depending
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on the required filter directions. In recent years, a variety of attractive reconstruction
algorithms have been derived from Katsevich’s general theory, such as for instance the ones
for helical source trajectories [49], for circle-plus-arc trajectories [52] or for the ellipse-plus-
oblique-line trajectory [25], to name only a few.

5.2.5 Reconstruction via Differentiated Backprojection

As illustrated in the previous section, various FBP methods exist to achieve 3D image
reconstruction from CB data [87]. The common feature of FBP methods is that they
require, at some point during CB data filtering, the convolution of data with a filter kernel
that has infinite support. The filtering thus corresponds to a global operation which may
yield inaccurate results in presence of truncation in one or more CB projections.

To tackle this sensitivity with respect to data truncation, novel approaches for CB
image reconstruction have been suggested that avoid the global filtering operation on the
projection data during the filtering step [99, 100, 72]. These approaches first differentiate
CB data and then backproject the differentiated data into the image volume to obtain an
intermediate function that is linked to the wanted object density function through some
fundamental filter relation that involves the Hilbert transform. This relation has been
derived in a general form e.g. in [72]. Reconstruction may then be achieved by transforming
the intermediate function into the function f through additional filtering operations carried
out in the image volume.

Approaches that are based on this scheme are in literature typically known under the
term backprojection-filtration (BPF) or differentiated-backprojection (DBP); they can nat-
urally cope with some scenarios of data truncation in which FBP methods fail. More details
about these approaches will be given in the following chapters, in the context of circular
CB CT.



Chapter 6

Comparative Evaluation of Four
Circular Short-Scan
Reconstruction Methods

6.1 Introduction

Over the past few years, cone-beam X-ray computed tomography has become a powerful
imaging technology in the clinical arena [70, 59]. Among all possible scanning modes,
circular motion of the X-ray scanning device relative to the interrogated object remains
one of the most attractive ones. This is because a circular scan is easy to implement,
mechanically robust and allows fast data acquisition.

Unfortunately, with the circular as well as with any planar source trajectory, Tuy’s
data sufficiency condition for exact and stable reconstruction [83] is not satisfied for the
points that lie outside the plane of the X-ray source trajectory, as has been discussed
in section 5.2.3. This means that CB image reconstruction is an ill-posed problem almost
everywhere within the image volume [34]; a numerically stable recovery of the object density
function in a 3D volume of interest from noisy data can thus only be achieved by sacrificing
some accuracy in the reconstruction result. A reconstruction algorithm can only be useful
for practical applications if it performs an efficacious trade-off between numerical stability
and accuracy.

For the closed circular trajectory (full-scan), an attractive algorithm is given by the
approach suggested in 1984 by Feldkamp et al. (FDK) [33]. However, not every X-ray
CT system can acquire data along a full-scan. In particular, the mechanical design of
medical C-arm systems typically prevents data acquisition over more than 330◦. Moreover,
for various physical reasons including dose and scanning time, most scanning protocols on
C-arm systems are restricted to a short-scan of 210◦ to 240◦ [2]. Hence, FDK cannot be
applied to C-arm systems.

Finding an efficacious algorithm for the short-scan geometry turns out to be a challeng-
ing task. A popular algorithm used to achieve image reconstruction in many state-of-the-art
C-arm systems is a modification of FDK: short-scan FDK [86]. However, the short-scan
FDK method uses geometric approximations to handle data redundancies in the CB data
set and these approximations yield in general a significant amount of CB artifacts in the
reconstruction results.

59
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During the last few years, other methods to achieve reconstruction from circular short-
scan CB data have been suggested [64, 56, 93, 67, 43, 37, 92]; some of them are based on
novel reconstruction formulae that allow less severe geometric approximations, if any, and
a more precise handling of data redundancies. In general, each of these methods comes
with a different trade-off between accuracy and numerical stability and may thus respond
differently to the data insufficiency and to data noise. Unfortunately, only few comparison
studies have been published, see e.g. [84, 97], and these studies did not necessarily consider
the most promising algorithmic developments in the field of circular CB reconstruction.

We here perform a detailed comparative evaluation of four analytical reconstruction
methods for the circular short-scan CB geometry. Our study involves the short-scan FDK-
method [33], which is widely used in practically-available X-ray CT systems, and three
attractive, novel reconstruction methods, namely the ACE-method [64], the virtual PI-line
BPF method [93] and the virtual PI-line BPF method with Parker weighting [93]. Our
study is based on a uniform evaluation framework that includes quantitative figures of
merit as well as a visual assessment of image quality.

6.2 Circular Short-Scan Geometry using a Planar

Detector

Figure 6.1: Illustration of the circular short-scan CB acquisition geometry, assuming
a planar detector. Top view of the geometric entities in the plane of the scan: The
curve a(λ) corresponds to the source trajectory, R denotes the scan radius and D the
distance between source and detector.

In the following, we focus on image reconstruction in the circular short-scan CB ge-
ometry with planar detector. This geometry is a specific realization of the general 3D CB
geometry introduced in section 5.2.1 and associated with the practical scenario where an
assembly of X-ray source and flat-panel detector performs a partial rotation around the
investigated object during the scan. The focal spot of the X-ray source thus moves along
a circular trajectory and without loss of generality, it is assumed that this trajectory is
contained in the plane z = 0 mm and that the rotation axis of the scanning device coincides
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with the z-axis; see Figure 6.1. Hence, we can here describe the source trajectory with the
function

a(λ) = (R cosλ,R sinλ, 0)T, (6.1)

where R denotes the radius of the trajectory and λ corresponds to the polar angle of the
source during the scan. We assume that CB projections are measured with λ varying in the
interval [λc−λs/2, λc +λs/2]. The quantity λs then gives the scan-length of the short-scan
and a(λc) defines the central point on the source trajectory, or, the short-scan center. The
polar angle of the first source position is thus given as λmin = λc − λs/2 and similarly,
λmax = λc + λs/2 will denote the polar angle of the source point at the end of the scan.

To describe the planar detector geometry, we introduce the orthonormal system of
vectors

eu(λ) = (− sinλ, cosλ, 0)T (6.2)
ev = (0, 0, 1)T (6.3)

ew(λ) = (cosλ, sinλ, 0)T, (6.4)

which is illustrated in Figure 6.2. Note that during the scan, this vector system rotates
along with the source-detector assembly such that eu(λ) is tangent to the source trajectory
at a(λ) and such that ew(λ) gives the direction from the image volume origin towards
the source. We then assume that the plane of the detector is spanned by the vectors
eu(λ) and ev and that this plane is at fixed distance D from the source during the scan.
Locations on the detector plane are described using the vector (u, v)T, where u and v
are coordinates measured along the axes eu(λ) and ev, respectively; they are defined such
that the value (u, v)T = (0, 0)T is obtained at the orthogonal projection of a(λ) onto the
detector plane. We assume that the projection is measured with a detector that covers the
area u ∈ [umin, umax] and v ∈ [vmin, vmax].

Let α(λ, u, v) denote the unit vector along the ray diverging from a(λ) and intersecting
the detector plane at coordinates (u, v)T; this vector may be written as

α(λ, u, v) =
u eu(λ) + v ev −D ew(λ)√

u2 + v2 + D2
. (6.5)

The CB data at (u, v)T with the source at polar angle λ will be denoted as

gm(λ, u, v) = g (λ, α(λ, u, v)) , (6.6)

where

g (λ, α) =

∞∫

0

f(a(λ) + tα) dt. (6.7)

Furthermore, at a given λ, the coordinates of the CB projection of a point x onto the
detector plane are given as

u∗(x) = D
x · eu(λ)

R− x · ew(λ)
and v∗(x) = D

x · ev

R− x · ew(λ)
(6.8)

Note that in the definitions of (6.8) we use again, as in the previous chapters, the superscript
∗ to denote a function that depends on λ without explicitly listing this argument. Figure 6.2
presents the geometry of the detector as we picture it.
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Figure 6.2: Geometric entities associated with the planar detector. The quantities
umin, umax, vmin and vmax define the detector size, and u∗(x) and v∗(x) are the
coordinates of the CB projection of x onto the detector plane.

If the CB projection of the object lies within the measured detector area for each λ,
i.e., if u∗(x) ∈ [umin, umax] and v∗(x) ∈ [vmin, vmax] for all x ∈ Ωf and all λ ∈ [λmin, λmax],
CB data will be called non-truncated. If the projection of the object exceeds the measured
interval in u for some λ, the CB data suffers from transaxial truncation. On the other hand,
if this projection exceeds the measured interval in v, we say that the CB data set contains
axial truncation.

Image reconstruction in the circular short-scan CB geometry then refers to the task
of recovering the object density function f(x) for x ∈ Ωf from the measured CB data
gm(λ, u, v) with λ ∈ [λmin, λmax], u ∈ [umin, umax] and v ∈ [vmin, vmax]. Since this task
cannot be simultaneously solved in a theoretically-exact and in a stable way and since
discretization impacts the numerical computation, we can in general only compute an ap-
proximate estimate fe(x) of the true object density function. The following sections present
four state-of-the-art methods that have been suggested in the literature to compute such
an estimate.

6.3 The Short-Scan FDK Method

The short-scan FDK method is based on the algorithm introduced in 1984 by Feldkamp,
Davis and Kress (FDK) [33] for approximate reconstruction from CB data acquired along
a full circular scan (i.e., for a scan with λs = 360◦). The full-scan FDK reconstruction
algorithm is well-understood in terms of the 3D Radon theory [20, 57]. Almost all 3D Radon
planes through Ωf intersect the full circular source trajectory either twice or never. The
full-scan FDK method uses for reconstruction the information associated with 3D Radon
planes that have two such intersections. It weights each data sample with a factor of 1/2
resulting in an equal contribution of every used 3D Radon value to the final reconstruction.
Data associated to 3D Radon planes that do not intersect the source trajectory is never
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measured and does not contribute to the FDK estimation of the object density; this lack
of information causes CB artifacts in the reconstruction result.

In the short-scan geometry, the distribution of data redundancies is more complex - some
3D Radon planes intersect the source trajectory once, others twice, others never. Thus, the
beneficial Radon-plane based weighting scheme intrinsically used for the full-scan trajectory
that weights every measurement with 1/2 cannot be applied. Wang et al. [86] suggested
an heuristic modification of the full-scan FDK reconstruction approach to be able to apply
that method for reconstruction from CB data corresponding to a circular short-scan. In this
modification, which we will refer to as the short-scan FDK method from now on, CB data is
multiplied with a v-independent weighing function prior to reconstruction to approximately
account for data redundancies. A common selection for the weighting function, which we
use within this comparison study, is the generalized Parker weighting function [79] that was
introduced in chapter 3.2.3.

6.3.1 Reconstruction Method

The short-scan FDK method computes an estimate fe of the object density function f from
the circular CB data using the following steps:

Step 1 – Weighting: CB data is multiplied with a length correction weight and with the
redundancy function to yield weighted CB projections

gw(λ, u, v) =
D√

u2 + v2 + D2
mgp(λ, u) gm(λ, u, v) (6.9)

where

mgp(λ, u) = m̃
(
λ, tan

u

D

)
(6.10)

gives the generalized Parker weighting function [79] for the flat panel geometry; see
(3.48) on page 26 for a definition.

Step 2 – 1D Filtering: Convolution of the weighted CB projections in u with the kernel
of the ramp filter yields filtered CB projections denoted as

gF (λ, u, v) =

umax∫

umin

hramp(u− u′)gw(λ, u′, v) du′. (6.11)

Step 3 – 3D Backprojection: Filtered CB projections are backprojected into the image
volume using the entire acquired interval in λ to yield the object estimate

fe(x) = RD

λmax∫

λmin

gF (λ, u∗(x), v∗(x))
(R− x · ew(λ))2

dλ (6.12)

with functions u∗ and v∗ defined in (6.8).



64 Chapter 6. Evaluation of Circular Short-Scan Reconstruction Methods

6.3.2 Implementation Details

The short-scan FDK method follows the FBP scheme and involves only 1D filtering along
lines that are in the direction of eu(λ); it is thus relatively easy to implement and compu-
tationally efficient. The numerical algorithm considered in this evaluation study achieved
data filtering and weighting by discretizing equations (6.9) and (6.11) at k∆u with k ∈ Z,
and therefore yields the filter result on a sampling grid in u and v that is identical to that
of the initial CB data function gm. For implementation of (6.11) we used a band-limited
version of the ramp filter kernel with bandwidth set to 1/(2∆u) and furthermore used
sinc apodization on the kernel. To increase computation speed, the convolution in (6.11)
was carried out in frequency domain, using standard signal-processing techniques. 3D CB
backprojection according to (6.12) was implemented by approximating the integral in this
equation with a discrete sum according to the rectangular rule of numerical integration and
by using bilinear interpolation in u and v to obtain in each filtered CB projection the values
required at u∗(x) and v∗(x).

6.4 The ACE Method

In 2003, Katsevich presented a novel, general framework to construct theoretically-exact
inversion formulae for the 3D divergent beam transform for a large class of source trajec-
tories [50]; see section 5.2.4. Reconstruction at a specific point x using such a formula can
yield accurate results, dependent on the actual degree of data truncation, if the CB data
set satisfies Tuy’s sufficiency condition for exact and stable reconstruction at x. The ACE
method [64] (the acronym stands for arc based cone-beam reconstruction using an equal-
weighting scheme) has been derived by applying Katsevich’s framework to the short-scan
circular source trajectory and by intrinsically using a uniform weighting of the measured 3D
Radon data, following principles already applied in [67]. Hence, data redundancies in the
CB data are handled accurately rather than by using a heuristic weighting scheme. How-
ever, CB data collected along the circular trajectory satisfies Tuy’s sufficiency condition
only for points inside the plane of the source motion. Hence, the ACE method will yield
accurate results only within the slice z = 0 and will in general yield approximate results
everywhere else throughout the image volume.

6.4.1 Reconstruction Method

The ACE method computes an estimate fe of the object density function from the known
CB data as follows:

Step 1 – Differentiation: Differentiation of CB data in λ at fixed ray direction yields
differentiated CB projections denoted as

gd(λ, u, v) = lim
ε→0

g (λ + ε, α(λ, u, v))− g (λ− ε, α(λ, u, v))
2ε

(6.13)

Step 2 – Weighting: Cosine weighting of the differentiated CB data yields

gw(λ, u, v) =
D√

u2 + v2 + D2
gd(λ, u, v). (6.14)
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Step 3 – 1D Filtering: The weighted and differentiated CB data is convolved with the
kernel of the Hilbert transform along 3 filtering lines to yield 3 filtered CB projections:

gF1(λ, u, v) =

umax∫

umin

hhilb(u− u′)gw(λ, u′, v) du′, (6.15)

gF2(λ, u, v) =

umax∫

umin

hhilb(u− u′)gw(λ, u′, v′1(λ, u, u′, v)) du′, (6.16)

gF3(λ, u, v) =

umax∫

umin

hhilb(u− u′)gw(λ, u′, v′2(λ, u, u′, v)) du′, (6.17)

with v′1 and v′2 denoting the equations of two lines on the detector plane:

v′1(λ, u, u′, v) = v + (u− u′)κ1, κ1 =
v − v∗(a(λmin))
u− u∗(a(λmin))

, (6.18)

v′2(λ, u, u′, v) = v + (u− u′)κ2, κ2 =
v − v∗(a(λmax))
u− u∗(a(λmax))

(6.19)

and κ1 and κ2 denoting their respective slopes.

The computation of one filter sample according to (6.15) requires function gw at fixed
v; filtering is therefore geometrically carried out along filter lines on the detector that
are parallel to the u-axis, as in the FDK method. The convolutions in (6.16) and
(6.17), however, involve values of gw on filter lines that vary with λ and are in general
oblique. More specifically, to obtain at a given λ the function gF2 at point (u, v)T,
consider the line that connects this point with the CB projection of the first source
position a(λmin) onto the detector plane; the equation of this line is given by (6.18).
The desired value of gF2 is then obtained by convolving values of gw along this line
with the kernel of the Hilbert transform and evaluating the convolution result at
coordinate u. Data filtering for gF3 follows a similar scheme; it requires filter lines
that contain the CB projection of a(λmax) onto the detector plane, the equations of
which are given by (6.19).

Step 4 – 3D Backprojection: The ACE estimate of the object density function is ob-
tained by 3D backprojection of the filtered CB projections using a non-squared back-
projection weight, according to

fe(x) = − 1
4π2

λmax∫

λmin

1
R− x · ew(λ)

(
gF1(λ, u∗(x), v∗(x))

+
sign (u∗(x)− u∗(a(λmin)))

2
gF2 (λ, u∗(x), v∗(x))

+
sign (u∗(a(λmax))− u∗(x))

2
gF3 (λ, u∗(x), v∗(x))

)
dλ

(6.20)

6.4.2 Implementation Details

As the short-scan FDK method, the ACE algorithm also uses the FBP scheme, but ACE
involves a filtering step that is more complex than that of FDK: it requires CB data dif-
ferentiation, data weighting and three different 1D convolutions with the Hilbert kernel.
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The differentiation of CB data according to (6.13) was here implemented following the
view-differentiation scheme described in [68]. This scheme requires the selection of a differ-
entiation parameter, which plays a similar role than ε in (6.13). We here fix this parameter
to ε = 0.01, because this specific value was found to yield both, good spatial resolution in
the differentiation result and good numerical stability [68].

Hilbert filtering was achieved by discretizing (6.15)-(6.17) at coordinates k∆u 1 and by
replacing the Hilbert kernel with its band-limited version, using rectangular apodization and
bandwidth 1/(2∆u). Computationally efficient filtering along non-horizonal lines, which
occur in (6.16) and (6.17), was achieved using an approach similar to that explained in [69].
First, the slope parameters κ1 and κ2 were discretized, which geometrically means that data
filtering involved a fixed number of filtering lines. The discretization steps ∆κ1 and ∆κ2

were selected in a way that the v-coordinates of the intersection of the axis u = 0 with any
two neighboring filter lines differed by ∆v/2. Note that this scheme yielded a number of
filter lines used for computation of g2 or g3 that is twice as high as the number of filter lines
used for term g1. Next, values of gw along these filter lines were extracted, in a so called
forward-rebinning step, using linear interpolation in v. These values were then convolved
with the Hilbert kernel and subsequently, in a back-rebinning step, transformed back on a
Cartesian sampling grid in u and v. This back-rebinning involved bilinear interpolation and
was carried out on a sampling pattern with 8 times finer sampling along each dimension
compared to the initial grid on which the function gw is known.

