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Abstract

This paper presents methods for collecting and an-
alyzing physiological and biomechanical data during
recreational runs in order to classify an athlete’s per-
ceived fatigue state. Heart rate and its variability, run-
ning speed and stride frequency, GPS position and shoe
heel compression were recorded continuously while
runners moved freely outdoors. During their activity
the sportsmen answered questions about their fatigue
state in five-minute-intervals. Data from 84 one-hour-
runs was collected for analysis. The data was analyzed
using features computed for each step of the athlete to
distinguish three levels of the runner’s fatigue state with
an accuracy of 75.3% across multiple study participants
and 91.8% in the intraindividual case. The results show
that for most participating runners, a heart rate vari-
ability periodogram feature and a step duration feature
are best suited for classification of the perceived fatigue
level. This information can be used to support sports-
men, for example by adapting their equipment to the
specific needs of a fatigued athlete.

1. Introduction

Smart sensors embedded in clothes and equipment
for sports afford novel opportunities to support and
guide athletes. A prominent example is the ”adidas1”
running shoe, which is the first shoe that features an
embedded system (see Figure 1). This shoe is built to
adapt to various running conditions like the prevailing
surface situation, the runner’s speed and fatigue state by
changing the cushioning of the sole. A precise classifi-
cation of the mentioned conditions is mandatory for the
adaptation, which is conducted by a motor driven cable
system inside the shoe. To facilitate the classification,
the heel compression signal of the runner is continually
measured and processed by the embedded microcon-
troller. A description of the ”adidas1”, its functionality
and embedded system hardware can be found below and
in more detail in [2].

In this paper, we consider the very important task
of classifying the fatigue state of a runner. Athletes can
benefit a lot from that information. In the particular case
of running with the ”adidas1”, the shoe can be adapted
accordingly, stabilizing exhausted muscles by providing
more stiffness. However, the ”adidas1” shoe is just one
example of smart sensors embedded in clothes. Similar
actions could be taken in other endurance sports, where

it is equally important to actively support an athlete by
adapting the equipment to the amount of fatigue.

Many features of physiological and other signals
have been proposed as indicators of fatigue by sports
researchers and psychophysiologists, but these are nor-
mally individually evaluated and their use for classifi-
cation purposes is rarely tested [4]. In this paper, we
show how we apply pattern recognition techniques to
identify a feature set to appraise the perceived fatigue
level of sportsmen during a free one-hour-outdoor run,
which to our knowledge has never been done before.
Our features are derived from the physiological heart
rate (HR) signal and the step signal as measured by the
”adidas1”. The HR signal was chosen because previ-
ous studies have shown that especially heart rate vari-
ability (HRV) is very important for assessing psycho-
logical stress [4] and physiological fatigue [8].

We also obtained data about the perceived fatigue
state of the runners by inquiring them periodically dur-
ing their physical activity via a specially programmed
mobile phone. The mobile phone automatically asked
the athletes about their level of fatigue at predefined
time points and recorded the answers that were on a
scale from 0 to 6. Self-rating the fatigue state is a widely
used method to get information about fatigue [1]. The
information in the heel compression signal of the run-
ners was represented by 19 features computed at each
step of the athletes. Additionally, 10 physiological fea-
tures were used to characterize HR and HRV in win-
dows of 3 different lengths. These windows were placed
in a causal context relating to the steps of the runners,
i.e. derived from a section of the respective signals di-
rectly preceding each step. The steps in 5 phases of the
run were labeled as belonging to one of 3 fatigue classes
derived from the self-ratings of the runners: no or very
little, medium and high perceived fatigue.

2 Data Collection

A total of 84 runners (30 female, 54 male) partici-
pated in the one-hour outdoor running study. The age of
the subjects was32.9±7.9 years (average, standard de-
viation). The subjects were not specifically chosen ac-
cording to running experience; instead, the group con-
tained both low and high activity runners. The measure-
ment system consisted of 3 separate devices. Firstly, we
used a ”Polar RS800 Running Computer” [10], which
included an ”S3 stride sensor” and chest strap. This
system is capable of measuring running speed, stride
frequency, barometric height, HR and the time between



Figure 1. The ”adidas 1” shoe, its cush-
ioning element, magnet and motor unit.

two consecutive heart beats (RR-interval). We set the
sampling interval for the first four signals to5 s, RR-
intervals were measured with a resolution of1ms.

