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Abstract

This paper presents methods for collecting and ana-
lyzing biomechanical data of runners in order to clas-
sify the prevailing running surface situation. For this
purpose, we consider a particular embedded appli-
cation example from the field of digital sports: A
novel running shoe that is capable of sensing run-
specific parameters and adapting the cushioning set-
ting accordingly. Shoe heel compression was recorded
continuously during runs on a predefined test course.
Each single step of the 24 participating athletes was
labeled according to the surface situation. In total,
data from 22910 single steps was collected for anal-
ysis. The data was analyzed using step features to
decide what surface the runner was on with an accu-
racy of more than 80% across multiple study partic-
ipants. The results show that for most participating
runners, three step features are best suited for surface
classification. This information is used in the current
version of the aforementioned running shoe to adapt
the shoe setting correctly.

1 Introduction

The ability to perform accurate classification in real
time is a key factor for many applications. This is
not only true when computationally powerful hard-
ware is used. It is most often crucial in the restricted
hardware environment of the power-efficient, highly
mobile microprocessors used in embedded systems.
The most important question is which of the com-
plex algorithms known in pattern recognition can
be used and implemented in the context of the re-
stricted memory capacity and computational power
of the employed microprocessors. Special consider-
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ations have to be made in order to adapt those al-
gorithms to the specific hardware and classification
task at hand. A lot of areas of engineering can ben-
efit from the possibility of accurate classification in
this restricted environment. Examples include, but
are not limited to, automotive solutions, communica-
tions, industrial automation, speech recognition and
medical care.

For this presentation, we focus on the application
of these concepts on the adidas 1 running shoe, which
is the first shoe that features an embedded system.
This shoe is built to adapt to various running condi-
tions like the prevailing surface situation. A precise
classification of these conditions is of course manda-
tory to guarantee this functionality. To facilitate this,
the step signal of the runner is continually measured
and processed by the embedded microcontroller. A
detailed description of the adidas 1, its functionality
and embedded system hardware can be found in sec-
tions 2 and in DiBenedetto et al. (2004). We will
describe the analysis methods that lead to accurate,
real-time surface classification. To our knowledge,
we are the first group researching step signal clas-
sification on an embedded system. The presented
example for a classification system has recently been
implemented in the current version of the adidas 1
running shoe. It is significantly contributing to the
shoe’s functionality and thereby offering runners an
ideal adaptation during each phase of their run.

2 Materials and Methods

2.1 The adidas 1 Running Shoe

The adidas 1 is a running shoe that possesses a built-
in 8-bit microcontroller, a sensor for heel compression
measurement and a motor for cushioning adaptation.
This shoe is designed for avid runners, and is con-
stantly adjusting itself to the running situation. In
this presentation, we will focus on the classification of
the surface that the athlete is running on. The gen-
eral demand to establish constant cushioning when a
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Figure 1: The adidas 1 shoe.

change of running surface takes place and all other
running conditions remain constant is to have

• a soft shoe on hard surfaces (asphalt, concrete)
• a hard shoe on soft surfaces (grass, trail).

The automatic adaptation ideally takes into account
the athlete’s weight, speed, fatigue level and further-
more the current surface condition, elevation profile
and shoe condition.

To facilitate this adaptation, the shoe features a
cushioning element (Fig. 1), whose ability to give
way in vertical direction can be regulated by a motor-
driven cable system. The regulating cable is running
from the motor through the middle of the cushioning
element to its opposite end and is fixated there. The
motor shown in Fig. 1 can adjust the attenuation set-
ting by turning a screw which lengthens or shortens
the cable. When the cable is shortened, the cushion-
ing element is tensed and compresses very little when
external forces are applied. When the cable is longer,
it allows the cushioning element to compress further
by giving it more room to expand in the x -axis direc-
tion (forward-backward direction), effectively making
the shoe softer. For more details on the shoe design
the reader is referred to DiBenedetto et al. (2004).

Compression measurement is made by a hall sensor
that is mounted at the top of the cushioning element.
It detects the magnetic field strength induced by a
small magnet, see Fig. 1, and can be sampled with a
rate fs of up to 1 kHz. The sensor-magnet distance
dm is then computed from the magnetic field strength
with an accuracy of ±0.1mm. A decision whether the
attenuation of the shoe has to be adapted is made
based on the measured sensor data, see section 2.2.

The sensor-magnet distance is sampled by the
built-in microprocessor that is mounted on a flex-
ible circuit board on the motor element. Cur-
rently, a Cypress Semiconductor Corporation con-
troller CY8C21634 is used. It possesses a clock speed

fclock of up to 24MHz, 512Bytes of SRAM and
8 kByte flash program store.

2.2 Sensor Data

In order to get the data needed for the analysis, there
is a special prototype system equipped with an inter-
face for data collection. The data from the magnet
sensor is stored with a 256 kByte EEPROM array and
can be evaluated offline in a later stage. An example
running signal is depicted in Fig. 2 (bottom) with
the sensor-magnet distance dm plotted against time
t. During the time where the shoe is in the air, the
measured signal consists mainly of noise. In contrast,
the heel compression and decompression phases of the
runner’s steps can clearly be distinguished. This mea-
sured signal is the basis for the surface classification
experiments in section 3.

