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Abstract. In this paper, we study means of estimating a person’s current stress level from 
physiological signals. Generic, data-driven features are extracted from multiple channels and 
used to predict a continuous stress level with regression techniques. Allowing for temporary 
signal corruption by artefacts, our approach can handle a variable number of input channels. 
Additionally, methods for estimating the reaction time of the system are proposed. The 
evaluation of the approach with reference annotations of three labellers shows promising 
results.  

1 Introduction  
The aim of this study is to evaluate methods for estimating a person’s current stress level 

from physiological signals in real time. We use the Drivawork database which contains re-
cordings of six physiological signals, audio and video during varying levels of workload in a 
simulated car-drive (see [1] for details). It contains 15 hours of physiological recordings from 
24 participants. Relaxed and stressed states have been elicited by giving the participant dif-
ferent tasks, partly on top of the driving task. Subjective and objective measures support the 
effectiveness of this approach. In prior studies, we have used the structured design of the re-
cording experiment to derive stress labels for whole segments; the two classes stress/non-
stress could be predicted person-independently with relatively high reliability (86-94 % de-
pending on the chosen evaluation subset) even when using only sensor data from the past 
60 seconds. However, when wishing to study the real-time properties of such a classification 
system, more specifically the reaction time to user state changes, such coarse labels will not 
do. In [2] a continuous stress metric is created from the frequency of objective stress indica-
tors like turning the steering wheel or changing gaze during a real-world driving task to de-
rive a continuous stress metric. We take another approach here, and use the manual ratings of 
three labellers available in the Drivawork database. These labels have been created by tracing 
the perceived stress level of the participant on a slider while watching the video recording 
(audio included) of the experiments. The position of the slider is mapped to a value between 
0 for a maximally relaxed and 1 for a maximally stressed state. The ratings are read out once 
per video frame; thus, these labels have the capability to reflect even quick user state 
changes. The ratings of two labellers for one participant have a Pearson correlation coeffi-
cient of 0.76 and an absolute deviation of 0.13 on average. Present attempts to translate the 
continuous labels into discrete classes did not yield acceptable agreement rates among the 
three labellers; therefore, we use the continuous ratings directly and predict them with regres-
sion techniques. 

2 Methods 
Six physiological signals are used in this study: electrocardiogram (ECG), electromyogram 

measured at the neck, skin conductivity between index and middle finger, blood volume 
pulse (BVP) at the ring finger, skin temperature at the little finger and abdominal respiration. 
From these signals, three derived signals are created: heart rate from ECG and from BVP and 
the lag between ECG and BVP which can be regarded as a surrogate parameter of the blood 
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pressure. To be robust against sensor failure or corruption by artefacts, each channel is first 
analysed separately; only valid channels are then combined for the final result; cable discon-
nects and physically implausible values in the derived signals will lead to the temporary ex-
clusion of a channel. 

For each signal s, features are computed from multiple analysis windows (1, 5, 20 and 60 
seconds) to capture quick changes as well as context for the analysis. As we aim for online 
stress estimation, these analysis windows are causal, i.e. they contain only data from the past. 
From each analysis window, a relatively large number of features like mean, standard devia-
tion or slope are calculated. For the present study the 50 efficient “moving features” as de-
scribed in [3] are used. The 200 features from all four analysis windows are mean-variance-
normalised and then transformed to a reduced vector of dimension 100 with Principal Com-
ponent Analysis (PCA). Then, linear regression is applied to compute an estimate    of the 
continuous stress rating   . Although reference stress values are given with a frequency equal 
to the frame rate of the video recording, feature vectors are only computed with a frequency 
of 4 Hz; the reference values are down-sampled accordingly. Two methods for combining the 
variable number of predicted ratings from the currently valid channels are studied: first, linear 
estimation; second, linear regression again. 

Linear estimation is a weighted averaging indirectly proportional to the mean squared error 
of the respective input; it yields the minimal squared prediction error if the inputs are statisti-
cally independent and unbiased [4]: 

 
ŷest = (

∑

s valid

wsŷs)/(
∑

s valid

ws), ws = 1/(
∑

i∈train

(ŷ(i)
s − y(i))2).

 
 

For linear regression, the transformation parameters depend on the subset of currently valid 
input channels; however, they can be calculated on the fly with a computational effort cubic 
in the number of inputs but independent of the number of training vectors—feasible for a 
moderate number of input channels as in our case (for cases with many inputs more efficient 
approaches as described in [5] could be used). Let 

 
ŷreg = tT(ŷ − ŷ) + y, ŷ = (ŷ1, . . . , ŷS)T

 
 

be the linear regression if all S channels are valid. Then t is determined from N uncorrupted 
training samples by 

 
tTA = bT; A = Ŷ Ŷ T, bT = yTŶ T, Ŷ = (ŷ(1), . . . , ŷ(N)), yT = (y(1), . . . , y(N)). 

