Taking endoscopy to a higher dimension
Computer Aided 3-D NOTES

July 8, 2008

Dipl.-Ing. Kurt Höller¹,
M. Petrunina², Dipl. Med.-Inf. J. Penne¹, Prof. Dr.-Ing. J. Hornegger¹,
Dipl.-Ing. A. Schneider³, Dr. med. D. Wilhelm³, Prof. Dr. med. H. Feußner³

¹Chair of Pattern Recognition (LME),
Friedrich-Alexander-University Erlangen-Nuremberg

²Department of Medicine 1 (MED1),
Friedrich-Alexander-University Erlangen-Nuremberg

³Workgroup for Minimal Invasive Surgery (MITI),
Klinikum r. d. Isar, Technical University Munich
Content

1 Introduction/Motivation
2 NOTES
 • Idea of NOTES
 • Challenges with NOTES
3 3-D endoscopy contributions
 • Orientation
 • Augmented Reality
 • Enhanced field of view
 • Collision Prevention
4 Summarize
5 Outlook
Overview

1. Introduction/Motivation
 - NOTES
2. Challenges with NOTES
 - Idea of NOTES
 - Orientation
3. 3-D endoscopy contributions
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Endoscopic 3-D approaches

State of the Art

3-D information can be achieved with

- endoscopic ultrasound (EUS)
- magnetically anchored instruments
- passive optical approaches
 - stereo vision
 - structure from motion
 - shape from shading
- active optical approaches
 - pattern projection
 - time-of-flight hybrid system
- inertial sensors for gravity related orientation
First prototype of a 3-D endoscope
Based on time-of-flight technology

first presented at

2-nd Russian-Bavarian Conference on Bio-Medical Engineering
June 14/15, 2006, Moscow
Preliminary results
Liver phantom with gall bladder
Preliminary results
Liver phantom with gall bladder

⇒ More details in the talk of Jochen Penne et al.

K. Höller
Towards NOTES\(^{3D}\)’

Joint funding application at Deutsche Forschungsgemeinschaft (DFG)

Participating institutes:

- LME, Erlangen (Prof. J. Hornegger)
- MITI group, Munich (Prof. H. Feussner)
- CAMP, Munich (Prof. N. Navab)
- LGDV, Erlangen (Prof. G. Greiner)
- MED1, Erlangen (Prof. E.G. Hahn)

Submitted during the 3rd Russian-Bavarian Conference on Bio-Medical Engineering, July 2/3, 2007, Erlangen
Overview

1. Introduction/Motivation
2. NOTES
 - Idea of NOTES
 - Challenges with NOTES
3. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Overview

1. Introduction/Motivation
2. NOTES
 - Idea of NOTES
 - Challenges with NOTES
3. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Time Line
From open surgery to NOTES

Surgery can be done as:

- open surgery
 → for hundreds of years

- minimally invasive / laparoscopic surgery
 → since the late 80s

- and through natural orifices
 → "no longer if but when" (W. O. Richards, D. W. Rattner 2005)

⇒ July 22/23, 2005 white paper and foundation of Consortium for Assessment and Research (NOSCAR) on NOTES: Natural Orifice Translumenal Endoscopic Surgery
Participating groups with NOTES
Great chance for technical innovations

Figure: Interdisciplinarity of NOTES

K. Höller
Peroral transgastric route
Natural Orifice Translumenal Endoscopic Surgery
Peranal transcolonic route
Natural Orifice Translumenal Endoscopic Surgery
Transvaginal route
Natural Orifice Translumenal Endoscopic Surgery
Peroral transesophageal route
Natural Orifice Translumenal Endoscopic Surgery
NOTES Publications 2004-2007
Fast growing community

Figure: NOTES Publications in SE (SAGES), GIE (ASGE), Endoscopy (ESGE), DDW

⇒ In 2008 more than twice the number of publications of 2007

K. Höller
Overview

1. Introduction/Motivation
2. NOTES
 - Idea of NOTES
 - Challenges with NOTES
3. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation
- Development of a multitasking platform
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers
Potential barriers to clinical practice