We also continuously measured the heel compres-
sion signal of the runners using the ”adidas1” shoe.
Figure 1 shows the measurement principle. A hall sen-
sor mounted at the top of the cushioning element detects
the magnetic field strength induced by a small magnet.
The sensor was sampled with a ratefs of 342Hz. The
sensor-magnet distancedm can then be computed from
the field strength with an accuracy of±0.1mm.

Lastly, we used a Nokia 6110 Navigator cell phone
with a custom-built Java software. It played sound files,
recorded answers related to perceived fatigue questions
and gathered GPS information. To facilitate the latter,
we stored the data from an inbuilt GPS receiver. The
phone was placed in a belt that was attached to the up-
per arm of the participants. The runners also wore a
Bluetooth headset that was connected to the phone to
capture their answers.

At the beginning of the experiments, the participants
were standing and a short recorded instruction message
was presented to them. Once the presentation was com-
pleted, they were asked about their fatigue state for the
first time and then they were directed to start running.
After that, we questioned them about their perceived fa-
tigue state every 5 minutes. The athletes were instructed
to answer each question about their subjective fatigue
level with a self-rated grade as given in Table 1. From
these ratings we derived 3 fatigue classesωk, where
k = 1, 2, 3, with which we labeled each single step of
the runners. Classω1 corresponded to no or very little
perceived fatigue (self-ratings 0, 1, 2 - 34.6% of the la-
bels),ω2 denoted a medium level of fatigue (self-ratings
3, 4 - 41.1% of the labels) andω3 was used for consid-
erable perceived fatigue (self-ratings 5, 6 - 24.3% of the
labels). The steps were labeled according to the nearest
recorded fatigue state time point.

After completion of the run, each participant was
asked to fill in a questionnaire. Only 2 out of the 84
runners perceived a notable impediment by the equip-
ment while running. An example run is visualized in
Figure 2 using the Google Earth software. In this il-
lustration, running speed is displayed as the height of
the band along the running track. The fatigue classes
are color coded: Green (light gray in b/w) means lit-
tle or no perceived fatigue; orange (medium gray) is
the medium; red (dark gray) represents the considerable
perceived fatigue class.

Table 1. Grades for the athlete self-rating.
Spoken answer Meaning

0 not at all
1 very little
2 little
3 somewhat
4 rather
5 very
6 extremely

Figure 2. Visualization of an example run.

3 Feature Extraction

Out of the 84 study participants, 30 had to be ex-
cluded from further processing for various reasons.
More specifically, 2 runners had incomplete audio data
due to malfunctioning of the Bluetooth headset, and 5
other participants had incomplete data from the Polar
RS800 system. The remaining 23 runners had to be ex-
cluded because of unusable data from the ”adidas1”
shoe. In 8 of these cases, data collection was not pos-
sible because the ”adidas1” was not present in all shoe
sizes at the beginning of the study, and therefore the
runners had to use other shoe models. In the remain-
ing 15 cases, the runners were mid- or forefoot strikers.
The measurement system of the ”adidas1” is located
at the heel of the shoe and can therefore only capture
significant data for rearfoot strikers which account for
more than 80% of the population [5]. To circumvent
further problems with data collection, we made sure that
the Bluetooth devices were working properly before the
run, and applied a salt water solution to the chest straps
of the RS800 systems to improve connectivity. We did
not want to ask runners specifically whether they are
fore- or midfoot strikers before the run to prevent a
change in running style. Following this procedure, we
had to cope with data loss for these runners. However,
no additional bias was introduced thereby.

