MUSTOF - taking endoscopy to a higher dimension A novel 3-D hybrid endoscope for NOTES

January 30th, 2008

Dipl.-Ing. Kurt Höller,

Dipl. Med.-Inf. Jochen Penne Prof. Dr.-Ing. J. Hornegger

Institute of Pattern Recognition (Inf. 5)
Friedrich-Alexander-University Erlangen-Nuremberg

Content

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Background of the project group

Our team: Multiple interests, one vision...

- Organisational and personal infrastructure of the group:
 - computer scientists
 - electrical engineers
 - physicists
 - physicians
- Industrial partners:
 - endoscopy
 - camera
 - software

First prototype of a 3-D endoscope

M

based on time-of-flight technology

'Towards NOTES^{3D}'

Paketantrag

Participating institutes:

- LME, Erlangen (Prof. J. Hornegger)
- MITI group, Munich (Prof. H. Feussner)
- CAMP, Munich (Prof. N. Navab)
- MED1, Erlangen (Prof. E.G. Hahn)

Submitted during 3rd Russian-Bavarian Conference on Biomedical Engineering

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Time Line

M

From open surgery to NOTES

Surgery can be done as:

- open surgery
 - → for hundreds of years
- minimally invasive / laparoscopic surgery
 - → since the beginning of the 90s
- and through natural orifices
 - \rightarrow "no longer if but when" (W. O. Richards, D. W. Rattner 2005)
- July 22/23, 2005 white paper and foundation of Consortium for Assesment and Research (NOSCAR) on NOTES:
 Natural Orifice Translumenal Endoscopic Surgery

4 D > 4 B > 4 B > 4 B >

NOTES Publications

M

Fast growing community

Figure: NOTES Publications in SE (SAGES), GIE (ASGE), Endoscopy (ESGE), DDW 🔞 🚊 💉 🔍 🔍

Participating groups with NOTES

Figure: Interdisciplinarity of NOTES

Benefits

of Natural Orifice Translumenal Endosopic Surgery (NOTES)

Expected benefits of NOTES:

- Less pain
- Faster recovery
- Better cosmetic results avoiding skin incisions
- Lower risk for herniation
- No risk for eventration
- Lower risk for wound infection
- Lower risk for adhesions

Peroral transgastric route

Flexible endoscope through wall of stomach

Figure: Resection of gastric stromal tumor (J.L. Ponsky 2006)

Peranal transcolonic route

Transvaginal route

Peroral transesophageal route

Possible therapies

W

using NOTES technique

Some actual discussed and tried therapies with NOTES:

- appendectomy
- cholecystectomy
- splenectomy
- gastrojejunostomy
- lymphadenectomy
- nephrectomy
- liver biopsy
- hernia repair

Figure: Splenectomy (Kantsevoy 2006)

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Potential barriers to clinical practice

according to the NOTES white paper

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Potential barriers to clinical practice

according to the NOTES white paper

- Access to peritoneal cavity ⇒ item we could support
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation ⇒ item we could support
- Development of a multitasking platform ⇒ item we could support
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Access to peritoneal cavity: NOTES^{3D}

Multi-Sensor-Time-Of-Flight (MUSTOF) technology enhances NOTES for 3-D:

- NOTES^{3D} could be used to register online optic 3-D data with preoperative MR or CT volumes
- So combination of actual view of operation area with Augmented Reality (AR) is possible
- The optimal access point to peritoneal cavity can be found by visualisation of organs behind gastric or colonic wall

Collision prevention

W

Paketantrag 'Towards NOTES^{3D}'

Dynamic reconstruction

Paketantrag 'Towards NOTES^{3D}'

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

State of the Art

M

Time-of-Flight (TOF) technology

■ Lateral resolution: 120×160 pixel

Depth resolution: 3 mm

Wavelength: 870 nm

■ Pixel dimension: $40\mu m \times 40\mu m$

■ Modulation frequency: 20 Mhz ($\Rightarrow \lambda = 15m$)