According to the NOTES white paper, New York 2005

Fundamental challenges to the safe introduction of NOTES

- Access to peritoneal cavity ⇒ item we can support
- Gastric or intestinal closure
- Prevention of infection
- Development of suturing and anastomotic (nonsuturing) devices
- Maintaining spatial orientation ⇒ item we can support
- Development of a multitasking platform ⇒ item we can support
- Management of intraperitoneal complications and hemorrhage
- Physiologic untoward events
- Training other providers
Overview

1. Introduction/Motivation
2. NOTES
 - Idea of NOTES
 - Challenges with NOTES
3. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Overview

1 Introduction/Motivation

2 NOTES
 - Idea of NOTES
 - Challenges with NOTES

3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention

4 Summarize

5 Outlook

K. Höller
Navigation support - Orientation
Finding the entry point to the peritonial cavity

Challenge:

- More information on position and orientation of the robotic device or the endoscope

Solution:

- Nonrigid registration of intraoperative 3-D data with preoperative CT or MR data is possible
- Calculated transformation parameters can be used to represent, correct and visualize actual position and orientation
Navigation support - Orientation
Finding the entry point to the peritoneal cavity
Overview

1. Introduction/Motivation
2. NOTES
 - Idea of NOTES
 - Challenges with NOTES
3. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4. Summarize
5. Outlook
Navigation support - Augmented Reality
Finding the entry point to the peritoneal cavity

Challenge:

- Avoid injuries of hidden organs and vessels, e.g. while finding the entry point to the peritoneal cavity
- Knowledge of structures behind the visible wall is needed for a safe incision

Solution:

- Registration with preoperative volumes
- Segmentation of objects of interest in the preoperative volumes
- Adaptation of those objects by iteratively computed transformation parameters
- Visualization of hidden organs or vessels in intraoperative endoscopic images by augmented reality
Navigation support - Augmented Reality

Finding the entry point to the peritoneal cavity
Navigation support - Augmented Reality

Finding the entry point to the peritoneal cavity
Overview

1. Introduction/Motivation
 - NOTES
 - Idea of NOTES
 - Challenges with NOTES

2. 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention

3. Summarize

4. Outlook

K. Höller
Navigation support - Off-axis view
Finding the entry point to the peritoneal cavity

Challenge:
- Overcome boundaries of limited field of view like axis in-line view and loss of spatial orientation

Solution:
- 3-D surface knowledge can be used to extend and virtually rotate the field of view
- With a 3-D mosaicking technique, the field of view can be extended by reconstruction of the operation area.
Navigation support - Off-axis view

Finding the entry point to the peritonial cavity
Overview

1 Introduction/Motivation
2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4 Summarize
5 Outlook
Navigation support - Collision prevention
Finding the entry point to the peritonial cavity

Challenge:

- Provide a higher grade of safety for automatic tools and robotic devices
- Especially important with multiple instruments through only one flexible endoscope

Solution:

- With real-time distance information efficient collision prevention with tissue or other instruments can be enabled
- Auto-positioning depending on respiration or other patient movements will be very helpful.
Navigation support - Collision prevention

Finding the entry point to the peritoneal cavity
Overview

1 Introduction/Motivation

2 NOTES
 - Idea of NOTES
 - Challenges with NOTES

3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention

4 Summarize

5 Outlook
Conclusion

Endoscopic 3-D information are precondition to

- calculate intra-operative orientation
 → registering with pre-operative MR/CT volumes

- avoid injuries of hidden organs and vessels
 → making them visible by augmented reality

- provide an enhanced field of view
 → computing off-axis view or reconstructed area by stitching

- to enable collision prevention, motion compensation and automatic positioning of surgery tools
 → using a real-time distance measurement
Overview

1 Introduction/Motivation
2 NOTES
 - Idea of NOTES
 - Challenges with NOTES
3 3-D endoscopy contributions
 - Orientation
 - Augmented Reality
 - Enhanced field of view
 - Collision Prevention
4 Summarize
5 Outlook
Outlook
Solution for loss of spatial orientation

real-time information of spatial orientation by measuring gravity

- using MEMS-based inertial devices:
 3-D accelerometers
The End

- Thank you for your attention!
- Any further questions?