3D CB backprojection was carried out by first combining the three filter contributions
on the upsampled grid and then using nearest neighbor interpolation in u and v to obtain
the required samples at u∗(x) and v∗(x) from this combined filter result.

6.5 The Virtual PI-Line BPF Methods

The third and forth reconstruction methods used in this comparison study are based on a
theoretically exact reconstruction formula that has been proposed for image reconstruction
from CB data acquired along a helical source trajectory [100]. The helical reconstruction
formula described in this reference follows a scheme that the authors of [100] refer to as
backprojection-filtration (BPF): Reconstruction is achieved by first backprojecting differen-
tiated CB data into the image volume and then using 1D filtering along PI-lines to convert
the backprojection result into the object density estimate; here, a PI-line is a line that con-
nects two points on the source trajectory. An important feature of the BPF methods is that
they naturally allow in some scenarios accurate reconstruction from transaxially-truncated
CB data, in contrast to the FBP methods described earlier in this chapter [100, 99, 72].

In [93], the helical reconstruction formula has been modified to be useful for 3D recon-
struction from a circular short-scan. Obviously, in this geometry, PI-lines only exist in the
plane of the source motion; to allow reconstruction in other regions of the image volume, so
called virtual PI-lines are heuristically introduced that are parallel to the plane z = 0mm.
The resulting reconstruction method will be denoted as the virtual PI-Line BPF method
from now on.

1Note that filter lines with slopes of magnitude exceeding 1 were handled differently: equations
(6.16) and (6.17) were then expressed as a convolution with respect to v instead of with respect to u.
This yields a finer sampling on very oblique filter lines and thus less aliasing and better performance
in the discrete scenario [64].
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6.5.1 Reconstruction Method

We follow the notation of [93] and describe points in the image volume using the parameters
(λ1, λ2, z, t), where [λ1, λ2] ⊂ [λmin, λmax]. The first 3 parameters specify one (virtual) PI-
line in the image volume, namely the line that is related to the line through the points
a(λ1) and a(λ2) by a shift of z along the z-axis. Parameter t specifies locations along the
virtual PI-line, increases when approaching a(λ2) and takes value t = 0 at the orthogonal
projection of the world coordinate origin onto the PI-line, as depicted in Figure 6.3. The
Cartesian coordinates of the point described with (λ1, λ2, z, t) are given as

x(λ1, λ2, z, t) =
a(λ1) + a(λ2)

2
+ t

a(λ2)− a(λ1)
‖a(λ2)− a(λ1)‖ + (0, 0, z)T. (6.21)

In the following, we use the short-hand notation xπ to denote the function x(λ1, λ2, z, t).
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Figure 6.3: Illustration of the (λ1, λ2, z, t) coordinate system used by the BPF meth-
ods to describe locations xπ in the image domain. The gray plane is parallel to the
plane of the source trajectory and intersects the rotation axis at coordinate z. The
points a(λ1) and a(λ2) are two positions along the source trajectory (illustrated as
a dashed arc) that are used to define a line in that plane and parameter t describes
locations on this line. The parameters tA and tB define arbitrary points that are,
however, outside the region Ωf .

The virtual PI-Line BPF method estimates the object density function from the known
CB data using the following steps:

Step 1 – Weighting: Length-correction weighting of the CB projection data yields weighted
CB projections denoted as

gw(λ, u, v) =
D√

u2 + v2 + D2
gm(λ, u, v). (6.22)

Step 2 – Differentiation: The weighted CB projections are differentiated in u to yield
differentiated CB data

gd(λ, u, v) =
∂

∂u
gw(λ, u, v). (6.23)
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Step 3 – 3D Backprojection: Backprojection of the differentiated CB projections using
only the interval in λ ∈ [λ1, λ2] and backprojection of boundary terms at λ1 and λ2

yields an intermediate function in the image domain

f̃(λ1, λ2, z, t) = DR

λ2∫

λ1

gd(λ, u∗(xπ), v∗(xπ))
(R− xπ · ew(λ))2

dλ

+
gm(λ, u∗(xπ), v∗(xπ))

‖xπ − a(λ)‖

∣∣∣∣
λ2

λ1

(6.24)

with functions u∗ and v∗ defined in (6.8).

Step 4 – 1D Filtering: The object density estimate is obtained from the intermediate
function through 1D filtering

fe(xπ) =
1
2π

1√
(tB − t)(t− tA)

×



tB∫

tA

hhilb(t− t′)
√

(tB − t)(t− tA)f̃(λ1, λ2, z, t′)dt′ + 2P


 .

(6.25)

The quantities tA and tB > tA are coordinates along the virtual PI-Line containing
xπ that describe points that are outside and on opposite sides of the object support
region Ωf . The term 2P in (6.25) stands for

2P = gm (λ, u∗(xπ), v∗(xπ))
∣∣∣∣
t=0,λ=λ1

+ gm (λ, u∗(xπ), v∗(xπ))
∣∣∣∣
t=0,λ=λ2

(6.26)

i.e., 2P is the sum of the CB data samples corresponding to the rays that diverge
from a(λ1) or a(λ2) and contain the central point on the virtual PI line, at coordinate
t = 0, as suggested in [93].

6.5.2 The Virtual PI-Line BPF Method with Parker Weight-
ing

The virtual PI-Line reconstruction method explained above uses for reconstruction only
the CB data corresponding to λ ∈ [λ1, λ2]. To consider all acquired CB projections for
reconstruction, a modification of the algorithm explained above has been suggested [93]
that differs from that algorithm as follows:

Difference 1 – Weighting: CB data weighting now also involves a multiplication with
a weighting function that is designed to approximately account for redundancies in
the CB data for λ ∈ [λ1, λ2]. This approach is identical to that used in the short-
scan FDK method; a popular choice is again to use the generalized Parker weighting
function, defined in (6.10), so that altogether, we obtain weighted CB projections as

gw(λ, u, v) =
D√

u2 + v2 + D2
mgp(λ, u) gm(λ, u, v). (6.27)
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Difference 2 – 3D Backprojection: CB backprojection considers now the interval λ ∈
[λmin, λmax] and thus all acquired CB projections. This modification, however, in-
troduces two additional boundary terms and requires the application of a signum
weighting function prior to backprojection, so that the intermediate function is now
obtained as

f̃(λ1, λ2, z, t) =DR

λmax∫

λmin

sign (u∗(xπ)− u∗(a(λ1)))
gd(λ, u∗(xπ), v∗(xπ))

(R− xπ · ew(λ))2
dλ

+ sign (u∗(xπ)− u∗(a(λ1))) mgp(λ, u∗(xπ))
gm(λ, u∗(xπ), v∗(xπ))

‖xπ − a(λ)‖

∣∣∣∣
λmax

λmin

+ 2mgp(λ, u∗(xπ))
gm(λ, u∗(xπ), v∗(xπ))

‖xπ − a(λ)‖

∣∣∣∣
λ2

λ1

.

(6.28)

6.5.3 Implementation Details

The numerical implementation of the virtual PI-Line BPF methods used for the com-
parison study uses PI-lines that are parallel to each other and orthogonal to the vector
(cosλc, sinλc, 0)T.

To allow for the discrete scenario, the Hilbert kernel in filtering equation (6.25) has been
replaced by its bandlimited version hb

hilb with rectangular band-limitation and bandwidth
1/(2∆t). Equation (6.25) was furthermore discretized using t = i∆t and t′ = j∆t + ∆t/2
with integers i and j. This discretization scheme yields a beneficial discretization of hb

hilb

that avoids sampling points at which the kernel becomes 0, but it also means that the
sampling grids for functions fe and f̃ are shifted with respect to each other by half a
sampling step along the direction t [69].

Differentiation according to (6.23) was obtained by a finite difference between two neigh-
boring samples in u and the differentiation result was assigned to the mid-point between
the two samples. Backprojection used bilinear interpolation in u and v to obtain the values
required at coordinates u∗ and v∗, and furthermore linear interpolation in λ for the bound-
ary terms from source locations λ that do not in general coincide with the known samples
in λ. Moreover, backprojection according to (6.24) or (6.28) was carried out on a grid that
was shifted in t by ∆t/2 with respect to the grid on which the reconstruction result fe is
desired. This shifting accounts for the discretization scheme applied for (6.25) and allows
the object density estimate to be obtained on the sampling grid initially defined.

6.6 Comparative Evaluation

This section presents the detailed comparative evaluation of the four reconstruction meth-
ods described above. In this study, which is based on simulated CB data, we assess spatial
resolution and image noise, evaluate CB artifacts and investigate the impact of axial trun-
cation on the reconstruction results.

Although the actual short-scan geometry may vary slightly from one experiment to the
other, the general simulation parameters were fixed throughout this study and selected
to approximate the acquisition geometry of real medical C-arm systems; these general
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parameters are summarized in table 6.1. We did not consider physical effects so that
the CB data were consistent with the data model intrinsically assumed by the evaluated
reconstruction methods. However, we reduced aliasing in the CB data by subdividing each
detector element during data simulation with a 2× 2 Cartesian sampling grid with samples
evenly distributed on the corresponding element. To obtain one CB data sample at (u, v)T,
we then constructed 4 rays, each of which connects the vertex point with one of the 4
sub-sampling positions around (u, v)T. For each sub-ray, we computed the integral of the
object density from the analytic phantom definition. The linear average of the 4 resulting
values is then used as the CB datum finally assigned to the sampling position at (u, v)T.

Some of the algorithmic properties we investigate in the following are similar to those
studied in chapter 4.4, while evaluating 2D full-scan fan- beam reconstruction methods.
The evaluation presented here, however, is more complex because reconstruction results
are now 3D entities and because the symmetry of the reconstruction problem occurring
with the full-scan acquisition geometry is lost. Image quality may thus depend on the
distance from the rotation axis, but also on the relative location with respect to the gap in
the short-scan and on the distance from the plane of the source motion, z = 0 mm.

In our evaluation, we use figures-of-merit (FOMs) that are computed from only a few
3D reconstructions and we consider a specifically designed CB performance phantom. The
main body of this phantom consists of a cylinder of radius 180 mm and height 130 mm that
has density 0HU (i.e., the density of water, here fixed as µwater = 0.01836mm−1). For the
evaluation, the phantom is centered on the z-axis and placed such that its lower edge is
below the plane of the scan, at z = −20 mm. We placed 58 small cylindrical inserts into
the main phantom body and use these inserts to determine the algorithmic properties at
various locations in the image volume, as will become clearer below. Each insert has density
40HU, diameter 12 mm and height 6 mm and is oriented such that its axis is parallel to the
z-axis. Half of these inserts are centered on the plane z = 0 mm, i.e., on the plane of the
source trajectory. The arrangement in x and y of these first 29 inserts is such that 20 of
them are evenly distributed on a ring of radius 160 mm around the image volume origin, 8
inserts are located on a ring of radius 50 mm and one insert is centered on the origin; see
Figure 6.4. The remaining 29 inserts have the same arrangement in the coordinates x and
y, but they are centered at z = 50 mm.

6.6.1 Evaluation of Spatial Resolution

To determine spatial resolution, we simulated non-truncated CB data of the performance
phantom in the C-arm geometry, using a short-scan that is centered at the polar angle
λc = 0◦ and that has a scan-range of λs = 210◦. Hence, the source trajectory was symmetric

Table 6.1: Parameters of the C-arm geometry selected for our comparative evaluation

radius of the source trajectory [mm] R = 750
detector-source distance [mm] D = 1200
discretization along trajectory [◦] ∆λ = 0.4
detector pixel size [mm] ∆u = 0.8, ∆v = 0.8
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Figure 6.4: The slice z = 0mm through the CB performance phantom in the grayscale
window [−50 HU, 50 HU].

with respect to the x-axis. Image reconstruction from these simulated CB projections was
carried out on a Cartesian grid with sampling distance ∆x = ∆y = ∆z = 0.5mm. 2

We then estimated, as will become clearer below, at each insert location and individually
for each reconstruction method, the mean (x,y)-resolution, the anisotropy of the (x,y)-
resolution and resolution in the z-direction. These results allow us to determine for each
method the homogeneity of the resolution within the entire image volume, but also to
compare spatial resolution of the four algorithms at a specific location of interest.

The methodology to estimate (x,y)-resolution is now illustrated for an insert located at
point r. First, we create the following 1D profiles:

pe
xy(τ, ω) =

1
9

4∑

iz=−4

fe
(
r + (0, 0, iz ∆z)T + τ(cosω, sinω, 0)T

)
, (6.29)

which are obtained along half-lines that are orthogonal to the z-axis and that diverge from
r. These profiles are extracted from the reconstructed fe using bilinear interpolation in x
and y. The parameter τ > 0 denotes locations along the profile and ω ∈ [0, 2π) corresponds
to the angle that the profile describes with the x-axis (measured in ccw direction); see the
left side of Figure 6.5.

Ideally, these profiles would have a value of 40HU for regions inside the insert and a
value of 0HU for regions in the phantom background, with a discontinuity occurring at the
cylinder edge, i.e., at τ = 6mm. In practice, however, profiles obtained according to (6.29)
deviate from this ideal scenario. Deviations might include (i) a bias in the reconstructed
densities, (ii) a slight offset of the location of the insert edge due to discretization and (iii)
a smooth decay of density values in the transition between insert and background rather
than an actual step. Here, effect (iii), i.e., the rate of decay of the reconstructed densities

2Note that in this geometry, the PI-lines using for the BPF methods were parallel to the y-axis
and that we used the sampling ∆t = 0.5mm on these lines. The sampling grid on which the BPF
estimate was determined therefore coincided with the Cartesian grid that was used for the FBP
methods.



72 Chapter 6. Evaluation of Circular Short-Scan Reconstruction Methods

is used to characterize resolution. For a quantification of this effect, we compare thus each
extracted profile pe

xy to a reference profile defined as

pxy(τ, ω) =

{
pin(ω) if τ < 6mm
pbg(ω) if τ ≥ 6mm

(6.30)

where pin(ω) and pbg(ω) are the means of the values of pe
xy(τ, ω) for τ ∈ [3, 4.5]mm and

τ ∈ [7.5, 9]mm, respectively3.
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Figure 6.5: Illustration of the method used to estimate x − y resolution from the
insert at r. (Left) An example ray that indicates the location of the profile pe in the
image domain. The angle ω defines the profile direction and τ gives the distance of
points along the profile from r. (Right) During profile matching, the reference profile
p (dashed line) is convolved with a 1D Gaussian kernel to yield a blurred reference
profile p̃ (black) that best matches the samples pe obtained from the reconstruction
result (squares), in a least-squares sense.

More specifically, let p̃xy(τ, ω, σ, oτ ) denote a blurred reference profile, which is the result
of the discrete convolution of pxy from (6.30) with a 1D Gaussian of standard deviation
σ > 0 and shift oτ :

p̃xy(τ, ω, σ, oτ ) =
1

σ
√

2π

∞∫

−∞
pxy(τ ′, ω) exp

(
−(τ − τ ′ + oτ )2

2σ2

)
dτ ′ (6.31)

We determined parameters σ and oτ that yield a blurred profile, p̃xy, that best matches
the profile pe

xy in a least-squares sense within the interval τ ∈ [3, 9]mm, i.e., around the
location of the edge.

The value of σ that achieves that least-squares matching is used to quantify (x,y)-
resolution in the direction ω; it is denoted using the symbol σxy(ω). Note that large values
of σxy(ω) indicate a low resolution, since then, stronger low-pass filtering is required to
match the desired profile to the profile extracted from the actual reconstruction. Note also
that matching with oτ 6= 0 refers to a (slight) shift with respect to τ of the insert edge

3Note that the reference profiles are not generated from the ground truth, but from the recon-
struction result in order to reduce the impact of the reconstruction bias on the resolution measure-
ment [15]
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in the reconstruction rather than to a resolution loss. Modeling this shift is similar to the
concept of profile rectification in [15], and allows accurate estimation of spatial resolution.

At a given insert location, σxy(ω) was computed for 120 profiles with angles ω ∈ Sω

where Sω = {iπ/60 | i = 0 . . . 119}. The (x-y)-resolution at r was then characterized using
the mean and standard deviation of σxy(ω) over all 120 profiles, i.e., the values

σ̄xy =
1
|Sω|

∑

ω∈Sω

σxy(ω) and σσ
xy =

(
1

|Sω| − 1

∑

ω∈Sω

(σxy(ω)− σ̄xy)
2

)1/2

(6.32)

where | · | denotes the amount of elements in a given set. The quantity σ̄xy gives the average
(x,y)-resolution at r, while σσ

xy indicates the degree of anisotropy in this resolution; a value
σσ

xy = 0 means that the resolution is isotropic.
Spatial resolution in z at any insert location r was estimated using a methodology similar

to that described previously in this section. However, instead of focussing on profiles parallel
to the x− y plane, we now investigate the profiles

pe
z(τ, s) = fe(r + s + (0, 0, τ)T) (6.33)

that are parallel to the z-axis and that are obtained from the reconstruction fe using linear
interpolation in z and nearest-neighbor interpolation in x and y. The argument s ∈ R3 is a
translation vector that allows us to shift the profiles with respect to the point r. Here, we re-
strict this translation vector to s ∈ Ss with Ss =

{
(i∆x, j∆y, 0)T |

√
(i∆x)2 + (j∆y)2 ≤ 3mm

}

and with integers i and j. All considered profiles are thus at least 3mm away from the
insert cylinder surface in x and y. Furthermore, we only allow values τ > 0, such that all
considered profiles face in positive z-direction.