 
A and b are computed offline; during operation, depending on the currently valid channels, 
the deletion matrix respectively vectors 
 

A′ = (aij)i,j valid, b′ = (bi)i valid, ŷ′ = (ŷi)i valid 
 
are formed and t′ and        are computed from 
 

ŷreg = t′
T(ŷ′

− ŷ′) + y, t′
T
A′ = b′T. 

 
Figure 1 shows an example for each method. It can be seen that linear estimation tends to 

produce a “shrunken” prediction (values near the mean) while linear regression produces 
noisy estimates from the variable-dimensional input.  
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Fig 1. Predicting the continuous stress level from physiological features. The variable 
number of input channels is handled by linear estimation (left) or accordingly re-computed 

linear regression (right). The displayed sequence was not used for parameter estimation.  

 

Fig 2. Aligning reference and candidate sequence in order to get an estimate for the reaction 
time of the system. Offset is the time shift introduced to the candidate sequence; thus it 

equals the negative reaction time. In this example, global alignment determines the candidate 
sequence to be 8 sec. ahead of the reference; local alignment yields 8.9 sec. on average. 

For estimating the reaction time of the system, the sequence of predicted stress ratings, i.e. 
the candidate sequence, is aligned to the reference sequence. We compare both a global 
alignment, estimating the reaction time by determining a constant time shift between candi-
date and reference sequence, and a local alignment from dynamic time warping, using the 
mean time shift as an estimate for the reaction time. In both cases, the sequences to be com-
pared are first mean-variance-normalised. The global alignment computes the shift that 
maximises the correlation between reference and alignment. The correlation values are com-

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35

st
re

ss
 r

at
in

g

time [minutes]

reference
lin. regression

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35

st
re

ss
 r

at
in

g

time [minutes]

reference
lin. estimation

-3

-2

-1

 0

 1

 2

 3

 0  5  10  15  20  25  30  35

st
re

ss
 r

at
in

g

time [minutes]

Normalized Sequences

reference seq.
candidate seq.

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30  35

O
ffs

et
 [s

ec
]

time [minutes]

Offsets

local offsets
global offset -3

-2

-1

 0

 1

 2

 3

 0  5  10  15  20  25  30  35

st
re

ss
 r

at
in

g

time [minutes]

Locally Aligned Sequences

reference seq.
candidate seq.

-3

-2

-1

 0

 1

 2

 3

 0  5  10  15  20  25  30  35

st
re

ss
 r

at
in

g

time [minutes]

Globally Aligned Sequences

reference seq.
candidate seq.



BIOSIGNAL 2008 
puted efficiently with the help of the Fast Fourier Transform; the values are normalised by 
the number of summation coefficients within a valid range to prevent a bias in favour of 
small shifts. That again causes high correlation values for large shifts; restricting the maximi-
sation to an interval of ± 2 minutes yields meaningful results. The local alignment is deter-
mined as the assignment path that minimises a combined cost made up from the total absolute 
difference between assigned candidate and reference values and the number of insertions and 
deletions contained in the path. The cost of an insertion or deletion is chosen equal to the 
mean absolute difference between the original (i.e. not aligned) candidate and reference se-
quence. Figure 2 illustrates the two methods using an example. 

3 Results 
All evaluations were done on a subset of the Drivawork database: the segments during 

which the participants had to drive (totalling to 7.8 hours). Results from a 10-fold person-
independent cross-validation are reported, i.e. each pair of train and test set was disjoint with 
respect to participants. Table 1 lists the mean Pearson correlation coefficient and absolute 
difference between reference and candidate sequence using linear estimation and regression 
for various setups: L1, L2 and L3 refer to the ratings of the individual labellers; mean to the 
average rating of all three labellers and mean 2 ∅  to the average correlation coefficients 
when taking the mean of only two labellers as reference. The complete multi-resolution fea-
ture set described above is termed online multi; online single uses only the features from the 
60-second analysis window. The offline feature configurations use non-causal, centred analy-
sis windows. Lastly, offl. m. norm refers to the offline multi features mean-variance-
normalized per participant. For comparison, results with the trivial estimator that puts out the 
mean target value of the training set are also given. In almost all cases, linear estimation gives 
a higher correlation than linear regression. Only for the absolute difference, linear regression 
is sometimes better. In all cases, multiple resolutions give superior results when compared to 
a single analysis window. Furthermore, it is obvious that averaging the reference over multi-
ple labellers improves results. For interpreting the precision of the system, the ratings of each 
labeller were compared to the averaged ratings of the other two labellers (for the car drive 
subset). Here, a mean correlation coefficient of 0.761 (average absolute difference: 0.129) 
resulted. When comparing these figures to the appropriate figures of the system (mean 2 ∅), 
it becomes obvious that the system performs moderately well but does not reach the perform-
ance of the labellers.  

