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Abstract. In this paper, we study means of estimating a person’sntwtress level from
physiological signals. Generic, data-driven features are extractedriraliple channels and
used to predict a continuous stress level with regression technigllesing for temporary
signal corruption by artefacts, our approach can handle a variable number of input channels
Additionally, methods for estimating the reaction time of the systemproposed. The
evaluation of the approach with reference annotations of three labellerss gm@mising
results.

1 Introduction

The aim of this study is to evaluate methods for esimmaa person’s current stress level
from physiological signals in real time. We use thé&v@work database which contains re-
cordings of six physiological signals, audio and video duvewying levels of workload in a
simulated car-drive (see [1] for details). It contdibshours of physiological recordings from
24 participants. Relaxed and stressed states have besrdddg giving the participant dif-
ferent tasks, partly on top of the driving task. Subjectind objective measures support the
effectiveness of this approach. In prior studies, we hmeel the structured design of the re-
cording experiment to derive stress labels for wholensegs; the two classes stress/non-
stress could be predicted person-independently withvelathigh reliability (86-94 % de-
pending on the chosen evaluation subset) even when usingendgrsdata from the past
60 seconds. However, when wishing to study the real-time giepef such a classification
system, more specifically the reaction time to usateschanges, such coarse labels will not
do. In [2] a continuous stress metric is created fronfréspiency of objective stress indica-
tors like turning the steering wheel or changing gaze dwirgpl-world driving task to de-
rive a continuous stress metric. We take another apptoae, and use the manual ratings of
three labellers available in the Drivawork database. d la®ls have been created by tracing
the perceived stress level of the participant on arslidéle watching the video recording
(audio included) of the experiments. The position ofdider is mapped to a value between
0 for a maximally relaxed and 1 for a maximally stressatésThe ratings are read out once
per video frame; thus, these labels have the capabdityeflect even quick user state
changes. The ratings of two labellers for one partitip@ave a Pearson correlation coeffi-
cient of 0.76 and an absolute deviation of 0.13 on averagserRrattempts to translate the
continuous labels into discrete classes did not yieteé@eable agreement rates among the
three labellers; therefore, we use the continuousgatlirectly and predict them with regres-
sion techniques.

2 M ethods

Six physiological signals are used in this study: eleemdiogram (ECG), electromyogram
measured at the neck, skin conductivity between index and enfadjer, blood volume
pulse (BVP) at the ring finger, skin temperature at title finger and abdominal respiration.
From these signals, three derived signals are celagart rate from ECG and from BVP and
the lag between ECG and BVP which can be regarded as gaterfmarameter of the blood
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pressure. To be robust against sensor failure or corruptiartefacts, each channel is first
analysed separately; only valid channels are then coohifamehe final result; cable discon-

nects and physically implausible values in the derivedassgwill lead to the temporary ex-

clusion of a channel.

For each signal, features are computed from multiple analysis window$ (20 and 60
seconds) to capture quick changes as well as contettdaanalysis. As we aim for online
stress estimation, these analysis windows are cawsahey contain only data from the past.
From each analysis window, a relatively large numlideatures like mean, standard devia-
tion or slope are calculated. For the present studyp®hefficient “moving features” as de-
scribed in [3] are used. The 200 features from all four aisalyimdows are mean-variance-
normalised and then transformed to a reduced vectonwdrdiion 100 with Principal Com-
ponent Analysis (PCA). Then, linear regression is applo compute an estimaje  of the
continuous stress rating . Although reference strdegvare given with a frequency equal
to the frame rate of the video recording, feature ve@omronly computed with a frequency
of 4 Hz; the reference values are down-sampled accordifigly methods for combining the
variable number of predicted ratings from the currevailyd channels are studied: first, linear
estimation; second, linear regression again.

Linear estimation is a weighted averaging indirectly propoal to the mean squared error
of the respective input; it yields the minimal squared iptish error if the inputs are statisti-
cally independent and unbiased [4]:

gest = ( Z wsﬁs)/( Z ws)a Ws = 1/( Z (ggl) - y(l))2>

s valid s valid i€train

For linear regression, the transformation parametgrsrdkon the subset of currently valid
input channels; however, they can be calculated on theittlya computational effort cubic
in the number of inputs but independent of the numberaafibhg vectors—feasible for a
moderate number of input channels as in our case (fes e@th many inputs more efficient
approaches as described in [5] could be used). Let