■ Framerate: >12 fps

Figure: TOF-camera and example images

State of the Art

M

Time-of-Flight (TOF) technology

■ Lateral resolution: 176×144 pixel

■ Depth resolution: 2,5 mm

Wavelength: 870 nm

■ Pixel dimension: $40\mu m \times 40\mu m$

■ Modulation frequency: 20 Mhz ($\Rightarrow \lambda = 15m$)

■ Framerate: >25 fps

Figure: TOF-camera and example images

Time-of-flight principle

Continuous wave modulation

Modulation frequency

Frequency depending standard deviation

Compensation of temperature variation:

Temperature depending error = bias (mesa)

Variation of integration time:

Standard deviation and amplitude vs. integration time (pmd)

Comparison pmd/mesa:

Figure: integration time vs. amplitude and standard deviation (pmd)

Figure: integration time vs. amplitude and standard deviation (mesa)

Overview

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
- 4 Summarize
- 5 Outlook

Idea of MUSTOF

Parallel acquisition with TOF camera and CCD camera

Figure: Paketantrag 'Towards NOTES^{3D},

Required Methods

Calibration and Registration of TOF camera and CCD camera

Figure: Paketantrag 'Towards NOTES^{3D}'

Required Methods

Reconstruction of static or almost static 3-D scenes

Figure: Paketantrag 'Towards NOTES^{3D},

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Averaging of consecutive TOF frames Results

■ Test scenario: clinical object liver model close up

Figure: 3D surface reconstruction. Test scenario: Liver model. Left: original data. Right: result of averaging 10 consecutive frames.

Outlier detection and removal by histogram analysis Results

■ Test scenario: clinical object *liver model* close up

Figure: 3D surface reconstruction. Test scenario: Liver model. Left: original data. Right: result of outlier removal.

Feature detection

Results

■ Test scenario: *liver model* close up

Figure: 3D surface reconstruction. Test scenario: liver model. Both images show the features detected in amplitude data (green) and 3D points (red).

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

- easier coupling into illumination chanel
- high power
- fast modulation
- narrow-band, ambient light suppression

Accuracy
$$\sim \frac{1}{f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}}$$

- easier coupling into illumination chanel
- high power
- fast modulation
- narrow-band, ambient light suppression

Accuracy
$$\sim \frac{1}{f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}}$$

- easier coupling into illumination chanel
- high power
- fast modulation
- narrow-band, ambient light suppression

$$\mathsf{Accuracy} \sim \frac{1}{\mathit{f}_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}}$$

- easier coupling into illumination chanel
- high power
- fast modulation
- narrow-band, ambient light suppression

Accuracy
$$\sim \frac{1}{f_{mod}} \cdot \sqrt{\frac{P_{mod} + P_{amb}}{P_{mod}^2}}$$

Experimental setting with laser powered illumination

W

Experimental setting

with laser powered illumination

Experimental setting

W

with laser powered illumination

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Summarize

Applications and Challenges

Supporting problems of **NOTES** will be THE application:

- Access to peritoneal cavity
 - Registering online optic 3-D data with preoperative MR or CT visualized by Augmented Reality
- Maintaining spatial orientation, distance values or other 3-D data
 - collision prevention, motion compensation and automatic positioning of surgery tools
 - reconstruction of static scenes (3-D mosaicing)

Research to make **MUSTOF** technology more precise:

- modulation frequency and temperature depending offset
- integration time, modulation frequency and reflectivity depending errors
- high power laser illumination

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 MUSTOF
 - Time-of-Flight (TOF)
 - Idea of MUSTOF
 - Algorithmic framework
 - Laser illumination
 - 4 Summarize
- 5 Outlook

Outlook

Next steps:

- Spectra and power optimization of the MUSTOF system
- Receiving data from animal laboratories (porcine model)
- First results of Paketantrag 'Towards NOTES^{3D}'

The End

- Thank you for your attention!
- Any further questions?