The profiles constructed from the reconstruction are then compared to a reference profile
that is defined as

pz(τ, s) =

{
pin(s) if τ < 3mm
pbg(s) if τ ≥ 3mm.

(6.34)

where pin(s) and pbg(s) are the means of pz(τ, s) within the intervals τ = [1, 2]mm and
τ = [4, 5]mm, respectively. Similarly as in evaluation of (x,y)-resolution, we convolve this
reference profile with a (potentially shifted) 1D Gaussian kernel such that the convolution
result best matches (in a least squares sense) the function pe

z. The standard deviation of
the kernel that achieves this matching will be denoted as σz(s); the mean of this quantity
over all considered profiles

σ̄z =
1
|Ss|

∑

s∈Ss

σz(s) (6.35)

is then used as the estimate of the average z resolution at r.
Figure 6.6 shows the resolution estimates in the plane z = 0 mm for the inserts on the

ring with radius 160 mm. These estimates are plotted as functions of the angular position
of the insert. As expected, the resolution behavior is for each method fairly symmetric with
respect to the x-axis, i.e. the axis of symmetry of the short-scan. For short-scan FDK and
the virtual PI-Line BPF methods, resolution in both, (x,y) and z is highest in the regions
close to the short-scan center a(λc) and we note that the z-resolution follows closely the
average (x,y)-resolution throughout the entire considered region. Slight deviations between
these two properties can only be observed for the inserts at polar angles 0◦ and 180◦.
The ACE method, in contrast, shows a different behavior. Its mean (x,y)-resolution is
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Figure 6.6: Evaluation of the spatial resolution using the inserts at z = 0 mm, which
are located on the ring of radius 160mm, for a short-scan with parameters λc = 0◦

and λs = 210◦. The four figures show for each reconstruction method the spatial
resolution in x − y and in z as a function of the angular position of the insert. The
mean (x,y)-resolution and its anisotropy are indicated with gray squares and gray
errorbars, respectively. The black curve shows the mean resolution in z. (Top left)
Short-scan FDK method, (top right) ACE method, (bottom left) virtual PI-line BPF
method, (bottom right) virtual PI-line BPF method with Parker weighting.

nicely homogeneous and almost invariant with respect to the angular position of the insert.
However, its z-resolution noticeably varies throughout the image volume and appears to be
slightly lower in average compared to that achievable with the other three methods.

6.6.2 Evaluation of Contrast-to-Noise Ratio

To investigate noise propagation, we evaluated the contrast-to-noise ratio (CNR) in the
reconstruction results. For this evaluation, we first added noise to the CB data which
was used in the previous subsection and reconstructed the density of the CB performance
phantom throughout the entire region Ωf , using again an isotropic sampling of 0.5mm.
Note that noise was added according to the Poisson noise model, as described in [89], and
assuming an emission of 250, 000 photons per ray.

The CNR at an insert location r = (xr, yr, zr)T was determined by defining two 3D
regions in a neighborhood of r, namely region SA that is entirely located inside the insert
and region SB, located in the phantom background and surrounding the insert. More
specifically, region SA consists of the points

SA =
{

x
∣∣ √

(x− xr)2 + (y − yr)2 ∈ [0, 5]mm , z − zr ∈ [−2, 2]mm
}

(6.36)
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Figure 6.7: Top view of the insert at r in the CB performance phantom, illustrating
the regions SA (cylinder inside the insert) and SB (torus around the insert) used for
the CNR measurements.

and thus itself forms a cylinder with axis parallel to the z-axis, height 4 mm and circular
base of radius 5 mm. Region SB is defined as

SB =
{

x |
√

(x− xr)2 + (y − yr)2 ∈ [7, 11]mm , z − zr ∈ [−2, 2]mm
}

(6.37)

and corresponds to a torus of thickness 4 mm around the insert cylinder; see Figure 6.7.
Due to the noise in the CB data, the object density estimate fe in these two regions is not
homogeneous, but differs noticeably from the true density values. Let

f̄A =
1
|SA|

∑

x∈SA

fe(x) and fσ
A =


 1
|SA| − 1

∑

x∈SA

(
fe(x)− f̄A

)2




1/2

(6.38)

denote the mean and the standard deviation of the reconstructed values in region SA,
respectively. Similarly, let

f̄B =
1
|SB|

∑

x∈SB

fe(x) and fσ
B =


 1
|SB| − 1

∑

x∈SB

(
fe(x)− f̄B

)2




1/2

(6.39)

denote this mean and standard deviation for region SB. The CNR at r in the reconstruction
from a single noisy CB data set is estimated as

f̄A − f̄B√
1
2(fσ

A)2 + 1
2(fσ

B)2
. (6.40)

This estimation is carried out using 10 distinct noise realizations, which yields 10 values
of the FOM defined in (6.40). The mean and the standard deviation of these 10 values
are then used to characterize the CNR of a given reconstruction method at the considered
location r.

Figure 6.8 shows 5 square regions from the average of 9 reconstructed slices between
z = −2mm and z = 2 mm. Four of these five presented regions show the inserts on the
ring with radius 160 mm and at polar angles 0◦, 90◦, 180◦ and 270◦. The fifth region shows
the insert centered at the origin. Figure 6.9 shows the quantitative results of the CNR
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Figure 6.8: Illustration of five ROIs, obtained from the slice z = 0mm of thickness
4mm, in the grayscale window [−150 HU, 150 HU]; the ROIs show the inserts at
(left) r = (−160, 0, 0)T mm, (top) r = (0, 160, 0)T mm, (right) r = (160, 0, 0)T mm,
(bottom) r = (0,−160, 0)T mm, (center) r = (0, 0, 0)T mm. From (left) to (right):
the short-scan FDK method, the ACE method, the virtual PI-line BPF method, the
virtual PI-line BPF method with Parker weighting.
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Figure 6.9: CNR in the plane z = 0mm for a short-scan with parameters λc = 0◦ and
λs = 210◦, determined along the rings with radius 160 mm (black) and 50mm (gray)
and presented as a function of the angular position of the insert. The CNR obtained
at the origin is displayed as a horizontal, dashed line. (Top-left) the short-scan FDK
method, (top-right) the ACE method, (bottom-left) the virtual PI-line BPF method,
(bottom-right) for the virtual PI- line BPF method with Parker weighting.

measurements at z = 0 mm as a function of the angular position of the insert, separate for
the two insert rings. It also shows the mean CNR value obtained at the origin.

These results illustrate that the CNR in each method is fairly symmetric with respect
to the x-axis and also increases in regions further away from the short-scan center, as
expected. Deviations from a perfectly symmetric behavior are caused by statistical uncer-
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Figure 6.10: Interdependence between total resolution and CNR inside the plane of
the scan. The short-scan FDK results are indicated with black circles, the ACE results
with dark gray squares and the virtual PI-Line BPF results with gray diamonds (the
approach using Parker weighting corresponds to the dashed curve). For each method,
two curves are shown, indicating the properties on the ring with radius 16 cm or 5 cm,
respectively.

tainties that break the symmetry of the reconstruction problem. Another phenomena that
can be investigated is related to the fact that the average attenuation that the rays through
a certain point x experience during the scan (and thus the uncertainties with which the cor-
responding line integrals are known) is higher close to the phantom center than close to the
phantom boundaries. This is due to the shape of the performance phantom and makes us
expect a decrease in the noise level in the reconstructions with increasing distance from the
object center. Indeed, this effect could be nicely observed for each reconstruction method,
as shown in Figure 6.9. Despite all these described similarities between the methods under
comparison, we note that the ACE method comes with the most homogeneous distribution
of the CNR across the investigated region among the four methods.

Figure 6.10 shows, in a compact form, the interdependence between CNR and total
spatial resolution in the plane of the scan for all considered reconstruction methods. Total
spatial resolution was here defined as the geometric mean of the average resolution in x− y

and the resolution in z, i.e., as the quantity
(
σ2

xy × σz

)1/3. Note that different positions
in the diagram of Figure 6.10 correspond to different locations in the image volume: the
curves on the top-left in this diagram show the results on the ring with radius 160 mm
while those on the bottom-right indicate the results obtained at distance 50 mm from the
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origin. Note also that curves presented in the diagram were determined by fitting a smooth
function into the samples of CNR and total resolution.

We observe again that in the ACE results, total resolution and CNR are more homo-
geneous over the reconstructed region. We can also see the differences between the two
realizations of the virtual PI-Line BPF methods. The approach using Parker weighting
yields improvements in terms of CNR over the approach that uses for reconstruction only
a subset of the acquired CB projections. These improvements are however small, since
the CB data used for this study was simulated for a scan interval of λs = 210◦ only, and
therefore did not contain a lot of redundancy.

Figure 6.11 presents for each method separately the range of values of the CNR on the
rings of radius 160 mm and 50 mm, and the CNR obtained at the origin. It shows these
quantities for the inserts at z = 0mm and also for the inserts at z = 50 mm. From these
results, we notice that with the performance phantom, the distribution of the CNR over
the imaged region becomes somewhat more homogeneous in regions away from the plane
of the circular scan; this general effect is identical in each reconstruction method.
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Figure 6.11: Illustration of the spatial homogeneity and of the z-dependency of the
CNR. The bars show the range of values obtained on the ring with radius 50mm
(gray) and 160 mm (dark gray), and the value determined at the origin is shown
using a black horizontal line. For each method, these ranges are given for the inserts
centered on z = 0mm and at z = 50mm. BPF 1 and BPF 2 here refer to the virtual
PI-line method without and with Parker weighting, respectively.

6.6.3 Evaluation of CB Artifacts

This section provides a quantitative measurement of CB artifacts that is based on investi-
gating reconstructions of the FORBILD head phantom [3] from its noise-free CB data. In
this study, the head phantom was centered on the slice z = 40 mm so that structures in
the phantom that have high gradient in the z-direction are located more remotely from the
plane of the scan. Reconstruction of these structures is therefore expected to suffer stronger
from the effects of missing data, compared to the case of using a non-shifted phantom, and
thus to reveal clearer the differences between the reconstruction methods under comparison.

CB data of the head phantom was simulated according to the general geometry pa-
rameters summarized in table 6.1 and using a detector that is large enough to avoid any
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truncation in the CB projections. Furthermore, the presented evaluation considers 12 dif-
ferent realizations of the source trajectory with varying short-scan center λc and/or varying
scan interval λs, as will be explained below.

From each CB data set, the estimate fe of the object density was obtained through-
out the entire region Ωf on a Cartesian sampling grid with ∆x = ∆y = ∆z = 0.5mm.
We compare the reconstruction result to the true object density by computing a relative
reconstruction error

ε(x) =
fe(x)− f(x)

f(x)
(6.41)

at all points x where f(x) 6= 0.
Evaluation of CB artifacts was carried out on a slice by slice basis, using slices that

are orthogonal to the z-axis. Within each slice, a region Sz was defined that consists of all
points at which the true density f takes values between 30 HU and 80 HU and which are
at least 0.5mm away from the discontinuities in the object. CB artifacts were quantified
by investigating the distribution of the relative reconstruction error ε(x) for x ∈ Sz; we
represent this distribution from now on by its mean ε̄z and its standard deviation εσ

z , which
are obtained respectively as

ε̄z =
1
|Sz|

∑

x∈Sz

ε(x) and εσ
z =


 1
|Sz| − 1

∑

x∈Sz

(ε(x)− ε̄z)
2




1/2

(6.42)

Note that a mean value different from ε̄z = 0 indicates a bias in the reconstruction of
the considered region within slice z. Increasing εσ

z , on the other hand, indicates that the
structure of CB artifacts gets more and more heterogeneous.

Figure 6.12 presents the results of the CB artifact measurement for the short-scan with
parameters λc = 0◦ and λs = 210◦ and within the slice at z = 52.5mm. The left two
columns in this figure show the corresponding reconstruction results, obtained from noise-
free data, but also from noisy CB data assuming an emission of 300 000 photons per ray.
The distribution of ε within Sz, obtained from the noise-free reconstructions, is presented
in the histogram in the right column of Figure 6.12. The two FOMs defined in (6.42) are
indicated with a black circle and a black horizontal line in each histogram, respectively.

Measurement of the CB artifact level was then carried out for 6 different short-scan
realizations with λs = 210◦ and λc = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}, yielding 6 values for
the artifact FOMs. The 6 values for ε̄z that measure the reconstruction bias in one z-slice
are summarized by their mean and standard deviation. The top of Figure 6.14 shows these
two quantities as a function of z. The artifact heterogeneity is quantified in a similar way,
using the mean and standard deviation of εσ

z across the 6 experiments; see the bottom of
Figure 6.14 for an illustration of the artifact heterogeneity FOM, as a function of z.

As expected, all methods yield accurate reconstruction in the plane of the scan and
perform very well for 0 mm< z < 10mm. Further away from that plane, in particular in
regions where object density varies significantly in z, the strength of CB artifacts increases
noticeably. We observe that in those regions, the short-scan FDK method yields strong
reconstruction bias with a magnitude of up to 1.2% and strong artifact heterogeneity of
almost 3%. Its artifact level furthermore strongly depends on the center of the considered
short-scan. The ACE method yields a reconstruction bias comparable to that of short-scan
FDK, but comes with significant improvements in artifact heterogeneity, which is always
below 1.25%, and in robustness of image quality with respect to the actual short-scan
realization. The performance of the virtual PI-line BPF methods, on the other hand, is
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Figure 6.12: The slice z = 52.5mm through the reconstructions of the FORBILD
head phantom using a short-scan defined with λc = 0◦, λs = 210◦ and obtained using
from (top) to (bottom): the short-scan FDK method, the ACE method, the virtual
PI-line BPF method and the virtual PI-line BPF method with Parker weighting.
(Left) reconstructions from noisy data assuming 300 000 photons per ray in the gray-
scale window [0 HU, 100 HU], (center row) reconstructions from noise-free CB data
in the gray-scale window [0 HU, 100 HU] and (right) histograms of the relative recon-
struction error for the values in the region Sz. The horizontal bar in each histogram
shows the first moment (circle) and second moment (half-width of the bar) of the
histogram.

superior to that of the other evaluated methods considering reconstruction bias (which
is less than 0.75%), but shows like short-scan FDK disadvantages in terms of artifact
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Figure 6.13: True density values of investigated phantoms. (Left) the slice x = 0mm
through the FORBILD head phantom, (Center) the slice z = 52.5mm through
the FORBILD head phantom, both using the grayscale window [0 HU, 100 HU].
(Right) the slice x = 0 mm through the disk phantom in the grayscale window
[−500 HU, 500 HU]. The horizontal, dashed lines in the left and the right image
indicate the location of the plane of the scan, at z = 0mm.

heterogeneity. Note also that the use of Parker weighting for the BPF based reconstruction
seems to slightly increase the level of CB artifacts throughout the image volume.

In the presented evaluation, CB artifacts were measured globally over a considered z-
slice; this evaluation does therefore not allow statements about the spatial distribution of
the CB artifacts at fixed z. Visual assessment of reconstruction results, in Figure 6.12, shows
that data insufficiency may in fact have very different impact on image quality. Compared
to the true object density displayed in Figure 6.13, the results of short-scan FDK and
ACE show CB artifacts that are distributed over the entire object slice and appear as a
gradient in the reconstructions. The virtual PI-line BPF methods, on the other hand,
yields CB artifacts that are spatially more compact and that appear in form of streaks in
the reconstruction results. Furthermore, the Parker weighting seems to break symmetry in
artifact behavior; see the bottom region in Figure 6.12.

Note that the CB artifact evaluation presented so far used short-scans of fixed scan-range
λs = 210◦. We now investigate potential improvements in image quality when progressively
increasing this short-scan length towards 360◦. More specifically, CB data of the head
phantom were simulated using 6 short-scans and increasing from one data set to the other
the scan range from 210◦ to 360◦ in steps of 25◦. The center of these short scans was set to
λc = 120◦. For a fixed algorithm, each selection of λs yields in general different values of ε̄z

and εσ
z and for each such selection the global level of CB artifacts is now represented by only

two values, namely by the average of ε̄z over z ∈ [0, 90] mm (the overall bias) and by the
average in εσ

z over z ∈ [0, 90]mm (the overall heterogeneity). Figure 6.15 displays these two
quantities as a function of λs, individually for 3 of the investigated reconstruction methods4.
For comparison, Figure 6.15 also indicates the corresponding FOMs obtained with the full-
scan FDK approach using a horizontal, dashed line. Obviously, the short-scan FDK method
does not show convergence behavior for increasing λs; its overall reconstruction bias is in
general noticeably worse than that of the full-scan method, except for λs = 360◦ and its
overall artifact heterogeneity is always inferior to that of the full-scan algorithm. The

4The results of the virtual PI-Line BPF method without Parker weighting has been omitted,
since an increase in λs does not affect this method that each time uses only the same subset of the
known CB projections for reconstruction.
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Figure 6.14: The CB artifact FOMs (left) reconstruction bias and (right) artifact
heterogeneity, as a function of z. The black circles indicate the mean of these FOMs
across 6 CB data sets with different short-scan center λc, while the errorbars illus-
trate the FOM standard deviations across these 6 different data sets. From (top) to
(bottom): the short-scan FDK method, the ACE method, the virtual PI-line BPF
method and the virtual PI-line BPF method with Parker weighting.

virtual PI-Line BPF method with Parker weighting has, for all choices of λs, an overall bias
which is noticeably superior but also an overall artifact heterogeneity which is inferior to
that of full-scan FDK; its image quality seems to be best for small λs.
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Figure 6.15: Dependency of the reconstruction bias and the artifact heterogeneity on
the angular coverage of the scan interval λs for fixed short-scan center λc = 120◦.
The samples in the left diagram indicate for each method the average reconstruction
bias across the slices z ∈ [0 mm, 90 mm] and similarly, the right diagram presents
the average artifact heterogeneity for z ∈ [0 mm, 90 mm]. In each diagram, the
circles correspond to the short-scan FDK method, the squares to the ACE method
and the diamonds to the virtual PI-line BPF method with Parker weighting. The
dashed horizontal line indicates in each figure the FOM value obtained from CB data
corresponding to a full circular scan using the full-scan FDK reconstruction method.