In total, 126,880 single step events were automati-
cally detected in the 5 running phases that are defined
in Table 2. We selected this number of phases because it
gave us the maximum number of steps while the phases
still did not overlap. The very beginning of the runs was
not considered to ensure that the runners were warmed
up and accustomed to data collection. The gaps be-
tween the phases were used to guarantee that the respec-
tive analysis windows for the intraindividual analysis
(see section 4) did not overlap. Each step in the 5 run-
ning phases was labeled according to one of the 3 fa-
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Figure 3. Depiction of the step signal fea-
tures 1 to 10.

tigue categories defined in section 2. For each step, we
extracted 19 features from the heel compression signal
denoted byF1 . . . F19 . Figure 3 showsF1 . . . F10 .
FeaturesF11 . . . F19 are all measuring the standard
deviation (SD) of different attributes (see Table 3), SD
is computed as follows:

SD(c) = σN =

(

1

N − 1

N
∑

k=1

(ck − c̄)
2

)

1
2

(1)

wherec is a vector containing the attribute data and
varies depending on the attribute under investigation
and N is the number of samples, i.e. the number of
elements inc. c̄ is the average value of all the elements
of c. More specifically, forF11 , c contains all the heel
compression distance measurementsdm collected dur-
ing a single step event (Fig. 3 top). ForF12 . . . F19 ,
c contains the most recent 16 values of the correspond-
ing feature. For example, forF12 , each element ofc
is the minimumdm that occurred within a single step,
i.e. F10 andc has a total of 16 elements, one min.dm

value for each of the 16 most recent step events (see
Fig. 3 bottom).F13 . . . F19 have similarc values. For
more details see Table 3. This set of step signal features
has proven to be useful in our earlier experiments that
aimed at surface or inclination classification with shoe
data alone and we expected them to significantly con-
tribute to perceived fatigue level classification as well.

For the physiological data we computed features in
causal windows located before each step. The chosen

Table 2. The five run phases for analysis.

Running Phase Interval [min] # of steps
1 8.0 - 13.0 25513
2 18.5 - 23.5 25708
3 29.0 - 34.0 25208
4 39.5 - 44.5 25149
5 50.0 - 55.0 25302

Table 3. Overview of the step signal fea-
tures 11 to 19.

Feature Feature Description
F11 SD - values contained in one step
F12 SD - step minima (F10 )
F13 SD - step means (F8 )
F14 SD - step standard deviation (F11 )
F15 SD - step duration (F7 )
F16 SD - step area (F7 )
F17 SD - time between steps (F3 )
F18 SD - time to peak (F5 )
F19 SD - time from peak (F4 )

interval times for the windows were1min, 3min and
5min, respectively. In theses windows, we calculated
3 features derived from the HR signal and 7 features
derived from the more important RR interval data that
gives an indication about HRV. For the HR data we
computed mean, variance and offset HR value. The
latter was calculated as the difference from the mean
HR that the subjects had while standing and listening
to the initial set of instructions and the mean HR in
the analysis window. These 3 features are represented
by µHR, σHR and d̄HR. From the RR interval times
we calculated the variance, denoted byσRR, in each
of the described windows. Additionally, we computed
features using two different methods, the Poincaré plot
(PP) [9] and Lomb-Scargle periodogram (LSP) [6] anal-
ysis. Both approaches have been proven useful in HRV
evaluation [7, 11]. In the PP method, a vector of RR-
interval timestRR = (t1, t2, . . . , tL) of lengthL is first
rewritten in two auxiliary vectors

t
+

RR = (t1, t2, . . . , tL−1)
t
−

RR = (t2, t3, . . . , tL).
(2)

The PP then consists of the ordered pairs
(

t
+

RR,i, t
−

RR,i

)

, i = 1 . . . L − 1. (3)

These ordered pairs generate a comet-like shape in a
scatter plot for a healthy person [7]. From this repre-
sentation, 3 features are derived.SD1RR andSD2RR

are two standard PP descriptors defined as

SD1RR = SD
(

t
+

RR
−t

−

RR√

2

)