~
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be the linear regression if &ll channels are valid. Thenis determined frondV uncorrupted
training samples by

tTA = bT; A = YYT’ bT - yTYT7 -Y = (y/\(l)7 A 7Q(N))7 yT = (y(l)’ A 7y(N))'

A andb are computed offline; during operation, depending on the rtlyrealid channels,
the deletion matrix respectively vectors

~

A" = (aij)ij vatids b = (0:)i vatia, ¥ = (Us)i valid

are formed and’ and¢,., are computed from

~
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Figure 1 shows an example for each method. It can betsatelnear estimation tends to
produce a “shrunken” prediction (values near the mean) viih#&ar regression produces
noisy estimates from the variable-dimensional input.
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Fig 1. Predicting the continuous stress level from physiolodeatiures. The variable
number of input channels is handled by linear estimat&dt) Or accordingly re-computed
linear regression (right). The displayed sequence wassaat for parameter estimation.
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Fig 2. Aligning reference and candidate sequence in order to gestmmate for the reaction
time of the system. Offset is the time shift introdite the candidate sequence; thus it
equals the negative reaction time. In this exampldyaglalignment determines the candidate
sequence to be 8 sec. ahead of the reference; local ahgyralds 8.9 sec. on average.

For estimating the reaction time of the system,sguence of predicted stress ratings, i.e.
the candidate sequences aligned to the reference sequence. We compare éagtbbal
alignment, estimating the reaction time by determinirgpmstant time shift between candi-
date and reference sequence, and a local alignment froamdty time warping, using the
mean time shift as an estimate for the reaction.timéoth cases, the sequences to be com-
pared are first mean-variance-normalised. The globhghrmakent computes the shift that
maximises the correlation between reference and alignr&e correlation values are com-
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puted efficiently with the help of the Fast Fourier Tfan®; the values are normalised by
the number of summation coefficients within a validgarno prevent a bias in favour of
small shifts. That again causes high correlation valuekfge shifts; restricting the maximi-
sation to an interval of 2 minutes yields meaningful results. The local alignmemeter-
mined as the assignment path that minimises a combinediads up from the total absolute
difference between assigned candidate and referencesvaha the number of insertions and
deletions contained in the path. The cost of an tiaseor deletion is chosen equal to the
mean absolute difference between the original (i.e. ligmeal) candidate and reference se-
guence. Figure 2 illustrates the two methods using an example

3 Results

All evaluations were done on a subset of the Drivawdatabase: the segments during
which the participants had to drive (totalling to 7.8 hourg&suRs from a 10-fold person-
independent cross-validation are reported, i.e. eaclopaiain and test set was disjoint with
respect to participants. Table 1 lists the mean Peamsoelation coefficient and absolute
difference between reference and candidate sequeimge liear estimation and regression
for various setupd:1, L2 andL3 refer to the ratings of the individual labellenseanto the
average rating of all three labellers ameéan 2// to the average correlation coefficients
when taking the mean of only two labellers as refexeftie complete multi-resolution fea-
ture set described above is ternmine multj online singleuses only the features from the
60-second analysis window. Thé#line feature configurations use non-causal, centred analy-
sis windows. Lastly,off. m. normrefers to theoffline multi features mean-variance-
normalized per participant. For comparison, results thghtrivial estimator that puts out the
mean target value of the training set are also givealntost all cases, linear estimation gives
a higher correlation than linear regression. Only lherabsolute difference, linear regression
is sometimes better. In all cases, multiple resohgtigive superior results when compared to
a single analysis window. Furthermore, it is obvious #vatraging the reference over multi-
ple labellers improves results. For interpreting trecision of the system, the ratings of each
labeller were compared to the averaged ratings of tiwer #évo labellers (for the car drive
subset). Here, a mean correlation coefficient of 0.76&rége absolute difference: 0.129)
resulted. When comparing these figures to the approfigatees of the systenm{ean 2/)),
it becomes obvious that the system performs modenatdhbut does not reach the perform-
ance of the labellers.

For the estimated reaction time, a less clear pictesealted. While estimating reaction
times between the labellers (see Table 2) gave rdlatemsistent figures, results for stress
values predicted with physiological features (see Tabl&pften contradictory. For exam-
ple, using global alignment, an estimated reaction tihe4.6 seconds (i.e. candidate se-
guence is ahead of reference) resulted while local abghrgave +2.1 seconds (features:
online multj referencemear). Also, the estimates show a large standard deviatooss
participants. However, the fact that b2 labels tend to be delayed compared to those of the
other labellers seems to be reflected in the refuithe physiologically predicted stress lev-
els: The automatic system has in all cases a loveetiom time when trained and tested with
the L2 reference than when using the other labellers. Medtelution analysis did not consis-
tently show a lower reaction time, however, compaigbi$ questionable here due to the
differing precision achieved with theulti andsinglefeatures.
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Tab 1. Average correlation between reference and candidgteeree for various setups.
The mean absolute difference is given in parentheses.