We realize that for the ACE method, the average reconstruction bias converges to a level
that is superior to that achievable with the full-scan FDK approach for λs approaching
360◦, while artifact heterogeneity seems to converge to the level of full-scan FDK. This
convergence behavior is not unexpected, since the ACE algorithm converges by construction
towards the full-scan FDK algorithm with Hu’s correction term for λs approaching 360◦

[44].

CB artifacts were furthermore studied on the reconstructions of a disk phantom. The
main body of this phantom consists of a cylinder of radius 110mm and height 120 mm.
Its axis coincides with the z-axis and the lower edge of the cylinder is at z = −10 mm.
The interior of the phantom contains a stack of 6 cylindrical disks. Each disk has density
500HU and a radius of 80 mm and a height of 10 mm. The disks are centered on the z-axis,
the distance between the centers of two adjacent disks measures 20 mm and the center of
the lowest disk is at z = 0mm; see Figure 6.13 for an illustration of the true phantom
values. Reconstructions of the disk phantom from circular CB data typically show a high
level of CB artifacts, since the 3D Radon transform of this phantom contains significant
information in the region that cannot be measured with the circular scan.

CB data was simulated using again parameters given in table 6.1 and using a short-
scan of scan interval λs = 200◦ (the actual value of λc is irrelevant due to the symmetry of
the object). Reconstruction was carried out on an isotropic sampling grid using sampling
distance of 0.5mm; the left column in Figure 6.16 shows the slice x = 0 mm through these
reconstructions. CB artifacts were evaluated by considering the relative reconstruction error
ε, defined in (6.41), for the points inside each disk that are at least 2mm away from the
disk edges. The distribution of this error for the 3D region corresponding to the topmost
disk of the phantom is presented in the histograms in the center of Figure 6.16. Again,
each distribution is represented compactly by its mean and standard deviation, yielding two
FOMs similar to those defined in (6.42), namely the reconstruction bias and the artifact



84 Chapter 6. Evaluation of Circular Short-Scan Reconstruction Methods

heterogeneity. These two FOMs are displayed in the right of Figure 6.16, as a function of
the disk center.
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Figure 6.16: CB artifacts in the disk phantom reconstruction. (Top) to (bottom): the
short-scan FDK method, the ACE method, the virtual PI-line BPF method without
Parker weighting and the virtual PI-line BPF method with Parker weighting. (Left)
Visualization of the vertical slice x = 0mm through the reconstruction result in the
grayscale window [−500 HU, 500 HU]. (Center) Histogram of the relative reconstruc-
tion error for the points within the topmost disk of the phantom. The black circle
indicates the reconstruction bias and the black horizontal line the artifact hetero-
geneity. (Right) The bias (black circles) and artifact heterogeneity (gray crosses) for
each of the 6 disks of the phantom, as a function of the disk center.
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While the reconstruction of the disk centered on the PCS is fairly accurate in each
reconstruction method, the level of CB artifacts rapidly increases with increasing distance
to the PCS. The reconstruction bias seems to be worst with the ACE method, reaching
almost 19% for the topmost disk, whereas the other methods yield values of about 15%.
The results of the virtual PI-Line BPF methods seem to be visually of best quality, since,
for instance, the strength of the shading artifact enclosing each disk is reduced.

6.6.4 Evaluation of Impact of Axial Truncation

To study the impact of axial truncation on image quality, we simulated CB data of the
FORBILD thorax phantom [3] in the C-arm geometry and using a short-scan of λc = 0◦

and λs = 224◦. It is assumed that CB data is known for the intervals u ∈ [−440, 440]mm
and v ∈ [0, 220]mm during the entire scan. This selected detector size is sufficient to capture
the entire horizontal extent of the phantom. However, the detector height is insufficient to
allow the entire phantom extent in z to be measured. Therefore, all CB projections suffer
from axial truncation and this truncation occurs close to the region where the top end of
the lungs project to; see the right side of Figure 6.17 for an illustration of the degree of
truncation5.

Reconstruction from these truncated CB projections was carried out for the entire object
support region Ωf , using again isotropic sampling of 0.5mm along each dimension. Image
quality in the reconstructed fe is degraded by several effect at the same time. Regions away
from z = 0mm, for instance, show strong CB artifacts, mainly caused by the significant z-
gradient of the density values in the vertebrae. In order to identify the impact of truncation
on image quality, reconstruction was performed a second time, now using non-truncated
CB data as illustrated in the left of Figure 6.17.

The first and the second column in Figure 6.18 show the vertical slice x = 0 mm through
the reconstructions of the thorax phantom from non-truncated CB data and from CB data
with axial truncation, respectively. To investigate axial truncation impact on image quality,
we compute the difference between these two results in the specific region Strunc that consists
of points x that project onto the measured detector area (in the truncation scenario) for
each λ; this difference is shown in the third column of Figure 6.18.

Axial truncation in the CB data has no effect on the performance of the short-scan FDK
method in the region Strunc at all, as expected, because data filtering uses lines that are
parallel to the u-axis and is therefore not impacted by truncation in v direction. Truncation
artifacts occurring in the results of the virtual PI-line BPF methods are constricted in the
small triangular region at the top of Strunc, but do not affect the results throughout other
regions of Strunc. The ACE method, however, yields axial truncation artifacts that are
distributed in general throughout the entire reconstructed region Strunc, except for the
points that belong to the plane of the source trajectory. On the other hand, these artifacts
are smooth and their magnitude drops rapidly with increasing distance from the top of the
reconstructed region.

5Note that in this evaluation, we did not involve any heuristic correction algorithms that aim at
approximately extrapolating the CB data beyond the edges of truncation.
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Figure 6.17: Single example CB projection of the FORBILD thorax phantom in (left)
the scenario without axial truncation across the top detector border and (right) the
scenario with axial truncation of CB data, occurring at vmax = 220mm. The gray-
value in these two figures encodes the number of photons measured on the detector
plane.

6.7 Discussion and Conclusions

In this chapter, we focussed on the problem of image reconstruction from CB data acquired
along a short-scan circular trajectory. First, we presented four state-of-the art approaches
that have been suggested in literature to accomplish this reconstruction task, namely the
short-scan FDK method, the ACE method and the virtual PI-Line BPF methods with-
out and with Parker weighting. We then carried out a detailed comparative evaluation
of these methods using simulated CB data and assuming geometry parameters that are
representative of clinical C-arm systems.

We quantified spatial resolution and CNR achievable with the considered algorithms.
The differences we observed were fairly small, but were overall in favor of the ACE method,
which was determined to yield less noise in the reconstructions, better resolution in (x,y)-
direction and also the most homogeneous distribution of these algorithmic properties over
the investigated region. However, some of these advantages of the ACE method seem to
be at the cost of its z-resolution, which is in average lower than that of the other methods
and which noticeably varies inside the region Ωf .

Another important focus of our comparative evaluation was on the issue of CB arti-
facts, i.e., the impact of theoretical data insufficiencies on the 3D reconstruction result.
As expected, non of the considered methods is in general able to yield accurate results
throughout the entire 3D image volume. However, strength and structure of artifacts vary
noticeable among the considered methods. We note that the overall level of CB artifacts
appeared to be highest in the results of the short-scan FDK method, where low-frequency
artifacts affect reconstruction throughout large parts of the image volume. The ACE results
also suffer in general from low-frequency, gradient-like artifacts that may affect quantita-
tive accuracy almost everywhere in the 3D image volume. However, these artifacts are of
significantly reduced strength, compared to that of short-scan FDK, so that they are not as
disturbing to the human observer. The two realizations of the virtual PI-Line BPF method,
in contrast, yield high-frequency CB artifacts. These artifacts introduce artificial structure
to the estimated object density function and may thus distract the observer from actual
structures, especially during visual interpretation of image content. However, outside these
localized, streak-like artifact regions, the BPF-based reconstructions are quantitatively very
accurate and thus closer to the true object density than the reconstructions obtained with
both, short-scan FDK and ACE.
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Figure 6.18: Impact of axial truncation on image quality for (top to bottom) short-
scan FDK, ACE, virtual PI-Line BPF and virtual PI-Line BPF with Parker weight-
ing. The left two columns illustrate the slice x = 0mm through the reconstruction
obtained from (left) non-truncated and (center) truncated CB data, both in the
grayscale window [−150 HU, 150 HU]. (Right) Pointwise differences between the two
results in the region Strunc, using a window of width 300 units on the Hounsfield scale,
and profile of these difference images along the central vertical line.

The investigated methods come with a different behavior in presence of truncation in the
CB data. It is known that by construction, the BPF methods provide some flexibility with
respect to truncation along the u-axis, unlike short-scan FDK and ACE. Here, however,
we quantified the impact of axial truncation on image quality, i.e., of truncation along
the v-axis. We note that there is a large region of interest Strunc in which the short-
scan FDK method is not affected at all by this truncation scenario. The other methods
under investigation, however, suffer from artifacts attached to the edge of truncation and
spreading into Strunc; the region affected by truncation is largest in the ACE method.

In conclusion, each of the four investigated approaches for short-scan circular CB re-
construction, which are either currently in use or which have been recently suggested in
literature, has its pros and cons. The decision of which of these algorithm should be favored
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for practical purposes thus highly depends on the imaging application and also on the class
of investigated objects. Short-scan FDK, for instance, is computationally very efficient and
comes with low (axial) detector requirements. The ACE method has advantages in image
noise and CB artifacts only appear as low-contrast, low-frequency image defects. The BPF
methods, on the other hand, are quantitatively most accurate and can deal with some sce-
narios of transaxial truncation, but at the cost of occasional streak artifacts. Finding an
efficacious analytical circular short-scan reconstruction algorithm that brings advantages in
every aspect of image quality is a highly complex issue and an overall satisfying solution
may not exist due to the data incompleteness.



Chapter 7

A Factorization Method for
Circular Short-Scan CB
Reconstruction

7.1 Introduction

In this chapter, we present a novel, original method for CB image reconstruction in the
short scan circular acquisition geometry. Our method is based on a theoretically-exact
factorization of the 3D short-scan CB reconstruction problem into a set of independent 2D
inversion problems, each of which corresponds to finding the object density on one plane.
Reconstruction involves an iterative algorithm to numerically solve these 2D inversion prob-
lems on a one-by-one basis. Reconstruction of the entire 3D image volume is achieved by
combining the results from each 2D inversion problem. The fundamental property of our
factorization approach, which distinguishes it from the reconstruction methods compared
in chapter 6, are its ability to perform reconstruction without involving geometric approx-
imations and to enforce all reconstructed values to be positive. These properties make the
factorization approach similar to 3D iterative reconstruction approaches; see for instance
[35]. The latter, however, achieve reconstruction using 3D iterations, which is computation-
ally demanding; our factorization approach, in contrast, involves only a set of 2D iterations
and is thus more efficient.

7.2 Reconstruction Theory

This section presents the theoretical background underlying our reconstruction approach.
We describe, in particular, how the factorization of the circular CB reconstruction problem
is established and describe its usefulness for reconstruction of a 3D volume of interest.

7.2.1 The Plane of Interest P
Our method targets reconstruction within planes that are parallel to the z-axis and that
intersect the source trajectory at two locations. Let P be such a plane of interest and let
λ1 and λ2 with λmin ≤ λ1 < λ2 ≤ λmax denote the source polar angles where P hits the
source trajectory. By construction, the source positions a(λ1) and a(λ2) both belong to P.

89
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Figure 7.1: Illustration of geometric entities on the plane of interest P , which is
orthogonal to the plane of the circular scan (PCS) and intersects the source trajectory
at a(λ1) and a(λ2).

In the following, several entities will be introduced that are closely related to P. Some
of these entities correspond to geometric parameters that provide further description on P.
Others correspond to functions which are defined on P and take an essential role in the
reconstruction algorithm. To keep the notation clear, all these entities will be described
from now on with symbols that contain a hat.

A selection of P implicitly imposes another coordinate system for the image volume.
This new system is described with the orthonormal system of vectors

ês = (cos θ̂, sin θ̂, 0)T, êt = (sin θ̂,− cos θ̂, 0)T and êz = (0, 0, 1)T, (7.1)

where θ̂ = λc = (λ1 + λ2)/2; see Figure 7.1. By definition, θ̂ is the angle between the
y-axis and P, measured in the counterclockwise direction, and ês is normal to P. We use
ŝ to denote the (signed) distance of P from the origin (0, 0, 0)T of the image volume; ŝ is
measured in the direction of ês and is such that ŝ = ês ·a(λ1) (or, equivalently, ŝ = ês ·a(λ2)).
Hence, a point x belongs to P if x · ês = ŝ.

To specify locations on P, we use Cartesian coordinates t and z, measured along the
directions êt and êz, respectively. The point (t, z)T = (0, 0)T is at the orthogonal projection
of the point (0, 0, 0)T onto P, and t increases when moving towards a(λ1). The quadruple
(λ1, λ2, t, z)T then refers to a point of the image volume, the Cartesian coordinates of which
are provided by the function

x̂(t, z) = ŝ ês + t êt + z êz =




ŝ cos θ̂ + t sin θ̂

ŝ sin θ̂ − t cos θ̂
z


 . (7.2)
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7.2.2 Image Reconstruction on P
The object density on P, i.e. the 2D function

f̂(t, z) = f(x̂(t, z)) (7.3)

is now recovered using a two-step scheme. In step one, an intermediate function b̂(t, z) is
calculated for all points on P, by first differentiating CB data with respect to the parameter
of the source trajectory at fixed ray direction (thus applying an operation already used for
the ACE method, as described in the previous chapter):

gF (λ, u, v) = lim
ε→0

g(λ + ε, α(λ, u, v))− g(λ− ε, α(λ, u, v))
2ε

(7.4)

The differentiation result is then backprojected onto P while using only the data over
λ ∈ [λ1, λ2], to obtain

b̂(t, z) =

λ2∫

λ1

1
‖x̂(t, z)− a(λ)‖gF (λ, u∗(x̂(t, z)), v∗(x̂(t, z))) dλ, (7.5)

where u∗(x̂(t, z)) and v∗(x̂(t, z)) denote the detector coordinates of the CB projection of
x̂(t, z) at the given λ; see (6.8) on page 61 for the definition of the two functions u∗ and v∗.

The algorithmic steps to compute the intermediate function resemble those of classical
FBP methods. However, an important difference lies in the filtering step, which, according
to (7.4), corresponds to a local operation. Consequently, to accurately obtain b̂ at coordi-
nates (t, z)T, it is sufficient to know, for each λ ∈ [λ1, λ2], the function g on the rays that
pass through a neighborhood of x̂(t, z). The union of all points (t, z)T for which g satisfies
this sufficiency condition defines a region, which we call Ωb̂.

Actual image reconstruction is achieved in step two, by making use of a fundamental
relation linking the intermediate function to the wanted object density function [72]. This
fundamental relation, which has been briefly explained in section 5.2.5, is expressed in its
general form, following the notation in [72], as

1
π

b(x) = K∗(ω(λ2, x), x)−K∗(ω(λ1, x), x) (7.6)

using the short-hand expression

K∗(ω, x) = K(l, ω, s)
∣∣
l=(x−s)·ω (7.7)

with the unit vector pointing from the source point at λ towards x

ω(λ, x) =
x− a(λ)
‖x− a(λ)‖ (7.8)

and the 1D convolution

K(l, ω, s) =

∞∫

−∞

1
π(l − l′)

f(s + l′ω) dl′. (7.9)

Before explaining the involved equations, we first try to express this relation in terms
of the geometry assumed in this chapter and using the coordinate system introduced on
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Figure 7.2: Illustration of functions f̂ and b̂ on P . (Top) An example realization
of the 2D intermediate function b̂ in the region Ωb̂ (delineated with a dashed line).

(Bottom) The corresponding object density function f̂ , in its support Ωf̂ . The value

of b̂ at Q, as indicated in the top figure, is related according to (7.14) to the values
of f̂ along the lines L1 and L2 illustrated in the bottom figure. Here, (tλ1 , zλ1) and
(tλ2 , zλ2) define, respectively, the points a(λ1) and a(λ2) using the coordinates on P .

P. Since reconstruction is focussed on the points in P only, we may substitute x = x̂(t, z).
We now consider only the first term on the right hand side (RHS) of (7.6), for which we
will use the short-hand notation K̂2 = K∗(ω(λ2, x̂(t, z)), x̂(t, z)). Selecting s = a(λ2) yields
l = ‖x̂(t, z)− a(λ2)‖ and therefore

K̂2 =

∞∫

−∞

1
π(‖x̂(t, z)− a(λ2)‖ − l′)

f

(
a(λ2) + l′

x̂(t, z)− a(λ2)
‖x̂(t, z)− a(λ2)‖

)
dl′. (7.10)

For the argument of f in (7.10), we have
(

a(λ2) + l′
x̂(t, z)− a(λ2)
‖x̂(t, z)− a(λ2)‖

)
· ês = ŝ + l′

ŝ− ŝ

‖x̂(t, z)− a(λ)‖ = ŝ (7.11)

which shows that the function f in (7.10) is only evaluated on P. Introducing coordinates
zλ2 = a(λ2) · êz and tλ2 = a(λ2) · êt allows the notation

K̂2 =

∞∫

−∞

1
π(‖x̂(t, z)− a(λ2)‖ − l′)

× f̂

(
tλ2 + l′

t− tλ2

‖x̂(t, z)− a(λ2)‖ , zλ2 + l′
z − zλ2

‖x̂(t, z)− a(λ2)‖
)

dl′

(7.12)
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The change of variable l̃ = l′(t−tλ2)/‖x̂(t, z)−a(λ2)‖ with Jacobian ‖x̂(t, z)−a(λ2)‖/ |t− tλ2 |
develops (7.12) into

K̂2 =

∞∫

−∞
dl̃

sign(t− tλ2)
π(t− tλ2 − l̃)

f̂

(
tλ2 + l̃, zλ2 + l̃

z − zλ2

t− tλ2

)

=

∞∫

−∞
dτ

sign(t− tλ2)
π(t− τ)

f̂

(
τ, zλ2 + (τ − tλ2)

z − zλ2

t− tλ2

)
,

(7.13)

where τ = tλ2 + l̃.
Similar calculations for the second term in the RHS of (7.6) can be performed. From

there,the relation between the intermediate function b̂ and the object density f̂ may be
expressed as

1
π

b̂(t, z) =

∞∫

−∞
hhilb(t− τ)

(
f̂ (τ, z1(τ)) + f̂ (τ, z2(τ))

)
dτ (7.14)

since, by definition, tλ2 < t < tλ1 . In this equation, hhilb denotes the kernel of the Hilbert
transform; see (4.4) on page 4.4 for details about this kernel. The functions

z1(τ) = zλ1 + (τ − tλ1)
z − zλ1

t− tλ1

and z2(τ) = zλ2 + (τ − tλ2)
z − zλ2

t− tλ2

(7.15)

describe two oblique filtering lines on P. These lines are defined such that the points
x̂(τ, z1(τ)) are on the line L1 connecting a(λ1) to x̂(t, z), while the points x̂(τ, z2(τ)) are on
the line L2 connecting a(λ2) to x̂(t, z), as depicted in Figure 7.2.

