Truncation correction for oblique filtering lines
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State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be
performed along oblique filtering lines in the detector. A limited scan field of view leads to the
truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In
contrast to the case where filtering is performed solely along the detector rows, no methods are
available for the case of oblique filtering lines. In this work, the authors present two novel trunca-
tion correction methods which effectively handle data truncation in this case. Method 1 (basic
approach) handles data truncation in two successive preprocessing steps by applying a hybrid data
extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian
extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach)
uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the
reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head
phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algo-
rithm is used for reconstruction. Although the discussion is focused on theoretically exact algo-
rithms, the proposed truncation correction methods can be applied to any FBP algorithm that

exposes oblique filtering lines. © 2008 American Association of Physicists in Medicine.
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I. INTRODUCTION

Computed tomography (CT) imaging with C-arm systems
has become an important tool in interventional radiology for
treatment assistance and assessment of treatment success in
specific regions-of-interest (ROI), such as the liver, the heart,
the head, or a section of the spine. To achieve 3D reconstruc-
tion of the ROI, data acquisition is typically performed with
a cone beam (CB) of x-rays focused on the ROI, while the
source-detector assembly follows a specified path around the
patient. Currently, the preferred path is a simple circular
short-scan motion. But more sophisticated motions are also
possible, such as a partial-circle-plus-arc motion,' and are
likely to become the method of choice in the future, as they
provide data allowing more accurate reconstructions.

For reconstruction, a filtered-backprojection (FBP)
method is generally used. Such methods have been devel-
oped not only for the circular short-scan traject01ry,2’3 but also
for the partial-circle-plus-arc trajectory.“’5 As indicated by
their name, FBP methods perform reconstruction of the ROI
by first filtering the projections, then backprojecting the fil-
tered projections. A certain amount of data is needed for
reconstruction at any given location x, inside the ROI. First,
the backprojection must be achievable. For this to be the
case, the line that connects the source position to x, must hit
the detector for all source-detector positions required for re-
construction at x,, as dictated by the reconstruction algo-
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rithm. This condition defines a minimum data requirement
that we will assume to be always satisfied; it basically states
that there is enough data to perform reconstruction if the
object was reduced to a tiny sphere centered at x,. Second,
the detector must be large enough to encompass at each
source position the data required for application of the filter-
ing step. This second condition is often violated in practice,
because the size of the flat-panel detector is fairly limited (on
most systems, the detector size is only 30 X 40 cm?). When
the second condition is violated for a source position that is
required for reconstruction at x,, we say that the associated
projection is truncated.

To mitigate artifacts due to truncation, data extrapolation
techniques are needed. Such techniques have been developed
for conventional circular short-scan FDK reconstruction,z’6
which involves only filtering along the detector rows. How-
ever, new circular short-scan reconstruction methods, such as
the ACE method,’ involve filtering on lines that are not ori-
ented along the detector rows (or columns), and so do recon-
struction algorithms designed for partial-circle-plus-arc data
acquisition. Thus, there is a need to develop accurate ex-
trapolation techniques for handling filtering along oblique
lines in the presence of truncation. This paper suggests two
solutions dedicated to this need: one totally general solution
(basic approach) and one algorithm-specific solution (kink
approach). Our work builds on techniques used for handling
truncation along detector rows. Such techniques have been
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intensively discussed in the literature. In 2000, Ohnesorge
et al’ proposed a method where the truncated data are ex-
trapolated by a data mirroring operation at the truncated de-
tector border. In 2002, Ruchala ef al.® merged a priori infor-
mation retrieved from planning CT data with the acquired
projection images to estimate the missing data. In 2004,
Hsich et al.’ developed a method that extrapolates the data
by assuming that the projection values of the missing portion
of the object are generated by x-rays which travel through a
water cylinder. In 2005, Zellerhoff et al." presented a hybrid
method, which is a combination of the water cylinder ap-
proach of Hsieh and a Gaussian data extrapolation. In 2007,
Zamyatin and N akanishi'! proposed a method to handle data
truncation in the fan-beam and cone-beam case by extrapo-
lating along the sinogram curve of each reconstruction point.