2.3 Preprocessing and Labeling

To extract the individual steps that need to be clas-
sified, we first establish a baseline value dm,base.
This value corresponds to the sensor-magnet distance
when the shoe is in the air between steps. It can be
reasonably assumed that it is the most frequently oc-
curring value in the data. Next, all sample values that
belong to a compressed state are detected. Initial ex-
periments substantiated that compressed states occur
when the sample values are below a distance thresh-
old dm,thres = dm,base−1.5∗σdata, where σdata is the
overall standard deviation of a dataset.

We define the start and end of the compression
phase as those points in the compression states where
the distance from dm,base drops below three sample
units, which corresponds to 0.7 mm. By using this ap-
proach, all steps could be identified in the datasets.
This was confirmed by manually extracting 449 steps
in 6 datasets and comparing the manual and auto-
matic approaches. The results were identical.

In order to learn the necessary parameters for class
separation, we implemented a graphical user interface
for data labeling. Each step is assigned to one of the
classes manually. The labels are then used for the
training of the classification system.

2.4 Feature Computation and Reduc-
tion

In our case the selected features contain the infor-
mation of one step. For each step, we extracted 19
features from the heel compression signal denoted
by F1 . . . F19 . Fig. 2 shows F1 . . . F10 . Features
F11 . . . F19 are all measuring the standard devia-
tion (SD) of different attributes (see Tab. 1), SD is
computed as follows:
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Figure 2: Step signal features 1 to 10.
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where c is a vector containing the attribute data
and varies depending on the attribute under inves-
tigation and N is the number of samples, i.e. the
number of elements in c. c̄ is the average value of
all the elements of c. More specifically, for F11 , c

contains all the heel compression distance measure-
ments dm collected during a single step event (Fig. 2
top). For F12 . . . F19 , c contains the most recent
16 values of the corresponding feature. For example,
for F12 , each element of c is the minimum dm that
occurred within a single step, i.e. F10 and c has a
total of 16 elements, one min. dm value for each of
the 16 most recent step events (see Fig. 2 bottom).
F13 . . . F19 have similar c values. For more details
see Tab. 1.

The obvious redundancy contained in the extracted

Table 1: Step signal features 11 to 19.
Feature Feature Description
F11 SD - values contained in one step
F12 SD - step minima (F10 )
F13 SD - step means (F8 )
F14 SD - step standard deviation (F11 )
F15 SD - step duration (F7 )
F16 SD - step area (F6 )
F17 SD - time between steps (F3 )
F18 SD - time to peak (F5 )
F19 SD - time from peak (F4 )

features is volitional. It was a goal from the start
to use only a subset of the given features to reduce
complexity further, thereby using only features with
small or no mutual dependence. Fur this reason, we
implemented a beam search as proposed by Bisiani
(2004). The results of the beam search will be shown
in the next section.

2.5 Classifier Selection

For our intended goal of embedded system classifi-
cation we focused on classifiers that could be im-
plemented computationally efficient. Our choices in-
cluded

• Neural Networks (NN)
• Support Vector Machines (SVM)
• Linear Discriminant Analysis (LDA).

In order to test these and other classifiers we used
the WEKA toolbox, see Witten and Eibe (2005).
This toolbox allowed us to compare a lot of differ-
ent approaches on powerful PC hardware in order to
identify the algorithm that is best suited for the mi-
crocontroller implementation. Our experiments (see
section 3) proved that in our case LDA classification
yielded comparable classification rates to other, more
complex approaches. We therefore decided to train
a computationally cheap linear polynomial classifier
using LDA. The theory behind this and other ap-
proaches can be found for example in Duda et al.
(2000).

3 Experiments

3.1 Collected Data

In order to get a sufficient random sample for the sub-
sequent classification experiments, a test course was
selected where the desired surface conditions were
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Figure 3: Aerial view of the test course.

present. The test course is located on the cam-
pus of the Faculty of Engineering of the University
Erlangen-Nuremberg. It is depicted in Fig. 3. All
runners were asked to run 6 sections of about 150
meters:

• two runs on soft surface (grass) with constant
speed

• two runs on hard surface (asphalt) with constant
speed

• one run on changing surface, starting on grass,
then switching to asphalt, and finally running on
grass again, all with constant speed

• one run on hard surface with a change in running
speed (constant speed, then acceleration to a fast
jog after the first half of the distance).

Each participant was asked to run normally with a
comfortable but constant speed for the first 5 sec-
tions. Shoe setting, time information and an athlete
profile (weight, height, training frequency) was noted
for every runner. In addition to the shoe signal, a Po-
lar RS800 system with foot pod was used to get speed
and step frequency information.