To understand (7.14), picture its left hand side (LHS) as the value of b̂ at one fixed
point Q in the plane P. Then, draw the two lines, L1 and L2, that connect this point to
the source positions a(λ1) and a(λ2). These lines are within P as shown in Figure 7.2. The
RHS of (7.14) is the addition of the outcome at Q of the convolutions of f̂ with the kernel
hhilb along these two lines. Altogether, (7.14) thus corresponds to an integral equation that
relates one value of b̂ to many values of f̂ . Both, b̂ and f̂ are 2D functions and consequently,
image reconstruction on P corresponds to a 2D problem, namely to solving integral equation
(7.14) for f̂ .

We note that the feasibility of finding this solution depends on the support of f̂ , which
we denote as Ωf̂ , and on the region Ωb̂ in which the intermediate function is known. Here,
Ωf̂ is defined by the intersection of the object support region Ωf and the plane P. If Ωf is
restricted to the plane of the scan so that Ωf̂ contains only points with z = 0, the theory of

finite Hilbert inversion states that reconstruction is possible if b̂ is known over the support
of f̂ [65]. We hypothesize in this paper that this condition can be extended to a general
Ωf̂ : i.e., that a recovery of f̂ is possible if b̂ is known over the entire support of f̂ , which
requires Ωf̂ ⊂ Ωb̂. Note in this context that the CB data gm does not have to be non-
truncated . As long as the CB projection of region Ωf̂ onto the detector plane is contained
within the measured area [umin, umax] × [vmin, vmax] for each λ ∈ [λ1, λ2], there is enough
information to compute b̂ over the support of f̂ – and therefore, following our hypothesis,
there is enough information to reconstruct f̂ . See Figure 7.3 for an illustration.

7.2.3 Volume Reconstruction

The previous section described how to recover the object density in one plane of interest.
From there, reconstruction in 3D can be accomplished in a straight-forward manner, by
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Figure 7.3: CB data truncation and its impact on the reconstruction on the planar
reconstruction: (Top) 3D illustration of a specific data acquisition scenario (PCS
stands for the plane of the circular scan). (Bottom) CB projection of the object
support region with the source at (left) points A and (right) point B. The detector
is indicated as a black delineated rectangle. The projection of Ωf̂ , i.e., of the object
support in the plane of interest, is shown as a dark region. Although the entire object
Ωf is truncated, the projection of Ωf̂ is covered by the detector for each λ ∈ [λ1, λ2].

Therefore, the intermediate function b̂ can be computed over the region Ωf̂ .

considering all planes on which reconstruction is possible according to section 7.2.2 and by
carrying out the required algorithmic steps to obtain f̂ on each such plane. Combination
of these planar results using interpolation schemes simply yields the object density for any
3D image volume that lies in the union of the considered planes. Hence, 3D reconstruction
is accomplished by finding solutions to a set of 2D problems on a one-by-one basis.

From a practical viewpoint, however, the consideration of all possible planes is not fea-
sible nor attractive since a lot of redundant information could be obtained. Furthermore,
the issue of combining the planar results can be handled more efficiently if the considered
planes do not intersect each other in the object region. For these reasons, we focus here
on planes that are parallel to each other. We note that this choice may not be optimal in
terms of noise, but it highly simplifies the numerical implementation. Since each planar
reconstruction is achieved using Cartesian coordinates t and z, and since the considered
planes are parallel to each other, a direct assembling of the planar reconstructions immedi-
ately yields the object density function f on a 3D Cartesian grid, as typically desired in 3D
image reconstruction. More specifically, from now on, we focus on a one-parametric family
of planes with normal vector ês = (cos θ̂, sin θ̂, 0)T, where θ̂ = λc = (λmin + λmax)/2, and
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use as plane parameter the signed distance from the origin (0, 0, 0)T, measured along the
vector ês. Volume reconstruction thus uses the set of planes

Pp = {x |x · ês = sstart + p∆s, p = 0, 1, . . . , Np}, (7.16)

where Np gives the number of considered planes, while integer p ≥ 0 is the plane index
and ∆s defines the distance between two adjacent planes. The quantity sstart denotes the
signed distance of the first considered plane, P0, from the image volume origin. In order
to have sufficient data for reconstruction on any Pp according to section 7.2.2, we require
sstart ≥ smin with smin = a(λmin) · ês = a(λmax) · ês.

7.3 Numerical Algorithm

This section suggests a numerical algorithm to achieve image reconstruction on a plane
P according to the theory of section 7.2. The basic principle of this algorithm is to first
compute a discrete representation of b̂ and to accurately transfer the initial, continuous
2D inversion problem (7.14) into a discrete setting. Next, an iterative scheme is used to
compute an estimate f̂e for the planar object density f̂ in (7.14).

7.3.1 Computation of the Intermediate Function

The suggested algorithm achieves CB data differentiation according to (7.4) using the ray-
interpolation method suggested in [68], which has already been utilized in the implemen-
tation scheme presented in section 6.4. As described before, this differentiation method
involves a parameter ε, which controls the trade-off between resolution and noise in the
results [68]. For all evaluations presented throughout this chapter, ε was fixed to the value
ε = 0.01 which was determined to yield b̂ in high spatial resolution [68]. The integration in
λ in the backprojection equation (7.5) is approximated by a summation of the differentiated
data gF at the known samples in λ according to the trapezoidal rule. For increased com-
putational efficiency, the intermediate function is immediately computed for the entire set
of planes Pp at once. This computation yields for each of these planes an approximation b̂e

of the true function b̂ and the accuracy of b̂e depends on the noise in the acquired CB data
and the discretization effects occurring during computation. For simplicity, the remainder
of section 7.3 is focussed again on just one single plane of interest P.

7.3.2 Discretization of the 2D Inversion Problem

The functions f̂ and b̂ on the considered plane P are both discretized, over their respective
regions Ωf̂ and Ωb̂, using a Cartesian sampling pattern in t and z. The sampling density for
both functions is assumed to be identical, with the distance between two adjacent samples
specified by ∆t in t and by ∆z in z. However, the sampling grids used for f̂ and b̂ are
shifted with respect to each other along the t-axis by ∆t/2. More precisely, the function f̂
is sampled at coordinates (i∆t, j∆z)T with i ∈ Z and j ∈ Z, while b̂ is sampled at interleaved
coordinates (i∆t + ∆t/2, j∆z)T. This shift allows an improved realization of the required
1D convolutions in the discrete setting, as will be explained below. Furthermore, to better
emphasize the discrete character of the resulting entities, the index notation

f̂i,j = f̂ (i∆t, j∆z) and b̂i,j = b̂ (i∆t + ∆t/2, j∆z) (7.17)
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will be used from now on. The 2D relation (7.14) is then discretized in the form

b̂σ
i,j = π∆t

imax∑

k=imin

hσ
hilb

((
i− k +

1
2

)
∆t

)(
f̂ (k∆t, z1(k∆t)) + f̂ (k∆t, z2(k∆t))

)
. (7.18)

The quantity k ∈ Z covers the interval [imin, imax] that is bounded by the minimum and
maximum value of index i among all samples f̂i,j in Ωf̂ . The restriction of the bounds of

summation in (7.18) became possible since we assume as an a priori knowledge that f̂i,j = 0
everywhere outside the region Ωf̂ . The superscript σ in (7.18) denotes a free parameter that
allows us to modify the smoothness of the applied discretization scheme. More precisely,
the LHS of (7.18) corresponds to a discrete 1D convolution of the known samples of b̂,
namely

b̂σ
i,j = U(σ)

2∑

c=−2

exp
(−c2

2σ2

)
b̂i−c,j . (7.19)

Hence, b̂σ
i,j is a smooth version of b̂i,j , obtained with a Gaussian kernel of standard deviation

σ∆t that has been discretized at the 5 sampling positions −2∆t, −∆t, 0, ∆t and 2∆t. The
factor U(σ) allows for a correct normalization of the discrete kernel and is given as

U(σ) =

(
2∑

c=−2

exp
(−c2

2σ2

))−1

. (7.20)

Low-pass filtering of the function b̂i,j is used to decrease discretization errors in the 2D
intermediate function, and thereby provide improved input data for the planar reconstruc-
tions. While reducing discretization errors, we note that this low-pass filtering also reduces
resolution. We counteract this resolution issue by including a similar Gaussian filtering in
the RHS of (7.18). More precisely, the convolution kernel, hσ

hilb, in (7.18) is defined as

hσ
hilb(t) = U(σ)

2∑

c=−2

exp
(−c2

2σ2

)
hb

hilb(t− c∆t) (7.21)

with U(σ) given by (7.20). This means that hσ
hilb(t) is a Gaussian-smoothed version of the

band-limited Hilbert kernel hb
hilb(t) that is based on rectangular apodization and a cut-off

frequency of 1/(2∆t). The expression of hb
hilb(t) is given as

hb
hilb(t) =

1
πt

(
1− cos

πt

∆t

)
, (7.22)

see section 4.4.1, and we note that according to (7.18) and (7.21), this function is only eval-
uated at coordinates for which the cosine term vanishes. This suggested sampling scheme
avoids oscillations in the discretized filter kernel and contributes to an overall improvement
in numerical precision and to less aliasing artifacts in the reconstruction results [69, 32];
see also section 4.4.1 for a discussion about this issue.

Going back to relation (7.18), we finally note that the function f̂ on its RHS is in general
evaluated at points that are not on the sampling grid for f̂ , as illustrated in Figure 7.4. In
order to obtain for example the value f̂ (k∆t, z1(k∆t)), we use a linear interpolation in z
between the two samples f̂k,j and f̂k,j+1 that are closest to this location.

From now on, the discretized 2D functions f̂i,j and b̂σ
i,j will be represented using the

vectors f̂ ∈ RNf̂ and b̂
σ ∈ RNb̂ , respectively. This 1D representation is easily achieved by
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Figure 7.4: The applied discretization scheme on P : ∆z and ∆t define the density
of the sampling pattern. The small, dashed circles show all Nf̂ sampling positions

considered for f̂i,j, while the indices imin and imax describe, respectively, the leftmost

and rightmost sampling points of f̂i,j along coordinate t. We illustrate one filtering

line, which passes through a sampling position for b̂ (bright square). In order to
obtain, from the sampled f̂ , data at the positions of the black solid circles on this
filtering line, we use a linear interpolation in z between the two adjacent samples in
f̂i,j.

defining a function (i, j) 7→ r that maps a sample (i, j) of the 2D Cartesian grid to an
element r of the corresponding vector. In this notation, Nb̂ is the total number of samples
for b̂σ in i and j together and similarly, Nf̂ is the total number of samples used for f̂ . Then,

for each sample of b̂σ, relation (7.18) may be expressed in the form

b̂σ
r = mσ

r f̂ (7.23)

where b̂σ
r denotes element r of the vector b̂

σ
and mσ

r denotes the row r of a matrix Mσ ∈
RNb̂×Nf̂ . The components of mσ

r include both, the values of the filter kernel hσ
hilb(t) and

the interpolation weights for f̂ , as occurring in (7.18). A finite dimensional approximation
of the relation between all samples of b̂σ and f̂ on P is thus given by the linear system of
equations

b̂
σ

= Mσf̂ . (7.24)

Image reconstruction on P can now be accomplished by solving (7.24) for f̂ .
In the rest of this chapter, emphasis on the smoothing parameter σ is again dropped to

simplify the notation. So, from now on, the symbol b̂ will be used to describe b̂
σ
, while M

will be used for Mσ.

7.3.3 Stability and Numerical Inversion Scheme

The numerical stability of the reconstruction problem on P can be investigated by studying
the singular values of the system matrix M in (7.24), in a similar fashion as presented in
[26]. Using σ = 0 and the CB geometry parameters summarized in Table 6.1, we composed
the matrix M for the plane P defined by p = 0 and sstart = 0 mm and then computed its
singular values; see Figure 7.5. Note that we used the same number of samples, namely
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7528, for both b̂ and f̂ . Hence, M was square. Note also that the samples were distributed
in a region of shape similar to that of Ωb̂ in Figure 7.4, that we discretized this plane using
∆t = ∆z = 2mm, and that the maximum half cone-angle in P was about 11.3◦.
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Figure 7.5: The 7528 singular values of the example system matrix M, ordered from
the largest one (which has value 1) to the smallest one. The matrix M was obtained
using the geometry parameters explained in the text and using a discretization of
∆t = ∆z = 2 mm.

Figure 7.5 shows the singular values of matrix M, ordered from the largest to the small-
est value. We note that M is non-singular and that its condition number is approximately
33, and therefore unexpectedly small. We attribute this phenomena to the band-limitation
intrinsically modeled in M, which was introduced when discretizing the continuous problem.
The fast decay of the singular values in the last 10% of the graph in Figure 7.5, however,
is an indication that solving (7.24) for f̂ truly corresponds to an ill-conditioned problem
[9]. This ill-posedness is problematic in practical scenarios, where only an approximation
b̂e of the 2D intermediate function can be determined. To obtain a meaningful reconstruc-
tion from contaminated data, we focus on finding a regularized solution to a constrained
least-square formulation of (7.24). Furthermore, we consider two constraints, namely

1. CRAY: Knowledge about integrals of f̂ along rays that diverge from a(λ1) and a(λ2)
and that are entirely contained in P. These integrals are part of the acquired CB
data g.

2. CPOS: Knowledge that f̂ is a non-negative function, since it represents physical
object density.

Hence, we set up the constrained optimization problem in the form

minimize Q(f̂) := ‖Mf̂ − b̂
e‖2+α2‖Cf̂ − ĉe‖2

subject to f̂ ≥ 0.
(7.25)

The first term of Q(f̂) accounts for the congruence between the reconstruction and the
given intermediate function according to the relation modeled in M, while the second term
is a penalizing term that incorporates the linear constraint CRAY. Each row of the matrix
C contains an equation to compute a ray integral from the discrete f̂ , while the vector ĉe

contains the corresponding integral values, i.e., samples of the function g. The impact of
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CRAY may be adjusted using parameter α. We note that finding an appropriate value for
α is a difficult problem, which will be addressed in more details in section 7.4.2.

To simplify the notation for the remainder of this section, the objective function in
(7.25) may be expressed equivalently as

Q(f̂) = ‖Af̂ − d̂
e‖2

= f̂
T
ATAf̂ − 2f̂

T
ATd̂

e
+ d̂

eT
d̂

e
,

(7.26)

where

A =
[

M
αC

]
and d̂

e
=

[
b̂
e

α ĉe

]
. (7.27)

The solution of (7.25) is estimated using a projected steepest descent iteration scheme

[61, 16], during which a sequence of intermediate estimates f̂
(q) ∈ RNf̂ with integer iteration

index q ≥ 0 is computed. The initial estimate is set to f̂
(0)

= 0 and the updating equation
is

f̂
(q+1)

= C
(
f̂

(q)
+ w(q)u(q)

)
, (7.28)

using the update direction
u(q) = −∇Q(f̂

(q)
) (7.29)

with the gradient of Q(f̂) given as

∇Q(f̂) = 2AT(Af̂ − d̂
e
) (7.30)

and using the update step-width

w(q) =
1
2
‖u(q)‖2

‖Au(q)‖2
2

. (7.31)

To understand the scheme described by (7.28) to (7.31), note that in each iteration, f̂
(q)

is first updated in the direction of the steepest descent of the quadratic functional Q at
point f̂

(q)
, which is a natural selection when pursuing minimization. The update step-

width according to (7.31) guarantees that f̂
(q)

+ w(q)u(q) minimizes Q on the line through

f̂
(q)

with direction u(q) [16]. The operator C in (7.28) describes the orthogonal projection
onto the convex set of vectors with nonnegative entries. This projection assures that each
intermediate estimate satisfies the nonlinear constraint CPOS.

It can be shown that the sequence f̂
(q)

converges towards the solution of (7.25) for
increasing q [45]. However, at some point during the iterations, the intermediate estimate
may start diverging from the true, desired, f̂ due to contaminations in the data vector d̂

e
.

We want to avoid this behavior and therefore suggest to stop iterations early, when either
of the two following conditions is satisfied:

1. The iteration index q reaches a pre-defined maximum number γmax.

2. The value
∥∥∥f̂

(q) − f̂
(q−1)

∥∥∥
∞

(with ‖ · ‖∞ denoting the maximum norm) first becomes

equal or less than a certain threshold. This threshold is here defined as γthres

∥∥∥f̂
(q)

∥∥∥
∞

,
i.e., relative to the norm of the current intermediate estimate.
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Thus, iteration continues up to the maximum index γmax if at least one element of the
intermediate estimate is still updated strongly enough, even if the update in all other
elements is already below the introduced threshold. Note that there exists a number of
indications that the early stopping rule applied to our steepest descent iteration scheme
asymptotically defines a regularization process [63], as discussed in [9, 91].