In this paper, we focus on the partial-circle-plus-arc tra-
jectory, which can be easily performed with a C-arm system.
We apply the M-line reconstruction algorithm, originally pre-
sented by Pack and Noo,5 and we build our truncation cor-
rection methods on the approach of Zellerhoff. This approach
was preferred because it seemed most amenable to our prob-
lem, while being routinely used in the clinical environment.
Under these settings, our results show that truncation arti-
facts resulting from oblique lines can be dramatically re-
duced and sometimes even be virtually eliminated. The level
of performance depends on the data truncation geometry
(and also, of course, on the imaged object itself). Also, we
will see that both proposed truncation correction methods
perform very similarly, so that the selection of one method
versus the other should be primarily based on the specifics of
the data acquisition geometry and ease of fitting within the
data-processing pipeline.

The paper is organized as follows. In Sec. II, we review
the reconstruction steps of the M-line algorithm with a spe-
cial focus on the filtering operation to define the problem of
data truncation. Section III introduces our new methods. Ex-
periments are presented in Sec. IV for simulated cone-beam
data. Section V summarizes our results.

Il. BACKGROUND

In this section, we first review the steps of the M-line
reconstruction algorithm of Pack and Noo’ in the specific
context of reconstruction from a partial-circle-plus-arc trajec-
tory. Then, we define how truncation affects this partial-
circle-plus-arc algorithm.

ILA. M-line reconstruction algorithm

The M-line reconstruction algorithm was invented in
2005 by Pack and Noo” as a theoretically exact image recon-
struction method. In general, this reconstruction formula can
be applied on any complete source trajectory according to
the definition given by Tuy.12 However, the following algo-
rithmic steps are specific to its application on the partial-
circle-plus-arc trajectory. Figure 1 explains the fundamental
setup for a better understanding of those steps. As can be
seen in this figure, the method involves a specific point,
called M-point, on the source trajectory. In general, this point
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FiG. 1. M-line reconstruction for the partial-circle-plus-arc trajectory. For
each location x, inside the ROI, there is one associated M-line and one
associated 7r-line. The M-line defines the filtering directions for x,. The
7r-line delimitates the portion of the trajectory (shown in dark) from where
the data must be backprojected onto x, to perform a theoretically exact
reconstruction at x.

can depend on the location x; in the ROI, but at a cost in
efficiency. For our purposes, we assume the M-point is cho-
sen independently of x,. That means that all reconstruction
points are associated to the same M-point; this M-point is
located on the partial-circle scan, as indicated in the figure.

M-line image reconstruction of a region-of-interest in-
volves the following steps:

(1) View differentiation. Differentiate the cone-beam pro-
jections with respect to the source trajectory parameter
(typically the rotation angle of the source-detector as-
sembly) at fixed ray direction. Picture the outcome as a
new set of projections, each associated with one source
position.

(2) Cosine weighting. Weight each detector pixel value to
equalize the distance between the detector pixel and the
focal spot.

(3) Forward rebinning. For each source position, interpo-
late the detector pixel values to create values on a set of
oblique lines, as depicted in Fig. 2. View the values on
each oblique line as one row of a new, rebinned detector
grid. The oblique lines are generally called the filtering
lines; they are the projections of the M-lines onto the
detector plane (cf. Fig. 1), and they thus all intersect at
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FIG. 2. Forward rebinning: the values on the rebinned detector grid (right)
are generated by linear interpolation from the values on the original detector
grid (left). The filtering lines are sampled such that interpolation needs to be
done only in vertical direction. In horizontal direction, both detector grids
coincide. The figure shows a case with five filtering lines. As illustrated, the
detector values that are at the two positions (crosses “+”) within the dashed
circle on the left are interpolated to produce the rebinned detector value
within the dashed circle on the right.
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FIG. 3. Backward rebinning: the values on the original detector grid (left)
are generated by linear interpolation from the values on the rebinned detec-
tor grid (right), similar to the forward rebinning case. The figure shows a
case with five filtering lines. As illustrated, the rebinned detector values that
are at the two positions (circles “0”) within the dashed circle on the right are
interpolated to produce the detector value within the dashed circle on the
left.

the same point, namely the projection of the M-point.

(4) Hilbert filtering. For each source position, apply a one-
dimensional Hilbert transform along the filtering lines,
i.e., along the rows of the rebinned detector grid.

(5) Backward rebinning. For each source position, gener-
ate values on the original detector grid by interpolation
of the values from the rebinned detector grid, as de-
picted in Fig. 3.