SD2RR = SD
(

t
+

RR
+t

−

RR√

2

) (4)

and correspond to the SD of the respective projections
of the PP on the line of identityy = x and the line
perpendicular to it (y = −x). It is widely accepted
that SD1 reflects the short-term RR-interval variability,
and SD2 reflects both short-term and long-term vari-
ability [9]. The third feature derived from the PP is



the total variabilitySRR = SD1RR ∗ SD2RR. The
PP procedure is susceptible to outliers, thus we imple-
mented an outlier removal filter designed for PP anal-
ysis as described in [9]. In the second RR analysis
method, the LSP evaluation, we first calculated a spec-
tral estimate of the activity in the0Hz . . . 1Hz band us-
ing Lomb’s method [6]. The LSP is a means of obtain-
ing power spectral density estimates directly from irreg-
ularly sampled time series, avoiding the requirements
of resampling at uniform intervals and replacement of
unusable samples. Healey and Picard [4] have already
successfully used 3 features derived from the LSP:
the total energy in the low frequency (LFRR) band
(0Hz . . . 0.08Hz) and in the high frequency (HFRR)
band (0.15Hz . . . 0.5Hz) were calculated as the sum of
spectral powers. The ratioRRR = LFRR/HFRR was
used as a third feature. These features have been used to
represent sympathetic tone. The parasympathetic ner-
vous system modulates HR at all frequencies between
0Hz and0.5Hz, whereas the sympathetic system mod-
ulates only below0.1Hz. We thus derive features that
represent sympathetic and parasympathetic influence on
the heart. The hypothesis is that increased fatigue leads
to increased sympathetic activity.

4 Analysis
For the classification experiments, we used a linear

discriminant classifier [3]. With this classifier, each vec-
tor of observed featuresx is assigned to the classωk in
a way that the discriminant functiongk

gk(x) = xt
Σ

−1
µk −

1

2
µt

kΣ
−1

µk + lnP (ωk) (5)

is maximized. In this equation,µk denotes the class
mean,Σ the pooled covariance matrix andP (ωk) the
a priori probability of each class. For the first exper-
iment, leave-one-runner-out cross-validation was per-
formed, where the classifier was trained using all but
the feature vectors from one specific runner, then clas-
sifying that runner’s feature vectors according to max-
imum gk and calculating the mean classification accu-
racy. We first tested each of the individual features in
order to evaluate its performance for this interindivid-
ual classification. The 6 best results are given in Ta-
ble 4. It can be seen that theLFRR andRRR features
derived from the LSP perform best when analyzing a
5min window. TheF7 feature derived from the heel
compression signal can also contribute to accurate clas-
sification. But, as stated in the introduction, single fea-
tures were not expected to perform very well when an-
alyzed individually. When using our complete feature
set, we achieve a result of 75.3% correct classification.
This result shows that recognition rates can significantly

Table 4. Ranking of the 6 best performing
individual features

Feature Window Rank Accuracy
LFRR 5min 1 61.2%
RRR 5min 2 60.8%
LFRR 3min 3 58.2%
RRR 3min 4 57.4%
F7 N/A 5 48.9%
d̄HR 5min 6 44.1%

be improved when using multiple features derived from
different sensors.

In a second analysis, we evaluated the performance
of our feature set in the case of intraindividual classifi-
cation. We split each runner’s feature dataset in 5 sub-
sets corresponding to the 5 running phases and cross-
validated by training the classifier using all but the fea-
tures from one phase, then classifying the steps in the
remaining subset according to maximumgk. In aver-
age, the recognition rate for this experiment was 91.8%,
indicating that the feature set is very selective in the in-
traindividual case.

5 Conclusions
This research demonstrates the application of pat-

tern recognition methods to detecting perceived run-
ning fatigue using features from heel compression and
heart rate signal. We showed that in the interindividual
case, we can significantly improve the recognition rate
by using multiple features from 61.2% in the best one-
feature case to 75.3%. Perfect performance was not ex-
pected due to inconsistencies in the athlete fatigue self-
rating. However, when circumventing this problem by
intraindividual analysis, we achieve very high recogni-
tion rates of 91.8% for 3 perceived fatigue levels. This
suggests that an individually trained automatic system
can very precisely support the athlete, for example by
providing more shoe stiffness by the ”adidas1” running
shoe when the sportsman gets fatigued.

Further work will be done to incorporate the addi-
tionally collected speed, stride frequency and altitude
information. Moreover, an automatic selection process
will be implemented to determine the ideal feature com-
bination out of our partly overdetermined feature set to
further improve the interindividual classification rate.
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