Let Nq denote the iteration index at which the stopping criterion is satisfied. We define

f̂
e

:= f̂
(Nq)

(7.32)

as the nonnegative approximation to the solution of the constrained optimization problem
(7.25) and consider f̂

e
as a good estimate for the vector f̂ that satisfies (7.24). The inverse

of the mapping defined earlier in this section, r 7→ (i, j), yields f̂e
i,j from f̂

e
and therefore a

discrete 2D representation of the reconstructed object density on P, as desired.

7.4 Numerical Studies

This section presents an evaluation of the factorization method, based on CB data simulated
in the C-arm geometry (as defined previously in table 6.1). During data simulation, we made
sure that the CB projection of the object support region Ωf onto the detector plane was
always entirely contained in the measured area [umin, umax]× [vmin, vmax].

7.4.1 Experimental Set-Up

The experiments in this section involve two mathematical phantoms. The first one is a high-
contrast disk phantom that consists of six cylindrical disks embedded in a low-attenuating
cylinder of radius 100 mm and density −900HU. Each disk has a thickness of 10 mm, a
radius of 80mm and the density of water (defined as µwater = 0.01836mm−1). The disks
are centered on the z-axis and stacked one above the other with a center-to-center distance
of 20 mm between any two adjacent disks. The first disk was centered on the plane of the
source trajectory and therefore, all other disks were above that plane. The second phantom
we use in this chapter is the FORBILD head phantom [3]. In the presented evaluations, the
head phantom was positioned so that its center is 40mm above the plane of the circular
scan.

As described in section 7.3, the iterative inversion algorithm that we use for each planar
reconstruction involves the selection of 4 parameters: α, σ, γthres and γmax. We here
study in details the impacts of parameters α and σ on achievable reconstruction quality, by
investigating the results obtained on a single plane of interest. Unless otherwise stated, a
fixed stopping rule was used, and this rule was defined with γthres = 0.002 and γmax = 400.

7.4.2 Impact of Parameter α on Image Quality

The effects of α on image quality are studied by reconstructing the disk phantom for a
range of values of α while using the discretization ∆t = ∆z = 0.5 mm. The plane P on
which reconstruction was achieved was defined with sstart = 0 mm, p = 0 and we set σ = 0.

The reconstruction results were evaluated quantitatively by computing as a FOM, i.e.,
as a figure of merit, the root-mean-squared error (RMSE) between reconstruction f̂e and
the true object density f̂ within two different regions in P. These regions, denoted as A
and B, were rectangular with width 100 mm and height 6mm and were entirely contained,
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Figure 7.6: The impact of α on image quality: The two graphs at the top show the
RMSE in regions A and B (see Figure 7.7) as a function of α2, while using (left) the
defined stopping rule and (right) a fixed number of 400 iterations. The dashed curves
are achieved using CB data with Poisson noise and 25, 000 photons per ray, and the
solid curves show results for non-noisy CB data. The graph at the bottom illustrates,
for the noisy measurements, the convergence of the RMSE in region B for the three
choices (dashed) α2 = 10−5, (solid) α2 = 10−2 and (dash-dotted) α2 = 0.85. The
circle on each curve indicates the iteration at which the stopping criterion, which was
used for the left diagram, is satisfied. The dashed horizontal line in each figure shows,
for comparison, the RMSE obtained in region B with short-scan FDK and non-noisy
data.

respectively, in the bottom disk and in the top disk of the phantom (see Figure 7.7). The
two graphs in the top of Figure 7.6 display the RMSE as a function of α2 in regions A
and B, for both ideal and noisy CB data. Noisy CB data was simulated assuming the
Poisson noise model and an emission of 25, 000 photons per measurement ray. For the
first graph, we used the stopping criterion defined above (γthres = 0.002 and γmax = 400),
whereas the second graph was obtained using a fixed number of 400 iterations (thus without
using the γthres rule). Figure 7.6 shows that α has in either case a strong impact on
the reconstruction results. This impact is particularly significant in regions remote from
z = 0 mm (top curves in the graphs). Selecting α too small or too large yields unbalancing



102 Chapter 7. A Factorization Method for Circular Short-Scan CB Reconstruction

region B

region A

trace of the
plane z=0

Figure 7.7: The plane P with sstart = 0mm and p = 0 through the disk phantom.
(Top-left) Illustration of the true density values, of the phantom position relative to
the plane of the circle and of regions A and B. (Top-right) Reconstruction using short-
scan FDK. (Bottom) Reconstruction using the factorization approach and parameters
α2 = 10−2, σ = 0 from (left) non-noisy CB data and (right) CB data with Poisson
noise assuming an emission of 25, 000 photons per measurement ray. Visualization in
[−1000 HU, 50 HU].

between the two terms of the objective function in (7.25) and this unbalancing affects
convergence and achievable image quality, thus demonstrating that each term contains
crucial information for reconstruction. Clearly, a careful selection of this parameter, such as
α2 = 10−2 in the considered experiment can improve image quality and convergence speed.
These observations seem to apply as well to noisy data as to non-noisy data. Figure 7.7
shows that overall, noise is fairly robustly handled.

The diagram in the bottom of Figure 7.6 presents, for the noisy CB data, a closer
investigation on the convergence properties of RMSE in region B for three particular choices
of α2: α2 = 10−5, α2 = 10−2 and α2 = 0.85. We realize that the general development of
the RMSE during the iteration process is similar for various selections of this parameter:
the intermediate estimates approach the true densities, reach a minimum distance to them
at some iteration index and then start to diverge. Again, the superiority of α2 = 10−2

becomes obvious, because this choice, compared to the other two, yields (i) better image
quality for almost any fixed number of iterations and (ii) a minimum FOM-value indicating
that the optimal reconstruction is closer to the true density and is reached after fewer
iterations. We also note that the stopping criterion we applied for the top-left of Figure 7.6
is satisfied fairly early, before the minimum of either of the three curves is reached. On the
other hand, the small improvements expected when continuing iterations, appear not very
attractive considering that up to 10 times more iterations would have to be carried out.
The selected values of γmax and γthres thus achieve a practical trade-off between efficiency
and image quality. Note, in this context, that the three investigated choices of α already
yield improved CB artifact behavior, compared to short-scan FDK, after only 10 iterations,
as depicted in the bottom of Figure 7.6.
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Figure 7.8: Reconstructions of the FORBILD head phantom on the plane P with
sstart = 10mm and p = 0 in the grayscale window [20 HU, 80 HU]. From (left) to
(right): using parameters σ = 0, σ = 0.7 and σ = 1.4. Rightmost image: difference
between reconstructions using σ = 0 and σ = 0.7 in a compressed window of width 10
units on the HU scale. The bottom edge in each of the presented images corresponds
to z = 0mm.

7.4.3 Impact of Parameter σ on Image Quality

The effect of σ was studied using reconstructions of the FORBILD head phantom within
the plane P that is given by p = 0 and sstart = 10 mm. The plane P was again discretized
using ∆t = ∆z = 0.5mm and the reconstructions were obtained with fixed α2 = 10−2,
while using three different values of σ, namely σ = 0, σ = 0.7 and σ = 1.4. The results,
displayed in Figure 7.8, show that an appropriate choice of the smoothing parameter, such
as σ = 0.7, can lower the strength of horizontal, streak-like discretization artifacts. A large
selection of σ should be avoided, since it would degrade high frequency contents in b̂i,j too
much. Then, a reconstruction of the object density f̂i,j in its original resolution as pursued
according to (7.18) would incorporate an additional deconvolution task. This issue will in
general increase the ill-posedness of the problem so that the convergence property of the
2D optimization problem might be affected and so that additional artifacts might arise; see,
e.g., the ringing in the third image of Figure 7.8 that occurs when selecting σ = 1.4.

7.5 Comparative Evaluation of the Factorization

Method

This section presents a comparison of our factorization approach to the short-scan FDK
method, the ACE method and the virtual PI-Line BPF methods, i.e., to the reconstruc-
tion approaches discussed in chapter 6. This evaluation is carried out in terms of spatial
resolution, image noise and CB artifacts and also studies the impact of axial truncation.

During these comparative studies, the 2D iterations for the factorization approach were
stopped according to the parameters γmax = 400 and γthres = 0.002, and we used α2 = 10−2

and σ = 0.7, which turned out to be efficacious parameter values in the investigations of
section 7.4. In contrast to that section, however, reconstruction was now carried out not
only a single plane of interest, but for the entire 3D image volume, by following the concepts
described in section 7.2.3.
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7.5.1 Comparison of Spatial Resolution and Image Noise

Spatial resolution was evaluated using the profile-matching method of section 6.6.1. Hence,
we simulated CB data of the CB performance phantom using geometry parameters identical
to those of table 6.1 on page 70 and using a short-scan with λc = 0◦ and λs = 210◦. Image
reconstruction with the factorization approach was achieved using a set of 720 planes Pp,
all of which were orthogonal to the x-axis. We selected sampling parameters ∆s = ∆t =
∆z = 0.5mm and consequently, the object density function was recovered on an isotropic
grid in the image volume with sampling distance 0.5mm.
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Figure 7.9: Estimate of spatial resolution in the plane of the circle for (left) the fac-
torization approach and (right) the ACE method2. The black curve in each diagram
shows the mean z-resolution at distance 160mm from the origin as a function of the
polar angle. The gray rectangles show, for the same locations, the mean resolution in
x− y; the bars attached to each such rectangle illustrate the anisotropy in this x− y
resolution.

The left side of Figure 7.9 presents, for the factorization approach, the estimated spatial
resolution in x−y and in z inside the plane of the circle, i.e., the plane of the circle scan, and
on the ring with radius 160 mm centered on the origin of the image volume. We observe
that for the selected algorithmic parameters, the factorization approach yields an x − y
resolution that is almost identical to that of the ACE method, which was found to yield
the most homogeneous overall resolution among the methods of chapter 6. It therefore
outperforms the x − y resolution property of the short-scan FDK as well as the virtual
PI-line BPF method; see section 6.6.1. However, whereas the ACE method achieves this
specific resolution advantage at the cost of lower z-resolution, the factorization approach
seems to come along without this drawback; its z-resolution characteristic inside z = 0mm
is slightly superior to that of the other considered methods.

We also observe that the resolution curves determined for the factorization method
are less smooth. We attribute this behavior to the fact that the resolution estimate at
a specific location is based on the reconstruction results on several vertical planes. Each
planar result was obtained using in general a different number of iterations (due to the
stopping rule γthres) and therefore using a different regularization scheme, which obviously
affects our measurements.

To evaluate the noise propagation, we simulated CB data of the FORBILD head phan-
tom in the C-arm geometry and using a short-scan centered on the polar angle λc = 0◦

and with scan range of λs = 210◦. We then added noise to this data assuming an emission
of 250, 000 photons per measurement ray. Image reconstruction was carried out over the
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Figure 7.10: Investigation of noise propagation in the reconstruction of the FORBILD
head phantom. Top and bottom rows present the slices z = 0mm and z = 50mm
through these reconstructions, respectively, which were obtained using (left) the
factorization approach, (center) the short-scan FDK method and (right) the ACE
method. These images are presented in the grayscale window [0 HU, 150 HU]. The
number in each image indicates the standard deviation (in units on the HU scale) of
the reconstructed values inside the square ROI, which is marked with a white box.

entire region Ωf using sampling parameters similar to that of the resolution study from
above. Figure 7.10 presents the slices z = 0 mm and z = 50 mm through the factorization
results, next to the corresponding results obtained with the short-scan FDK method and
with the ACE method.

The noise level in each presented slice was quantified by computing the standard de-
viation of the reconstructed values within a square of side-length 45 mm that is entirely
contained in the homogeneous phantom region that has density 50 HU; see Figure 7.10 for
an illustration of that region and for the determined standard deviations (measured in units
on the HU scale). These results indicate that the factorization approach yields a somewhat
increased level of noise compared to ACE inside the plane of the scan, with a difference of
about 15%, while the noise performance of the short-scan FDK method lies between that
of these two methods. Furthermore, comparison of the standard deviations determined at
z = 0 mm and z = 50mm indicates that the level of noise in the factorization results does
not show the slight decrease outside the plane of the scan that can be observed in the
short-scan FDK method and the ACE method.

These slightly different behaviors in image noise might be caused by the fact that each
method comes with a distinct handling of the measured data: ACE and short-scan FDK
involve all acquired CB projections for the computation of the density estimate (but use a
different handling of redundant data), whereas the factorization method involves in general
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only a subset of these projections, see section 7.2.3. Another source of these differences
might be the degree of regularization imposed on the reconstruction problem. This degree
correlates with the number of iterations carried out in the numerical 2D inversion algorithm;
see section 7.3.3. The stopping rule used for the factorization method in this study yields
a high number of iterations (between 100 and 400, depending on the plane) and yields
therefore a less regularized estimate to the solution of the ill-posed reconstruction problem.
Hence, we expect to observe a high spatial resolution and more accurate reconstructions
from CB data that is consistent with the data model of section 2, but on the other hand
also a stronger propagation of data noise.
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Figure 7.11: Investigation of CB artifacts in the slice z = 52.5mm through the FOR-
BILD head phantom reconstructed using (left) the factorization approach, (center)
the ACE method and (right) the virtual PI-line BPF method without Parker weight-
ing. (Top) Reconstruction result in the grayscale window [−50 HU, 150 HU]. The
nested contour lines indicate the locations at which the relative error reaches .25%,
1.25%, 2.25% and 3.25% (white contours) or −0.25%, −1.25%, −2.25% and −3.25%
(black contours). (Bottom) Histogram of this relative reconstruction error in the
slices presented at the top.

7.5.2 Comparison of CB Artifacts

The effects of missing 3D Radon data on image quality were investigated using the evalu-
ation scheme presented in section 6.6.3. Consequently, we simulated noise-free CB data of
the FORBILD head phantom for a short-scan with λs = 210◦ and reconstructed its density
function over the entire object support region Ωf , while using an isotropic sampling of
0.5mm.

The slice z = 52.5mm through the reconstructions obtained with the factorization
approach, with ACE and with the virtual PI-line BPF method without Parker weighting
is presented in Figure 7.11, along with the histograms of the relative reconstruction error
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Figure 7.12: (Left) Reconstruction bias and (right) artifact uniformity, illustrated for
the factorization approach (top row) and for the methods discussed in the previous
chapter (bottom row). In the diagrams at the bottom, the black circles correspond
to the short-scan FDK method, the dark gray squares to the ACE method and the
light-gray diamonds to the virtual PI-line BPF methods (the method using Parker
weighting is marked with a dashed line).

within this slice. These results were obtained using a short-scan with center λc = 0◦

and they illustrate that in this specific slice, the factorization approach yields overall the
smallest relative error; its error histogram is nicely compact and has a peak centered on
0%, in contrast to that of the other two considered methods.

The experiment was repeated for 6 different realizations of the short-scan, namely for
scans with λc = k × 60◦ with k = 0 . . . 6 and fixed λs = 210◦. The diagrams in the top
of Figure 7.12 show, for the factorization approach, the mean reconstruction bias and the
mean artifact heterogeneity obtained across these 6 short-scans as a function of z; for a
definition of these FOMs see section 6.6.3. These results indicate that our factorization
approach yields image quality that is very robust with respect to the actual short-scan
realization. A comparison to the corresponding curves of the four reconstruction methods
discussed in chapter 6 shows that our method comes with a very low level of CB artifacts and
overall quantitatively with the most accurate reconstruction results among the considered
methods.

Similar observations can be made in the visual inspection of the slices z = 50 mm and
z = 60 mm through the factorization results obtained for 4 different values of λc, presented
in Figure 7.13 or in Figure 7.14, which shows the object density estimate on a vertical
slice, obtained for the short-scan with λc = 120◦. Our factorization approach can almost
completely avoid the high-contrast gradient-like CB artifacts occurring with short-scan
FDK, such as the dark shadows attached to the bones in the FORBILD head phantom or
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Figure 7.13: Impact of the short-scan center on image quality, demonstrated on the
slice z = 50mm through the reconstruction of the FORBILD head phantom. From
(left) to (right), a short-scan with λc = 0◦, λc = 60◦, λc = 120◦ and λc = 300◦ was
used. The results are obtained using (top) to (bottom): the factorization method,
short-scan FDK, ACE and the virtual PI-line BPF method. All reconstructions are
presented in the grayscale window [10 HU, 90 HU].

the drop in reconstructed intensities in axial direction. Because the available CB data is
insufficient for stable reconstruction, the issue of CB artifacts cannot be solved entirely,
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Figure 7.14: Reconstruction of the FORBILD head phantom within the plane de-
fined by p = 136, sstart = 10mm and ∆s = 0.5mm, obtained with (left) short-scan
FDK, (center) the virtual PI-line BPF method and (right) the factorization approach.
Grayscale window: [0 HU, 100 HU]. The position z = 0mm is at the bottom edge of
each image.

but the effect of insufficient CB data can now only be seen in occasional spatially compact,
streak-like (high frequency) artifacts, that are tangent to sharp discontinuities in the object;
see, e.g., around the nose in Figures 7.13 and 7.14 or just below the skullcap in Figure 7.14.

−25 −20 −15 −10 −5 0 5
0

2

4

6

8

10

12

relative error [%]

vo
lu

m
e 

[c
m

3 ]

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

disk center [mm]

re
la

tiv
e 

er
ro

r

−25 −20 −15 −10 −5 0 5
0

2

4

6

8

10

12

relative error [%]

vo
lu

m
e 

[c
m

3 ]

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

disk center [mm]

re
la

tiv
e 

er
ro

r

Figure 7.15: Evaluation of CB artifacts in the reconstruction of the disk phantom.
Results are presented for (top) the factorization approach and (bottom) the the vir-
tual PI-line BPF method without Parker weighting. The left image in each row
shows the slice x = 0mm through the reconstruction using the grayscale window
[−500 HU, 500 HU]. The error histogram determined for the topmost disk is shown
in the center. The black circle indicates reconstruction bias and the black line the
artifact heterogeneity. The diagram on the right illustrated this bias (black circles)
and this heterogeneity (gray crosses) for each of the 6 disks inside the phantom.