L abeller

M ethod L1 L2 L3 mean mean 2 0

Features
Trivial | none .000 (.168) | .000 (.070)| .000 (.106) | .000 (.099) | .000 (.103)
< |online multi | .637 (.170)| .506 (.084) | .642 (.082) | .688 (.093) | .664 (.098)
L.f:’ online single | .608 (.175)| .465 (.084) | .604 (.084)| .646 (.096) | .625 (.101)
§§ offline multi | .629 (.172)| .495 (.083) | .651 (.082)| .680 (.093) | .658 (.098)
:Es offline single | .612 (.176)| .458 (.085) | .619 (.084)| .651 (.096) | .628 (.101)
offl. m. norm | .669 (.160)| .589 (.075) | .674 (.077)| .717 (.085) | .698 (.090)
 |online multi | .612(.180)| .503 (.091) | .621 (.082) | .671 (.095) | .647 (.101)
L. online single | .582 (.186) | .470 (.089) | .569 (.086) | .625 (.099) | .602 (.105)
§ offline multi | .604 (.179)| .489 (.093) | .638 (.078) | .659 (.093) | .640 (.100)
jdi:? offline single | .601 (.183) | .455 (.095) | .606 (.082) | .648 (.097) | .623 (.103)
offl. m. norm | .660 (.151) | .538 (.080) | .657 (.075) | .704 (.081) | .680 (.087)

Tab 2. Estimated average reaction time in seconds betwesssdabels of different labellers.
The standard deviation across participants is given enplagses.

Reference
Alignment L1 L2 L3

Candidate
L2 3.8(6.7) - -
L3 0.8 (7.7) -3.7 (7.2) -

Global mean (L1, L2) - - 1.0 (6.7)
mean (L1, L3) - -2.2 (4.6) -
mean (L2, L3) 3.0 (5.3) - -
L2 12.9 (19.6) - -
L3 5.8(11.2) -6.8 (9.2) -

L ocal mean (L1, L2) - - -4.3(9.5)
mean (L1, L3) - -13.0(14.3) -
mean (L2, L3) 6.6 (11.2) - -

Tab 3. Estimated average reaction time in seconds of tkesstevel predicted with linear
estimation. The standard deviation across participagises in parentheses.

) Labeller
Alignment L1 L2 L3 mean

Features
online multi -6.0 (12.4)| -9.4(14.4)| -2.3(27.1) | -4.6 (9.4)

Global online single | -10.2(25.7)| -17.3(29.1)| 3.4(25.0) | -8.6 (24.1)
offline multi -4.1(24.3) | -14.1 (20.2)| -1.7(19.6) | -5.0(20.8)
offline single -8.8(15.5) | -21.7 (35.5) | -4.1(13.0) | -6.8(13.2)
online multi 20(17.8)| 0.0(11.6)| 0.4(15.6) | 2.1(15.4)

L ocal online single 3.7(20.2)| -3.6(16.3)| 3.8(16.6) | 0.2(15.1)
offline multi -0.9(22.6)| -3.1(13.1) | -2.3(19.3) | -3.3(18.3)
offline single -3.5(17.3)| -5.8(16.4) | -2.2(15.0) | -3.4(15.9)




BIOSIGNAL 2008

4 Discussion

The results show that the generic feature extraegimmoach developed in [3] is also appli-
cable to online regression; the superiority of the mu#eh&ion analysis approach (com-
pared to a single analysis window) was confirmed hem dlke fact that averaging over
multiple labellers increases precision indicates thatmanual labelling procedure yields a
noisy but meaningful reference. An advantage of theisradolution analysis in terms of
reaction time has not been proven so far; the refulthe estimated reaction times are partly
contradictory. An explanation might be that the alignincannot handle well the noise pre-
sent in the estimated stress level sequences.

Future work will concentrate on additional featurestwease precision and on developing
better estimates of the reaction time. More advandefaat recognition will be developed to
fully exploit the ability of the approach to deal wilvariable number of input channels.
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