24 test runners participated in this data collection.
Shoes with sizes 7, 9 and 11 were used for those ex-
periments. A total of 106 datasets with different shoe
cushioning settings was collected for the subsequent
experiments. Tab. 2 shows the number of steps for
each of the 24 test runners that were used for the
classification experiments. They amount to a total
of 22910 single steps with a fraction of 50.6% on soft
surface. The data was labeled as belonging to soft or
hard surface using the GUI described in section 2.3.

3.2 Feature Selection

The results of the feature selection algorithm de-
scribed in section 2.4 are given in Tab. 3 (see Tab.

Table 2: The 24 runners with number of valid steps.
Shoe size of each participant is given in brackets.

AB (7) 1307 HH (9) 936 MW (11) 1165
AC (9) 1152 JM (11) 541 RB (11) 670
AM (11) 1338 JP (9) 1013 RS (11) 384
BD (11) 781 KH (11) 903 SK (7) 1273
BE (11) 1206 KR (9) 1326 SW (9) 1240
CD (11) 911 MA (11) 898 TS (11) 612
DE (11) 1121 MP (9) 914 TT (11) 791
EK (7) 961 MS (9) 627 VD (11) 840

Table 3: Results for the first 5 iterations of the feature
selection algorithm.

Selected features Classification rate

1,12 75.4%
1,12,17 76.3%

1,2,14,17 76.9%
1,2,5,14,17 77.0%

1,2,7,12,13,17 76.9%

1 for details on the features). For this evaluation,
we used the fact that the classification of single steps
can be improved when additionally taking a context
of preceding steps into account. In this case, a con-
text of three steps was used by casting a majority
vote over the single decisions. In the implementation
for the final product solution, a longer context can be
used, which leads to even better classification results
(see subsection 3.4). We finally selected the feature
triple 1, 12 and 17 for the implementation on the mi-
crocontroller for two reasons. First, with the three-
feature implementation we used 98% of the available
program memory of the the CY8C21634 microcon-
troller. Implementation of a fourth feature would not
have been feasible with the selected processor. The
second reason for the implementation decision was
that we could show that even with calculating the fea-
tures and classification decision, we could still sample
with maximum sample rate and therefore meet the
real time computation criterion.

The confusion matrix for the selected feature com-
bination is given in Tab. 4. Sensitivity is 77.7% and
specificity is 73.6%. This result shows that no class
is significantly favored over the other.

3.3 Classifiers

With the described three-feature subset we addition-
ally performed experiments using other classifiers to
decide whether other approaches could enhance our
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Table 4: Confusion matrix for features 1, 12 and 17.

Class soft Class hard
Classified as soft 9000 2993
Classified as hard 2583 8334

Table 5: Results for different classifiers. Context of
three steps was used.

Classifier Classification rate

Nearest Neighbor, k=1 71.2%
Nearest Neighbor, k=3 73.1%
Nearest Neighbor, k=5 75.3%
Support Vector Machine 76.1%

LDA 76.3%
Neural Network 76.5%

results. For cross-validation, 24 subsets were used,
each consisting of the samples of one individual run-
ner. The results of these experiments are presented
in Tab. 5. It can be seen that only the Neural Net-
work with 1 hidden layer and 5 hidden units slightly
outperforms the Linear Discriminant analysis. How-
ever, the gain in classification rate is not significant.
Moreover, the complexity of the classifier, which has
to compute more multiplications and has to evaluate
the sigmoid function, inhibits its implementation on
the embedded system.

3.4 Final Evaluation on the Microcon-
troller

It was important to implement our classification al-
gorithm on the microcontroller that is employed in
the product to verify our results. Longer contexts of
16 steps were used for the implementation. Tab. 6
shows the results of these experiments. Classification
rates of more than 80% could be achieved.

Table 6: Datasets used for the evaluation on the mi-
crocontroller.

Dataset description Steps Hard Acc.

Park (grass, concrete) 3480 61.5% 82.8%
Only asphalt surface 995 100% 92.0%
Forest soil, no incline 4438 0% 90.8%
Forest soil and asphalt, 4448 65.9% 80.3%
running up/downhill

4 Summary

For the realization of accurate surface classification
using sensor output from the adidas 1, data was col-
lected from 24 test runners on hard and soft surface.
This data was labeled, and 19 features were extracted
which were chosen because they consistently repre-
sent the step information. A classification system us-
ing linear discriminant analysis was then proposed.
Using the classification rate as a criterion, a subset
of three features was found that is suited to be imple-
mented on the embedded system that is integrated in
the running shoe. The described classifier has been
found to be more than 80% correct, and has been
implemented in the current version of the adidas 1
running shoe.

5 Future Work

First results indicate that other important conditions
can be classified using the shoe signal. One example
includes the state of fatigue of a runner. An adapta-
tion of the shoe hardness setting to a fatigued condi-
tion is definitely imaginable. Additionally, we will an-
alyze the effect of elevation profile and speed changes
in order to be able to classify these parameters, too.
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