Following the scheme presented in section 6.6.3, CB artifacts were furthermore evaluated
in the reconstruction of the disk phantom. The left image in Figure 7.15 shows the object
density estimates on the vertical plane x = 0 mm, obtained with the factorization method,
but also with the virtual PI-Line BPF method, which performed best in the corresponding
comparison presented on page 6.16. We observe a) that the shadow-like artifacts at the
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left and right of each disk are noticeably reduced in the factorization results and (b) that
the factorization results facilitate an easy distinction between the disks at the top of the
phantom, especially close to the disk centers, whereas the high level of CB artifacts makes
such a distinction very difficult in the BPF reconstruction. Figure 7.15 also presents the
histogram of the relative reconstruction error inside the top disk of the phantom as well
as the diagram presenting the reconstruction bias and artifact heterogeneity for each disk
separately; these results confirm again the capability of the factorization method to yield
the most quantitative results among all methods discussed in chapters 6 and 7.

7.5.3 Comparison of Axial Truncation Artifacts

The effects of axial truncation on image quality were evaluated analog to section 6.6.4: we
reconstructed the vertical slice x = 0 mm through the FORBILD thorax phantom, first from
CB data that is not truncated and then from CB data that suffers from axial truncation;
see section 6.6.4 for details about the experimental set-up. Note that in the non-truncated
case, the stopping criterion for the factorization method was satisfied after 48 iterations and
that we made sure reconstruction from the truncated CB data involved the same number
of iterations.
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Figure 7.16: The effects of axial truncation within the slice x = 0mm for (top)
the factorization approach and (bottom) the ACE method 4. From (left) to (right)
reconstruction from non-truncated CB data, from truncated CB data (both using
the grayscale window [−150 HU, 150 HU]), pointwise difference between these recon-
structions in a window of width 300 units of the Hounsfield scale and central vertical
profile of this difference.

The left two columns in Figure 7.16 show the reconstruction results, obtained with the
factorization approach and – for comparison – with the ACE method. The third column in
this figure shows the point-wise difference between the results illustrated on the left, which
indicate numerical instabilities close to the edge of truncation, i.e., close to the top of region
Ωb̂, in the factorization results. Occurring truncation artifacts appear to impact image
quality throughout almost the entire plane of interest, but their strength drops noticeably
with the distance to the edge of truncation; see the top row of Figure 7.16. This property is
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similar to that of the ACE method, where axial truncation in the CB data yields artifacts
in almost comparable strength that appear, however, somewhat smoother.

7.6 Reconstruction from Real C-arm Data

The studies presented earlier in this chapter were based on simulated CB data, i.e., on data
that is consistent with the ray-integral data model explained in chapter 2. We now evaluate
how the factorization approach performs for image reconstruction from CB data collected
with a commercially-available C-arm system, namely with the Siemens AXIOM Artis C-arm
system [2]. On this system, we selected a scan protocol that delivers 543 CB projections,
each of them consisting of 1240 × 960 square pixels of side-length 0.372969 mm. In this
protocol, the X-ray source positions are approximately located on a circle of 750 mm radius,
which was centered on the origin of the image volume, and are distributed over a short-scan
with scan-range of about λs = 215◦. The detector was set to be 1200 mm away from the
source during the entire scan. The challenge with the task of image reconstructing on an
existing C-arm system is that real CB data contains physical effects that are not considered
in the data model on which the reconstruction algorithm relies, and this inconsistency
is expected to have negative impacts on achievable image quality. These physical effects
include for instance the impact of X-ray scatter and the effects related to detector dynamics,
finite size focal spot and finite size detector elements, see e.g. [71].

Overall, the following evaluation appears similar to that of section 4.5, where we evalu-
ated our original 2D fan-beam reconstruction method with no backprojection weight using
data of a diagnostic CT scanner. However, one important difference between the two con-
siderations lies in the degree of inconsistency between the assumptions of the data model
and the real acquisition process. Note that diagnostic CT scanners have been designed
primarily for imaging cross-sections through the human body [47]. Consequently, these
scanners were targeted – from the very beginning – at yielding projection data that de-
viates as little as possible from the ideal data assumptions. Medical C-arm systems, on
the other hand, were initially and primarily aimed at acquiring single 2D projections of
the patient to support interventional procedures [71]. Consequently, these systems were
designed for great mechanical flexibility rather than for yielding optimal input data for CT
reconstruction method; in fact, the feature of 3D CT imaging was added only at a later
moment [88]. Consequently, the inconsistency between the physical acquisition process and
the ideal data assumptions that we have to deal with in this section are more significant
than that occurring with diagnostic CT scanners; when pursuing good image quality, these
deviations need to be considered during the reconstruction process.

7.6.1 Acquisition Geometry of a Real C-arm System

C-arm systems have a considerable mechanical degree of freedom, but the C-arm motion
typically suffers from slight, but not negligible, instabilities during data acquisition. For
instance, the X-ray source does in general not exactly describe a circular trajectory during
the scan and the location and orientation of the detector might differ from the settings we
selected on the scanner, see e.g. [23]. The accurate description of the acquisition geometry
of existing C-arm systems using elementary analytic functions, as done in section 6.2, does
not appear to be feasible nor practicable.

The geometry of the AXIOM Artis C-arm system that we considered for our real-data
evaluation is thus described using the concept of projection matrices [38]. More specifically,



112 Chapter 7. A Factorization Method for Circular Short-Scan CB Reconstruction

the C-arm system associates, to each measured CB projection, one projection matrix Pi ∈
R3×4 that describes, in homogeneous coordinates, the relation between a point x in the
image volume and the coordinates of its CB projection on the detector plane [88, 41],
where the integer i corresponds to the index of the projection image. The matrix Pi encodes
complete information about the geometry parameters of the corresponding CB projection,
such as the source position ai or the vectors eu,i, ev,i and ew,i. These parameters can be
extracted from a given matrix Pi using the method described in [41].

Note that the sequence of projection matrices on the AXIOM Artis system are obtained
in a calibration step. This step is based on acquiring CB data of a specific calibration phan-
tom, the structure of which is precisely known, and on estimating for the CB projection i
the matrix Pi that best describes the projection-relation between the known 3D structure
of the calibration phantom and the acquired 2D image; for details see e.g. [41]. Fortunately,
the deviations of the C-arm system from the ideal acquisition geometry are fairly repro-
ducible so that for clinical use, the geometry information that is obtained in one calibration
step may be used to geometrically describe the acquisition process of the subsequent scans.

7.6.2 Handling of Real C-arm CB Data

Recall that the factorization approach requires, as a first step, the partial differentiation of
the CB data function g(λ, α) with respect to the curve parameter λ. This differentiation
is a numerically delicate step, since (i) the sampling in λ of C-arm source trajectories is
fairly coarse (compared the sampling of the trajectory for CT scanners) and (ii) the source
trajectory does not describe a simple geometric curve, due to mechanical instabilities. Our
algorithm therefore applies the differentiation scheme introduced in [68] that is numerically
robust with respect to coarse sampling and to arbitrary source motions. In particular, this
scheme was determined to yield an accurate differentiation results and to contribute to a
good overall image quality in the context of C-arm reconstruction [40].

For the real-data reconstructions presented in the following (which are carried out using
an isotropic sampling of 0.5mm in the image volume), the differentiated CB data is down-
sampled by a factor of 2 in u and in v, to reduce noise and to obtain a sampling in u
and v that better matches the sampling grid defined for the image volume. The down-
sampled differentiated CB projection with index i is then backprojected according to the
geometry parameters encoded in Pi. Note that the equations introduced on page 61 to
compute u∗ and v∗, i.e., the coordinates of the data samples required for reconstruction,
involve simplifications that are based on the ideal geometry assumptions. Since the actual
C-arm geometry does in general not satisfy these ideal assumptions, these equations are
now replaced by a more general form, and we compute the quantities u∗ and v∗ for the CB
projection i according to

u∗(x) = −D
(x− ai) · eu,i

(x− ai) · ew,i

(7.33)

and

v∗(x) = −D
(x− ai) · ev,i

(x− ai) · ew,i

(7.34)

respectively.
To determine the values λ1 and λ2 that describe the points of intersection between the

source trajectory and the plane of interest P, which is described by its normal ês and its
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signed distance ŝ from the image volume origin, we compute for each CB projection the
quantity

ai · ês − ŝ, (7.35)

where ai is the source position extracted from the projection matrix Pi. Hence, (7.35)
gives the signed distance of ai from P, measured along ês. A positive value indicates
that the source position for the CB projection with index i is between a(λ1) and a(λ2),
so that according to (7.5) the corresponding filtered CB data is used for reconstruction
on P. The CB projections with indices that result in a negative value in (7.35), however,
are disregarded for reconstruction on P. CB projections at which (7.35) changes sign
are considered partially for the final reconstruction, with a weight that depends on the
trajectory discretization and the values computed in (7.35).

Finally, we make sure that the filtering lines involved in the 2D inversion process (for
instance the two lines L1 and L2 in the example of Figure 7.2) are constructed accurately and
consistent with the real acquisition geometry. This means that all these lines are constructed
such that they pass through the actual intersection between the source trajectory and the
plane P, which e.g. does not necessarily need to have z-coordinate z = 0 mm, as in the
ideal short-scan geometry.

7.6.3 Reconstruction Results

In the following, we illustrate the performance of the factorization approach including the
algorithmic modifications summarized in section 7.6.2 for reconstruction from real C-arm
CB data. For comparison, we show also the results obtained with the short-scan FDK
algorithm, i.e., the method used in state-of-the-art C-arm systems. Our short-scan FDK
implementation follows the scheme presented in section 6.3 but also considers algorithmic
modifications to handle the geometry deviations of C-arm systems. These modifications are
similar to those explained in section 7.6.2 and are focussed on the accurate computation of
the generalized Parker weighting function, of the backprojection weight and of the functions
u∗ and v∗ in the context of non-ideal geometries. Moreover, the acquired CB data is down-
sampled by a factor of 2 in u and v before data filtering, as in the factorization method.

Figure 7.17: Reconstruction from the real C-arm data set A, obtained with (left)
short-scan FDK and (right) the factorization approach. The results are presented
using distinct grayscale-windows that were selected such that the mean of the recon-
structed values in the small white rectangle has identical gray value in both images.
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For our studies, we used a thorax phantom that is fairly wide such that its CB projection
does not fit onto the detector from each viewing direction in the considered geometry. To
evaluate the reconstruction in distinct scenarios of truncation, we collected two different
sets of CB data5:

Set A: The thorax was placed such that its CB data was never truncated across the upper
detector border (at vmax), but always truncated across the lower detector border (at
vmin). Truncation in u only occurred at the ends of the short-scan, but not in the
projections close to the short-scan center.

Set B: The placement of the phantom was such that its CB data was always truncated
across the upper and lower detector border (along the v-coordinate). Truncation
along the u-coordinate occurred in the projections in the center of the scan, but not
at the ends of the short-scan.

Following the approach that is applied in the Siemens Axiom Artis C-arm system that
we used for our evaluation, the acquired CB projection data was pre-processed prior to
actual reconstruction. This pre-processing step aims at reducing the impact of X-ray scatter
and beam-hardening on the data and therefore at improving overall image quality. Note,
however, that this pre-processing requires the application of heuristic algorithms [95], and
that these algorithms – while reducing the overall impact of physical effects – may also
cause new inconsistencies in the CB data.

Image reconstruction was obtained from the pre-processed CB data and using the strat-
egy described in this section on the set of vertical planes with θ̂ = −30◦. For the factor-
ization method, we selected parameter α2 = 0.01 and we stopped the numerical inversion
scheme after 20 iterations (set A) or 50 iterations (set B). We furthermore assumed that
the inconsistencies in the CB data caused by physical effects dominate the achievable image
quality so that the impact of the parameter σ on the result is not significant; we thus used
σ = 0 for reconstruction.

Figure 7.17 presents the reconstruction result from data set A on one vertical plane,
which was obtained by averaging 3 planar results obtained at ŝ = 54.75 mm, ŝ = 55.0mm
and ŝ = 55.25 mm. This averaging result contains less noise than each single planar recon-
struction and therefore reveals clearer potential CB artifacts in the images. We further-
more realized that the short-scan FDK method and the factorization approach come with a
different sensitivity to physical effects and to data truncation and that therefore, the recon-
structed values slightly differ. To allow a meaningful comparison between the methods, we
present the reconstruction results using grayscale windows selected to deliver similar image
properties in all presented reconstructions. In Figure 7.17, for instance, we define a small
rectangular region (see the figure) and scaled the reconstruction results individually on both
sides so that the mean gray value in the regions is the same. Figure 7.18 shows two vertical
slices through the reconstruction of CB data set B. These results were again obtained using
averaging of 3 adjacent planar results and presented using approximate matching of image
characteristics, as explained earlier in this paragraph.

From these results, we observe that the short-scan FDK approach yields strong, streak-
like artifacts tangent to the bony structures in the thorax phantom and also some artifacts
at the edges of the region Ωb̂ caused by truncation effects. The factorization approach shows
a clear reduction of these streak-like CB artifacts and of the impact of truncation on the
results and thus a noticeable improvement of image quality.

5Our evaluation was carried out without using any extrapolation method to handle data trunca-
tion for the presented experiments
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Figure 7.18: Reconstruction from the real C-arm data set B, obtained with (left)
short-scan FDK and (right) the factorization approach.

7.7 Discussion and Conclusions

As discussed in chapter 6, the problem of 3D CB image reconstruction in the short-scan
circular acquisition geometry is known to be theoretically very challenging. Analytical
state-of-the-art algorithms suggested to solve this problem all come with advantages and
disadvantages, as described before. For some imaging applications, one method may be
more appropriate than the other, but for reconstruction of objects that contain significant
information in the unmeasured region in 3D Radon space, such as the disk phantom, each
state-of-the-art method that we investigated previously in this thesis yields results that
severely suffer from CB artifacts.

This unsatisfactory conclusion stimulated us to derive, in this chapter, a novel factor-
ization approach for 3D CB image reconstruction from a circular short-scan that aims at
improving image quality at the cost of slightly higher algorithmic complexity. The main
features of our algorithm are that it does not use any geometric approximations in its
derivation and also does not involve assumptions about the unmeasured values of the 3D
Radon space that would be required for a stable reconstruction. Furthermore, it enforces
the reconstructed values to be positive, as desired. In these described points, our method
differs from the reconstruction approaches presented in chapter 6.
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We then evaluated achievable image quality of our factorization method and determined
that its resolution and noise differs only slightly from that of other state-of-the-art ap-
proaches. For the selection of parameters used in this study, our method shows for instance
more homogeneous image characteristics than short-scan FDK and better z-resolution than
the ACE method, but also comes with an increase in image noise compared to these two.
The strength of our method is that it allows a significant reduction of CB artifacts in the
reconstruction results. This reduction becomes best visible in the reconstructions of the
disk-phantom, where all other investigated state-of-the-art methods perform poorly. Our
method, in contrast, yields an accurate estimate of the phantom structure and quantita-
tively very accurate results. Reconstruction of the head phantom confirmed this effect:
the severe CB artifacts occurring with the short-scan FDK method, which is currently in
use in many practically-available systems, can be nicely reduced. Remaining artifacts are
restricted to only a few regions within the images and attached to the strong z-gradients of
the object density. These improvements in image quality are relevant for applications in the
medical arena, which we demonstrated on the reconstruction of a thorax phantom from real
CB data, acquired with Siemens AXIOM Artis C-arm systems. These benefits for clinical
applications were not obvious, since the real CB data contains various physical effects that
are inconsistent with the data model that our algorithm strongly relies on. Despite these
inconsistencies, the factorization method significantly reduces, using the same set of CB
data, the streak-like CB artifacts close to the vertebrae that are present in the short-scan
FDK results.

In addition to improvements in image quality, our factorization approach comes, by con-
struction, with some flexibility with respect to transaxial data truncation. It can therefore
naturally yield accurate reconstruction results in practically-relevant truncation scenarios
without the need of heuristic data extrapolation methods [42]; see the results of the real
data evaluations. Axial truncation, on the other hand, seems to impact image quality to
some degree, especially close to the edge of truncation.



Chapter 8

Conclusions and Outlook

In this thesis, we discussed the issue of image reconstruction of static objects from projection
data acquired in the geometries of medical X-ray imaging systems. We presented a review of
the classical reconstruction theory and discussed various new CT reconstruction approaches,
two of which are original.

The first part of this thesis was focussed on 2D reconstruction from full-scan fan-beam
data, i.e., from data that can be acquired with diagnostic CT scanners. As described, an
analytical FBP reconstruction formula for this acquisition geometry can be derived in a
rather straightforward way from the 2D Radon transform theory. This formula, however,
which we called the classical formula, is not necessarily the best choice for CT applications,
partially because (i) it yields reconstruction results in which the noise characteristics de-
pend noticeably on the distance to the axis of rotation and (ii) it requires the calculation
and application of a spatially varying weighting factor during backprojection and is thus
computationally demanding. New fan-beam inversion formulae were recently introduced in
the literature, such as the formula of Noo et al., see [67]. Noo’s formula performs better in
terms of image quality compared to the classical method and also simplifies the calculation
of the weighting factor required during backprojection.

In this thesis, we went one step further and derived in the context of Noo’s formula a
novel FBP method for 2D full-scan fan-beam image reconstruction that completely avoids
the spatially varying weighting factor during backprojection. Our method is thus compu-
tationally less complex and we were able to quantify a gain in computation speed of up
to 47% in software implementation. In addition to a gain in efficiency, our novel recon-
struction method comes with further improvements in image quality: it reduces the overall
level of noise in the reconstructions without sacrificing spatial resolution. This effect was
determined to be strongest at the edge of the imaged object region Ωf , where noise could
be reduced by up to 40%. These improvements in image quality were evaluated using simu-
lated fan-beam data but could be verified in almost identical amount in the reconstructions
from real fan-beam projection data collected with a commercially-available diagnostic CT
scanner, making our new approach an attractive candidate for 2D image reconstruction in
the clinical application.