For the estimated reaction time, a less clear picture resulted. While estimating reaction 
times between the labellers (see Table 2) gave relatively consistent figures, results for stress 
values predicted with physiological features (see Table 3) are often contradictory. For exam-
ple, using global alignment, an estimated reaction time of -4.6 seconds (i.e. candidate se-
quence is ahead of reference) resulted while local alignment gave +2.1 seconds (features: 
online multi, reference: mean). Also, the estimates show a large standard deviation across 
participants. However, the fact that the L2 labels tend to be delayed compared to those of the 
other labellers seems to be reflected in the results for the physiologically predicted stress lev-
els: The automatic system has in all cases a lower reaction time when trained and tested with 
the L2 reference than when using the other labellers. Multi-resolution analysis did not consis-
tently show a lower reaction time, however, comparability is questionable here due to the 
differing precision achieved with the multi and single features.  
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Tab 1. Average correlation between reference and candidate sequence for various setups. 
The mean absolute difference is given in parentheses. 

Method 
        Labeller 
 

Features 
L1 L2 L3 mean mean 2 ∅∅∅∅ 

Trivial none .000 (.168) .000 (.070) .000 (.106) .000 (.099) .000 (.103) 
online multi .637 (.170) .506 (.084) .642 (.082) .688 (.093) .664 (.098) 
online single .608 (.175) .465 (.084) .604 (.084) .646 (.096) .625 (.101) 
offline multi .629 (.172) .495 (.083) .651 (.082) .680 (.093) .658 (.098) 
offline single .612 (.176) .458 (.085) .619 (.084) .651 (.096) .628 (.101) L

in
ea

r 
E

st
im

at
io

n 

offl. m. norm .669 (.160) .589 (.075) .674 (.077) .717 (.085) .698 (.090) 
online multi .612 (.180) .503 (.091) .621 (.082) .671 (.095) .647 (.101) 
online single .582 (.186) .470 (.089) .569 (.086) .625 (.099) .602 (.105) 
offline multi .604 (.179) .489 (.093) .638 (.078) .659 (.093) .640 (.100) 
offline single .601 (.183) .455 (.095) .606 (.082) .648 (.097) .623 (.103) L

in
ea

r 
R

eg
re

ss
io

n 

offl. m. norm .660 (.151) .538 (.080) .657 (.075) .704 (.081) .680 (.087) 

Tab 2. Estimated average reaction time in seconds between stress labels of different labellers. 
The standard deviation across participants is given in parentheses. 

Alignment 
                Reference 
 

Candidate 
L1 L2 L3 

L2 3.8 (6.7) - - 
L3 0.8 (7.7) -3.7 (7.2) - 
mean (L1, L2) - - 1.0 (6.7) 
mean (L1, L3) - -2.2 (4.6) - 

Global 

mean (L2, L3) 3.0 (5.3) - - 
L2 12.9 (19.6) - - 
L3  5.8 (11.2)  -6.8   (9.2) - 
mean (L1, L2) - - -4.3 (9.5) 
mean (L1, L3) - -13.0 (14.3) - 

Local 

mean (L2, L3)  6.6 (11.2) - - 
 

Tab 3. Estimated average reaction time in seconds of the stress level predicted with linear 
estimation. The standard deviation across participants is given in parentheses. 

Alignment 
         Labeller 
 

Features 
L1 L2 L3 mean 

online multi   -6.0 (12.4)   -9.4 (14.4) -2.3 (27.1) -4.6   (9.4) 
online single -10.2 (25.7) -17.3 (29.1)   3.4 (25.0) -8.6 (24.1) 
offline multi   -4.1 (24.3) -14.1 (20.2) -1.7 (19.6) -5.0 (20.8) 

Global 

offline single   -8.8 (15.5) -21.7 (35.5) -4.1 (13.0) -6.8 (13.2) 
online multi    2.0 (17.8)    0.0 (11.6)  0.4 (15.6)  2.1 (15.4) 
online single    3.7 (20.2)  -3.6 (16.3)  3.8 (16.6)  0.2 (15.1) 
offline multi   -0.9 (22.6)  -3.1 (13.1) -2.3 (19.3) -3.3 (18.3) 

Local 

offline single   -3.5 (17.3)  -5.8 (16.4) -2.2 (15.0) -3.4 (15.9) 
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4 Discussion 
The results show that the generic feature extraction approach developed in [3] is also appli-

cable to online regression; the superiority of the multi-resolution analysis approach (com-
pared to a single analysis window) was confirmed here also. The fact that averaging over 
multiple labellers increases precision indicates that the manual labelling procedure yields a 
noisy but meaningful reference. An advantage of the multi-resolution analysis in terms of 
reaction time has not been proven so far; the results for the estimated reaction times are partly 
contradictory. An explanation might be that the alignment cannot handle well the noise pre-
sent in the estimated stress level sequences.  

Future work will concentrate on additional features to increase precision and on developing 
better estimates of the reaction time. More advanced artefact recognition will be developed to 
fully exploit the ability of the approach to deal with a variable number of input channels. 
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