Contributions of Time-of-Flight cameras for Biomedical Applications

July 18th, 2008

Dipl.-Ing. Kurt Höller¹,

C. Schaller¹, D. Tacke², F. Höpfl³, J. Hornegger¹

¹Chair of Pattern Recognition (LME), Friedrich-Alexander-University Erlangen-Nuremberg

²Chair for Microwave Engineering and High Frequency Technology (LHFT), Friedrich-Alexander-University Erlangen-Nuremberg,

³softgate gmbh Nägelsbachstr. 26, 91052 Erlangen, Germany

Content

1 Introduction/Motivation

- 2 Time-of-Flight (ToF) principle
- 3 Biomedical ToF applications
 - MUSTOF 3-D endoscopy
 - Respiratory motion gating
 - Patient positioning
- 4 Summarize
- 5 Outlook

3/32

Overview

State of the Art

Time-of-Flight (ToF) technology

- Lateral resolution: 120×160 pixel
- Depth resolution: 3 mm
- Wavelength: 870 nm
- Pixel dimension: $40\mu m \times 40\mu m$
- Modulation frequency: 20 MHz ($\Rightarrow \lambda = 15m$)
- Frame rate: >12 fps

Figure: ToF-camera and example images

State of the Art

Time-of-Flight (ToF) technology

- Lateral resolution: 176×144 pixel
- Depth resolution: 2,5 mm
- Wavelength: 870 nm
- Pixel dimension: $40\mu m \times 40\mu m$
- Modulation frequency: 20 MHz ($\Rightarrow \lambda = 15m$)
- Frame rate: >25 fps

Figure: ToF-camera and example images

Overview

Introduction/Motivation Time-of-Flight (ToF) principle

- Biomedical ToF applications
 MUSTOF 3-D endoscopy
 - Respiratory motion gating
 - Patient positioning
- 4 Summarize
- 5 Outlook

Time-of-flight principle Pulsed modulation

DGBMT 2008: K. Höller (LME)

(日)

Time-of-flight principle

Continuous wave modulation

500

8/32

Mr.

Time-of-flight principle

Continuous wave modulation

- Infra-red light with amplitude modulation using a modulation frequency f_{mod} is sent out by the camera (active illumination), scattered by the object and received again by the camera after a time of flight τ_d.
- The camera measures the **phase difference** φ_d between the sent signal $g_k(t)$ with phasing φ_T and the reflected and received wave $s_d(t) \sim g_k(t \tau_d)$ with phasing φ_R .

$$\varphi_d = \varphi_R - \varphi_T = 2\pi f_{mod} \tau_d \tag{1}$$

Assuming constant speed of light *c* the **distance** *d* is proportional to the phase shift φ_d of emitted and reflected wave:

$$d = \frac{c \cdot \varphi_d}{4\pi \cdot f_{mod}} \quad [Heinol \ 2001] \tag{2}$$

The phase difference is measured by sampling the received signal at *N* equidistant measurement points. This can be realised by a stepwise increased phase shift ωτ_k of the electrical reference signal:

$$\bar{\omega}\tau_k = \frac{2\pi}{N} \cdot (k-1)$$
 with $k = 1, 2, .., N$ [Luan 2001] (3)

For normally applied N = 4 this means an iterative phase shift by 90° with $\bar{\omega}\tau_1 = 0^\circ$ and $\bar{\omega}\tau_4 = 270^\circ$

Time-of-flight principle Correlation function

• With the correlation function $c(\tau_k) = s_d(t) \otimes g_k(t + \tau_k)$

$$c(\tau_k) = \frac{a}{2} \cdot cos(\varphi_d + \bar{\omega}\tau_k) \ [Lange \ 2000] \tag{4}$$

and the voltage dependency

 $U_k \sim K + c(\tau_k)$ (K : background illumination influence) (5)

the resulting voltages U_k can be computed as

$$U_{1} \sim K + \frac{a}{2} \cdot \cos(\varphi_{d}), \quad U_{2} \sim K - \frac{a}{2} \cdot \sin(\varphi_{d}), \\ U_{3} \sim K - \frac{a}{2} \cdot \cos(\varphi_{d}), \quad U_{4} \sim K + \frac{a}{2} \cdot \sin(\varphi_{d}).$$
(6)

Time-of-flight principle Results

■ Thus a pair of phase shift depending voltage differences △U₃₁ and △U₂₄ can be build:

$$\Delta U_{24} = U_2 - U_4 = -a \cdot \frac{\sin(\varphi_d)}{\Delta U_{31}} = U_3 - U_1 = -a \cdot \frac{\cos(\varphi_d)}{\Delta U_3}$$
(7)

 \blacksquare The relation of these two voltage differences is depending on φ

$$\frac{\Delta U_{24}}{\Delta U_{31}} = \tan(\varphi_d) \tag{8}$$

but without knowledge of the unit circle quadrant the common arcustangens function is not sufficient to compute φ unambiguously for the range of values between 0 and 2π .