Our FBP formula was derived exclusively for reconstruction from full-scan fan-beam
data. It would be interesting to investigate if direct fan-beam FBP reconstruction without
backprojection weight is possible when the data is measured on less than a full-scan. While
the elimination of the weight for data associated to line integrals that are measured only
once is not obvious, we note that at least a partial elimination of the backprojection weight
may be readily achieved: the backprojection weight can be eliminated for each ray that
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corresponds to a line integral that is measured twice, using the same redundancy weighting
strategy as presented here.

Although the problem of analytic fan-beam reconstruction has been being studied for
several decades, there is clear indication for further active research on specific topics in
fan-beam reconstruction theory. Investigations in this context might be manifold; e.g., it
would be interesting to see if it possible to develop fan-beam FBP reconstruction methods
that optimize specific aspects of image quality, such as lesion detectability or the overall
noise level at constant resolution. First developments in this direction are presented e.g.
in [90, 89]. It is also likely to see further investigations in the context of reconstruction
from a limited amount of fan-beam data, for instance, from data where most or even all
projections suffer from truncation. A solution to this issue might be found in the context of
DBP based reconstruction, initiated by the work in [65], and interesting results have been
published recently [22, 55].

The second part of this thesis was focussed on 3D CB reconstruction with a circular
short-scan, i.e., on CT imaging in the geometry of most clinical medical C-arm devices.
We showed that the difficulty with this reconstruction task is that data acquisition delivers
insufficient knowledge in 3D Radon space so that 3D reconstruction corresponds to an ill-
posed problem almost everywhere throughout the image volume. Therefore, each method
useful for practical application has to achieve a trade-off between numerical stability and
accuracy. In FBP methods, this trade-off is often achieved by using geometric approxima-
tions or by making assumptions about the data in 3D Radon space that would be necessary
for stable reconstruction, but is not acquired; the choices made by each method define the
achievable image quality for this method.

We then presented a detailed comparative evaluation of four state-of-the-art methods,
which either have been recently suggested in literature (ACE method, virtual PI-Line BPF
method and virtual PI-Line BPF method with Parker weighting) or which are used in
the clinical routine (short-scan FDK method). We realized that differences in noise and
spatial resolution among these methods are rather small, but were overall in favor of the
ACE method. A significant part of our study investigated the issue of CB artifacts and
demonstrated that, while no method can achieve the impossible task of CB artifact-free
reconstruction, the conventional short-scan FDK performs worst: it yields in general CB
artifacts of high contrast, which are distributed over wide regions in the image volume and
which significantly depend on the position of the short-scan relative to the object. The
ACE method effectively reduces the contrast of artifacts, so that they are less disturb-
ing to the human observer, whereas the virtual PI-Line BPF methods helps to reduce the
spatial extent of the artifacts, so that they affect only parts of the image volume. All
these improvements are, however, at the cost of increased computational complexity and
of more sensitivity to axial truncation in the CB data. Hence, each of the reconstruction
approaches we investigated has its pros and cons, so that a decision about which method
is favorable for practical use depends on the imaging application and on the class of inves-
tigated objects. This is not a very satisfactory conclusion and stimulated us in developing
a novel method for 3D circular short-scan CB reconstruction. Our new method is based
on a theoretically-exact factorization of the initial 3D reconstruction problem into a set of
2D inversion problems. We suggested to solve each of these problems in a least-squares
sense using a projected steepest descent 2D iterative algorithm; the solution to each 2D
problem then directly delivers the object density on one vertical plane in the image volume.
The main features of our factorization method are that it does not apply any geometric
approximations or heuristic extrapolations during its derivation and that it can naturally
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cope with certain scenarios of transaxial data truncation. It allows quantitatively very
accurate reconstructions, compared to the other methods described above, and performs
very well in terms of CB artifacts; these artifacts are now only visible as occasional, thin
streaks in the reconstructions. Our method allows, for instance, an accurate recovery of the
overall structure of the disk-phantom, whereas this recovery seems very difficult with the all
the other state-of-the-art analytical methods we considered in this thesis. We furthermore
collected CB data of a QRM thorax phantom on a commercially-available Siemens C-arm
system and compared the reconstructions obained with the factorization method and with
the short-scan FDK method against each other. This real-data evaluation showed that our
novel method outperforms the reconstruction approach currently used in clinical systems,
and thus also demonstrated that the artifact reduction we observed in the evaluations based
on computer-simulated data is relevant for the practical application,

Note that the factorization method uses for reconstruction on any given plane only CB
data on a limited interval along the source trajectory, so that it is not optimal in terms
of noise. This algorithmic feature might furthermore be the source of occasional streak-
artifacts in the reconstruction results. In order to improve on these two issues, it would
thus be interesting to find a way to extend the factorization method so that all measured
projections can be beneficially used for reconstruction in each plane.

An extension of the factorization reconstruction method to achieve reconstruction from
CB data acquired along non-planar source trajectories can easily be achieved. In [28],
e.g., we proposed such an extension for the circle-plus-orthogonal-line trajectory by using
CB data from the line scan as additional constraints to the 2D inversion problems. Such
an extension allows us to overcome the problem of insufficiencies in the CB data, and
therefore to perform reconstructions that are free of CB artifacts. At the same time, this
consideration of the additional CB data allows arbitrary (sparse) sampling on the additional
linear scan segment, in contrast to methods that incorporate the line data using filtering
and backprojection steps, such as the ones described in [51] or [23].

Going back to the field of volumetric CB imaging in general, we finally note that new
generations of C-arm systems that allow even more flexible scanning motion are about
to be getting installed in the clinical environment [6] and that several vendors recently
released diagnostic CT scanners with an increased number of detector rows, e.g., in order
to improve cardiac imaging applications [54]. It seems to be apparent that these new CT
systems will raise even further the demand for efficient and theoretically well-justified CB
reconstruction algorithms. We are convinced that within this thesis, we contributed to a
better understanding of recent developments in circular CT and that the original methods
we introduced are a step forward towards improved image quality in volumetric or slice-by-
slice CT applications.
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Summary

Examination of objects using X-rays is a technology that has been used for more than 100
years in various fields of application, in particular also in medical imaging, which is the
focus of this thesis. Over the years, mechanical and electronic improvements contributed to
a significant refinement of X-ray examination systems. Their natural capability, however,
remains the same, namely to measure one or more transmission projection images of the
investigated object. In order to achieve high-level imaging applications on these systems,
projection data first need to be converted into a representation of object density using the
concepts of computed tomography (CT). The reconstruction algorithm, which carries out
this conversion, is clearly a key component of X-ray CT systems as it determines its imaging
performance and therefore also its benefits for practical application.

This thesis is focussed on the development of algorithms useful for reconstruction of
static objects from projection data acquired in the geometries of two medical imaging
devices: the CT scanner, which is primarily used for diagnostic applications, and the medical
C-arm device that is used to support interventional procedures. The standard CT data
model introduces a formal link between X-ray measurements and object density: each X-
ray measurement sample on these devices is interpreted to deliver the object density integral
along the ray that connects the X-ray source with the X-ray detector element where the
measurement is obtained. The problem of CT image reconstruction can thus be related
to the task of finding a solution to a system of integral equations, for which methods can
be derived. Our work is presented in two parts, which focus on 2D reconstruction from
fan-beam data for a full-scan circular trajectory (the acquisition geometry of diagnostic CT
scanners) and on CB reconstruction from a circular short-scan (the acquisition geometry
of medical C-arm devices), respectively.

2D CT reconstruction from integral data associated to measurement rays that occur in
parallel sets can be directly approached using the theory of the Radon integral transform,
i.e., of a mathematical operator that describes the mapping of a function onto its integrals
on hyperplanes. An analytical inversion formula for the 2D Radon transform can be derived
in a rather straight-forward way using the 2D Fourier slice theorem; this classical formula
follows the filtered- backprojection (FBP) structure, where the measured line-integral pro-
jection data are first high-pass filtered and subsequently backprojected into the image plane
to yield an estimate of the object density function. Projection data that is measured us-
ing 2D CT scanners only differs from 2D parallel-beam data in the way the measurement
rays are distributed during data acquisition: these rays then appear in groups of fans that
diverge from a common ray source. CT reconstruction in the fan-beam geometry can thus
be tackled by using the 2D Radon inversion formula together with some modifications that
account for the distinct geometric set-up. An appropriate transfer of the resulting (classi-
cal) fan-beam inversion formula into the discrete setting then directly yields a numerical
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algorithm for image reconstruction that may be readily applied in practical 2D CT imaging
applications.

However, this fan-beam FBP reconstruction algorithm requires, in contrast to that
for the 2D parallel-beam geometry, a weighted backprojection with the weighting factor
depending on the point to be reconstructed and also on the source position. This back-
projection weight implies an increase in computational effort and has also negative impact
on noise properties of the reconstructed images. We suggest a new reconstruction formula
that demonstrates that direct FBP reconstruction from full-scan fan-beam data is possible
with no backprojection weight. Our novel approach is derived from the novel fan-beam
inversion theory of Noo et al., which allows, compared to the classical theory described in
the previous paragraph, a more flexible handling of redundancies in the fan-beam data.
This flexibility authorizes the use of a redundancy weighting function that cancels out the
backprojection weight for the fan-beam FBP formula, yielding our novel method without
backprojection weight. Using computer- simulated, realistic fan-beam data, we thoroughly
compare our novel FBP formula with no backprojection weight to the use of a state-of-
the-art FBP formula based on equal weighting of all data. Comparisons in terms of image
noise, spatial resolution and computational efficiency are presented. These studies show
that the formula we suggest yields images with a reduced noise level, at almost identical
spatial resolution. This effect increases quickly with the distance from the origin of the
image plane, from 0% at the origin to 20% less noise at 20 cm, and to 40% less noise at
25 cm. Furthermore, the new algorithm is computationally less demanding and reduces
computation time with a gain that was found to vary between 12% and 43% on the com-
puters used for evaluation. We furthermore demonstrate that our novel FBP formula can
be readily applied for reconstruction from data acquired with a commercially-available CT
scanner and that in this application we can expect improvements in image quality that are
of almost identical quantity compared to those observed in the simulation studies.

Part two of this thesis focusses on CB reconstruction in the short-scan circular geometry.
Although the 3D Radon transform and its analytic inversion formula are straight-forward
generalizations of the corresponding concepts in 2D, the problem of 3D CB reconstruction
cannot be directly related to the Radon transform theory. CB data acquisition does not
yield direct access to 3D Radon values, as in the 2D scenario and CB image reconstruction
techniques therefore rely on the theoretical findings of Grangeat and others that relate CB
measurements to a partial derivative of 3D Radon data. These theories allow us to derive
practical CB FBP reconstruction algorithms and also to define a criterion that indicates
in which circumstances accurate and stable reconstruction from CB data can be achieved
(Tuy’s data sufficiency criterion).

Among the possible scenarios of CB tomography, the problem of image reconstruction
from a circular short-scan using a 2D flat panel detector remains one of the most important
ones, since it occurs with practically-available C-arm systems. The short-scan circular CB
data, however, does not satisfy Tuy’s data sufficiency criterion so that image reconstruc-
tion is an ill-posed problem almost everywhere in the image volume. Because of this, the
development of an efficacious reconstruction method remains a challenging problem: the
difficulty is to achieve an attractive trade-off between stability and accuracy. FBP-based
CB reconstruction methods often use geometric approximations or assumptions about un-
measured data samples during derivation, in order to allow for numerically stable results.
The short-scan FDK method, for instance, which is commonly used for reconstruction in
practical C-arm systems, is an heuristic generalization of the classical 2D fan-beam inversion
formula. It is therefore computationally efficient and easy to implement, but also gener-
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ally considered to be suboptimal in terms of image quality, due to its lack of theoretical
foundation. Thus, various novel methods for CB reconstruction from a circular short-scan
have been suggested in recent years. The ACE method, e.g., possesses FBP scheme but
requires a more complex filtering step than short-scan FDK. The virtual PI- Line BPF
methods (with and without Parker weighting), on the other hand, follow a slightly differ-
ent structure: they first compute an intermediate function defined in the image volume
and then use, in a second step, 1D filtering steps to reconstruct the wanted object density
function from this intermediate result. We perform a detailed comparative evaluation of
these described methods, which is based on CB data simulated in the C-arm geometry and
which involves various mathematical phantoms. Our study investigates spatial resolution,
contrast to noise ratio, CB artifacts and axial truncation artifacts. Noise propagation and
resolution differ only slightly from one method to the other, but are overall in favor of
the ACE method. The sensitivity with respect to CB artifacts, however, clearly reveals
the algorithmic differences: Compared to short-scan FDK, the artifacts occurring with the
novel approaches are either noticeably reduced in contrast (in the ACE method) or in size
(for the virtual PI-Line BPF methods). These improvements in image quality are, how-
ever, achieved at the cost of higher algorithmic complexity and more sensitivity to axial
CB data truncation. Hence, each investigated method has its pros and cons, and the issue
which one is preferable for clinical application thus depends on the imaging task and on
the investigated objects.

We then suggest a new, original method for CB reconstruction from a circular short-
scan. Our method involves a novel factorization of the initial 3D reconstruction problem
into a theoretically-equivalent set of independent 2D inversion problems, each of which
corresponds to finding object density on one single plane in the image volume. This factor-
ization is achieved analytically using the fact that backprojecting differentiated CB data
onto this set of planes yields an intermediate function on each plane that is related to ob-
ject density by some 2D filtering operations involving the kernel of the Hilbert transform.
This factorization does not involve any geometric approximations or assumptions about the
data that cannot be measured with the circular trajectory and can also cope with some
scenarios of transaxial data truncation, in contrast to the methods discussed in the previous
paragraph. Each 2D problem is then solved individually, in a second algorithmic step, by
using a projected steepest-descent iteration scheme that yields a non-negative estimate of
the object density function on the considered plane. This scheme requires the selection of
a few discretization and iteration parameters, which affect the speed of convergence of the
2D iterations and also the achievable image quality. We determine in numerical studies a
beneficial selection of these parameters and evaluate the resulting factorization algorithm
against other competitive, state- of-the-art reconstruction methods. Numerical studies
based on computer-simulated CB data of several mathematical phantoms demonstrate e.g.
that the factorization method can significantly reduce the level of CB artifacts, especially
when compared to the short-scan FDK method that is considered in practical C-arm de-
vices. In particular, it allows an accurate recovery of the structure of a disk phantom from
CB data – a task in which all other methods discussed in this thesis fail.

The application of our factorization method for reconstruction from real CB data ac-
quired with medical C-arm systems requires special care, since the acquisition geometry
of real-world C-arm systems slightly deviates from the ideal scenario assumed during the
algorithmic derivation. Algorithmic steps that are numerically sensitive to these deviations,
however, can be replaced by more robust implementations, thus allowing our algorithm to
be evaluated using real CB data. The reconstruction results of a physical QRM thorax
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phantom, scanned with a Siemens AXIOM Artis C-arm system, demonstrate that the im-
provements in image quality achieved over short-scan FDK are practically relevant: CB
artifacts and truncation artifacts are noticeably reduced in the factorization results.

Although practical reconstruction formulae for 2D and 3D CT reconstruction have been
known for many years, reconstruction theory remains to be a field of active research. The
two methods we suggest in this thesis, for 2D fan-beam reconstruction without backpro-
jection weight and 3D CB reconstruction by use of a novel factorization, effectively tackle
specific limitations of classical approaches: they yield improvements in efficiency and im-
age noise (fan-beam formula) or improvements in image quality at the cost of increased
computational complexity (factorization appraoch). Future developments might focus on
finding reconstruction formulae that optimize certain image characteristics, such as lesion
detectability, from a given projection data set, or also at yielding accurate reconstructions
in the context of limited data.
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List of Symbols and Acronyms

Functions
µ X-ray attenuation coefficient
f object density function
fe object density estimate
b intermediate DBP-function
w redundancy weight (point-dependent)
m redundancy weight (ray-dependent)
h filter kernel function
g fan-beam data (part 1), cone-beam data (part 2)
p 2D parallel beam data (part 1), density profile (part 2)
γ∗ fan-angle of the ray through x
u∗ u-coordinate of intersection between detector and ray through x
v∗ v-coordinate of intersection between detector and ray through x

Operators
R Radon transform
R# 2D Radon backprojection
F Fourier transform
| · | number of elements in a set
‖ · ‖ Euclidean vector norm
T transpose operator
¯ mean value
· inner vector product
< ·, · > scalar product

Scalars
Ro radius of circular object support region
R radius of source trajectory
D distance between source and detector (part 2)
s signed distance of hyperplane from origin
λ source trajectory parameter
γ ray fan-angle
u, v coordinates of 2D detector

Geometric entities
L line in image domain
Π plane in image domain
Ωf object support region in image domain
S set of points or vectors
P factorization plane
ˆ entities related to a factorization plane
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Vectors
x coordinate vector denoting locations in image domain
xπ locations in image domain using BPF coordinate system
α unit direction vector of measurement ray
a source position
θ line normal vector (part 1), plane normal vector (part 2)
eu,ev,ew axes of detector coordinate system
es,et,ez axes of coordinate system associated to a factorization plane

Acronyms
CT computed tomography (p.2)
HU Hounsfield units (p.8)
FBP filtered backprojection (p.18)
FFT fast Fourier transform (p.21)
PSF point spread function (p.36)
FWHM full-width at half-maximum (p.37)
CB cone-beam (p.53)
BPF backprojection filtration (p.58)
DBP differentiated backprojection (p.58)
FDK algorithm of Feldkamp-Davis-Kress (p.59)
FOM figure-of-merit (p.70)
CNR contrast to noise ratio (p.74)
RHS right hand side (p.92)
LHS left hand side (p.93)
CPOS positivity contraint (p.98)
CRAY ray-integral contraint (p.98)
RMSE root of mean square error (p.100)
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