Taking endoscopy to a higher dimension Computer Aided 3-D NOTES

July 8, 2008

Dipl.-Ing. Kurt Höller¹,

M. Petrunina², Dipl. Med.-Inf. J. Penne¹, Prof. Dr.-Ing. J. Hornegger¹, Dipl.-Ing. A. Schneider³, Dr. med. D. Wilhelm³, Prof. Dr. med. H. Feußner³

¹Chair of Pattern Recognition (LME), Friedrich-Alexander-University Erlangen-Nuremberg

²Department of Medicine 1 (MED1), Friedrich-Alexander-University Erlangen-Nuremberg

³Workgroup for Minimal Invasive Surgery (MITI), Klinikum r. d. Isar, Technical University Munich

Content

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
 - 4 Summarize
- 5 Outlook

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Endoscopic 3-D approaches

State of the Art

3-D information can be achieved with

- endoscopic ultrasound (EUS)
- magnetically anchored instruments
- passive optical approaches
 - stereo vision
 - structure from motion
 - shape from shading
- active optical approaches
 - pattern projection
 - time-of-flight hybrid system
- inertial sensors for gravity related orientation

First prototype of a 3-D endoscope

MV

Based on time-of-flight technology

Preliminary results

MV

Liver phantom with gall bladder

Preliminary results

W

Liver phantom with gall bladder

⇒ More details in the talk of Jochen Penne et al.

'Towards NOTES^{3D}'

Joint funding application at Deutsche Forschungsgemeinschaft (DFG)

Participating institutes:

- LME, Erlangen (Prof. J. Hornegger)
- MITI group, Munich (Prof. H. Feussner)
- CAMP, Munich (Prof. N. Navab)
- LGDV, Erlangen (Prof. G. Greiner)
- MED1, Erlangen (Prof. E.G. Hahn)

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Time Line

M

From open surgery to NOTES

Surgery can be done as:

- open surgery
 - → for hundreds of years
- minimally invasive / laparoscopic surgery
 - \rightarrow since the late 80s
- and through natural orifices
 - \rightarrow "no longer if but when" (W. O. Richards, D. W. Rattner 2005)
- July 22/23, 2005 white paper and foundation of Consortium for Assessment and Research (NOSCAR) on NOTES:
 Natural Orifice Translumenal Endoscopic Surgery

4 D > 4 B > 4 B > 4 B >

Participating groups with NOTES

M

Great chance for technical innovations

Figure: Interdisciplinarity of NOTES

Peroral transgastric route

M

Peranal transcolonic route

Transvaginal route

Peroral transesophageal route

M

NOTES Publications 2004-2007

Fast growing community

Figure: NOTES Publications in SE (SAGES), GIE (ASGE), Endoscopy (ESGE), DDW

⇒ In 2008 more than twice the number of publications of 2007

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity ⇒ item we can support
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation ⇒ item we can support
- Development of a multitasking platform ⇒ item we can support
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
 - 4 Summarize
- 5 Outlook

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
 - 4 Summarize
- 5 Outlook

Navigation support - Orientation

Finding the entry point to the peritonial cavity

Challenge:

More information on position and orientation of the robotic device or the endoscope

Solution:

- Nonrigid registration of intraoperative 3-D data with preoperative CT or MR data is possible
- Calculated transformation parameters can be used to represent, correct und visualize actual position and orientation

Navigation support - Orientation

Finding the entry point to the peritonial cavity

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
 - 4 Summarize
- 5 Outlook

Navigation support - Augmented Reality

Finding the entry point to the peritonial cavity

Challenge:

- Avoid injuries of hidden organs and vessels, e.g. while finding the entry point to the peritoneal cavity
- Knowledge of structures behind the visible wall is needed for a safe incision

Solution:

- Registration with preoperative volumes
- Segmentation of objects of interest in the preoperative volumes
- Adaption of those objects by iteratively computed transformation parameters
- Visualization of hidden organs or vessels in intraoperative endoscopic images by augmented reality

Navigation support - Augmented Reality

W

Finding the entry point to the peritonial cavity

Navigation support - Augmented Reality

M

Finding the entry point to the peritonial cavity

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
 - 4 Summarize
- 5 Outlook

Navigation support - Off-axis view

Finding the entry point to the peritonial cavity

Challenge:

 Overcome boundaries of limited field of view like axis in-line view and loss of spatial orientation

Solution:

- 3-D surface knowledge can be used to extend and virtually rotate the field of view
- With a 3-D mosaicking technique, the field of view can be extended by reconstruction of the operation area.

Navigation support - Off-axis view

M

Finding the entry point to the peritonial cavity

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Navigation support - Collision prevention

Finding the entry point to the peritonial cavity

Challenge:

- Provide a higher grade of safety for automatic tools and robotic devices
- Especially important with multiple instruments through only one flexible endoscope

Solution:

- With real-time distance information efficient collision prevention with tissue or other instruments can be enabled
- Auto-positioning depending on respiration or other patient movements will be very helpful.

Navigation support - Collision prevention

W

Finding the entry point to the peritonial cavity

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Conclusion

Endoscopic 3-D information are precondition to

- calculate intra-operative orientation
 - → registrating with pre-operative MR/CT volumes
- avoid injuries of hidden organs and vessels
 - → making them visible by augmented reality
- provide an enhanced field of view
 - ightarrow computing off-axis view or reconstructed area by stitching
- to enable collision prevention, motion compensation and automatic positioning of surgery tools
 - → using a real-time distance measurement

- 1 Introduction/Motivation
- 2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
- 3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
- 4 Summarize
- 5 Outlook

Outlook

Solution for loss of spatial orientation

real-time information of spatial orientation by measuring gravity

using MEMS-based inertial devices:

3-D accelerometers

The End

- Thank you for your attention!
- Any further questions?