Time-of-flight principle

■ Using the two-argument function atan2 to handle the ambiguity and shifting the results from a range of $-\pi...\pi$ back to $0...2\pi$ one finally can compute the **phase shift** φ_d :

$$\varphi_{d} = atan^2 \left(\Delta U_{24}, \Delta U_{31} \right) + \pi$$
 (9)

• Amplitude A depends as well on ΔU_{24} and ΔU_{31}

$$\boldsymbol{A} \sim \frac{\sqrt{\Delta U_{24}^2 + \Delta U_{31}^2}}{2} \tag{10}$$

• Offset K can be computed with voltages $U_1...U_4$

$$K \sim \frac{U_1 + U_2 + U_3 + U_4}{4}$$
 (11)

< 日 > < 同 > < 回 > < 回 > < □ > <

- small light emmitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

$$\text{accuracy} = \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

- c: relative speed of light
- *f_{mod}* : modulation frequency
- *P*_{laser} : power of modulated signal
- Pamb : ambient light power
- A: illuminated area

- *k_{opt}* : optical system constant
- *q_e* : quantum efficiency
- r: target reflectivity
- T: integration time

- small light emmitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

$$\text{accuracy} = \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

- c: relative speed of light
- *f_{mod}* : modulation frequency
- *P*_{laser} : power of modulated signal
- Pamb : ambient light power
- A: illuminated area

- *k_{opt}* : optical system constant
- *q_e* : quantum efficiency
- r: target reflectivity
- T: integration time

- small light emmitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

$$\text{accuracy} = \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

- c: relative speed of light
- *f_{mod}* : modulation frequency
- *P*_{laser} : power of modulated signal
- *P_{amb}* : ambient light power
- A: illuminated area

- *k_{opt}* : optical system constant
- *q_e* : quantum efficiency
- r: target reflectivity
- T: integration time

- small light emmitting surface
- high power
- fast modulation
- narrow-band for ambient light suppression

$$\text{accuracy} = \frac{c}{2f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}} \frac{A}{k_{opt}q_e r T}$$

- c: relative speed of light
- *f_{mod}* : modulation frequency
- *P*_{laser} : power of modulated signal
- *P_{amb}* : ambient light power
- A: illuminated area

- *k_{opt}* : optical system constant
- *q_e* : quantum efficiency
- r: target reflectivity
- T: integration time

Overview

Overview

Idea of MUSTOF

Parallel acquisition with ToF camera and CCD camera

w

Parallel acquisition of depth and image data combining a ToF and a CCD chip: Multi-Sensor-Time-Of-Flight (MUSTOF) endoscope

Navigation support - Off-axis view

Finding the entry point to the peritonial cavity

DGBMT 2008: K. Höller (LME)

Navigation support - Collision prevention

Finding the entry point to the peritonial cavity

DGBMT 2008: K. Höller (LME)

20/32

Preliminary results

20/32

Preliminary results

Liver phantom with gall bladder

DGBMT 2008: K. Höller (LME)

Overview

ToF respiratory motion gating Thorax and Abdomen

Aquisition (Thorax / Abdomen) Preprocessing (Thorax / Abdomen) Realtime Signal (Thorax / Abdomen)

ToF respiratory motion gating Evaluation

イロト イヨト イヨト イヨト

ToF respiratory motion gating Evaluation

PET Scanner

Lab Setup

DGBMT 2008: K. Höller (LME)

Overview

ToF patient positioning

Segmentation and registration

27/32

ToF Patient Positioning Difference Image

DGBMT 2008: K. Höller (LME)

Overview

Introduction/Motivation
 Time-of-Flight (ToF) principle
 Biomedical ToF applications

 MUSTOF 3-D endoscopy
 Respiratory motion gating
 Patient positioning

 Summarize
 Outlook

ToF cameras are off-the-shelf technology.

- 3-D endoscopy to provide an enhanced field of view and real-time collision prevention
 - \rightarrow Getting online distance information and computing off-axis view or reconstructed area by stitching
- ToF sensor for respiratory motion gating → Competitive approach improving PET, 4-D CT,...
- Patient positioning using 3-D surface registration
 Adaption of preoperative CT planning in radiotherapy

Overview

Introduction/Motivation
 Time-of-Flight (ToF) principle
 Biomedical ToF applications

 MUSTOF 3-D endoscopy
 Respiratory motion gating
 Patient positioning

 Summarize
 Outlook

31 / 32

Outlook Solution for loss of spatial orientation

Real-time information of spatial orientation by measuring gravity

using MEMS-based inertial devices:
 3-D accelerometers

The End

- Thank you for your attention!
- Any further questions?