(6) Data selection. Identify the backprojection range for
each point x, in the ROL This range corresponds to the
curve that is bounded by the endpoints of the 7-line
through x; see Fig. 1.

(7) Backprojection. Backproject the filtered data that re-
sults from step 5, involving for each point x, only the
source positions that have been identified in step 6.

11.B. Data truncation

Assume steps 1-3 of the M-line algorithm (see above)
have already been applied on the cone-beam data and let g(s)
denote the output of step 3. Consequently, g(s) represents the
(differentiated and cosine weighted) cone-beam values along
a given filtering line. Step 4 of the M-line algorithm amounts
to the computation of the filtered data

+00

hygi(s —s")g(s")ds" . (1)

—o0

gr(s) =

In this equation, Zy;;,(s) is the Hilbert kernel in the spatial
domain

Py (s) = i 2)

Since hy(s) has infinite support, the filtering operation in-
volves all values of g(s) along the line. In case of data trun-
cation, only a subset of the values on this line will be avail-
able. Therefore, the filtering operation has to be performed
without having all values along the line. This causes trunca-
tion artifacts in the final reconstructed image (Sec. IV dem-
onstrates the effect). The truncation process can be seen as a
multiplication of g(s) with a rectangular window, which cuts
out a certain portion of the values along the filtering line,
before the computation of the integral in (1) is performed.
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FiG. 4. Filtering line truncation for the M-line algorithm where all filtering
lines intersect in a single point. (a) The filtering lines between 1-2, (b)
between 1-2 and 3-4, (c) between 1-2, and (d) between 1-2 are truncated.
Arbitrary combinations are possible.

The multiplication of g(s) with a rectangular window in the
spatial domain corresponds to a convolution of g(s) with a
sinc function in the frequency domain, and this convolution
smears the spectrum of gz(s).

We may define data truncation as follows: Any filtering
line that leaves the detector before it leaves the shadow of
the object is a truncated filtering line and leads to recon-
struction artifacts for each point which projects onto it.

Figure 4 displays several scenarios for a set of possible
filtering lines for the M-line algorithm. Depending on the
location of the M-point and on the projection under consid-
eration, the M-point will project inside or outside of the de-
tector. For the rest of the paper, we assume that it projects
outside of the detector as in the figure, which will be the case
when the M-point is placed approximately in the middle of
the partial-circle segment of the partial-circle-plus-arc trajec-
tory, at least for a typical C-arm geometry; see also Ref. 13.
We further discuss this in Sec. V. Note that only points
within the backprojection region (the detector area depicting
the ROI) need to be filtered.

lll. TRUNCATION CORRECTION

Both proposed truncation correction methods build upon
the so-called water cylinder correction originally presented
by Hsieh et al.’ in combination with a Gaussian extrapola-
tion shown by Zellerhoff et al."® Those methods will there-
fore be reviewed briefly before presenting the new material.

lll.LA. Review: Water cylinder correction

In 2004, Hsieh er al.’ investigated the problem of trunca-
tion for the FDK reconstruction for data on a circular scan.
He presented a truncation correction method that handles
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FIG. 5. Water cylinder correction: the projection values p(u) along one de-
tector row are truncated at the right detector border. For each detector row
and for each side of that row, the extent (midpoint and radius) of a 2D water
cylinder is determined and the missing portion of the object is approximated
by integrals along parallel rays through that cylinder; see Ref. 9 for details.

truncation along the detector rows, along which the ramp
filtering is applied. In this method, all detector rows are re-
garded independently of one another. The projection values
along each row are treated as if they were measurements
taken along parallel rays in a 2D plane. By doing so, the
method ignores the cone angle and the fan angle of the cone-
beam. In case of data truncation, the method approximates
the missing measurements by integrals along parallel rays
through a 2D water cylinder. The extent (midpoint and ra-
dius) of the cylinder is determined to achieve continuous
data up to the second order; see Fig. 5.

The method produces decreasing projection values for the
missing part of the object, if the measured values decrease
towards the detector boundary because then the midpoint of
the water cylinder will be fitted on the “measured side” of
the boundary as in the figure. Otherwise, if the projection
values increase towards the detector boundary, the midpoint
of the water cylinder will be fitted on the “unmeasured side”
of the boundary and so the extrapolated projection values
will first increase before they decrease again.

lI.B. Review: Hybrid approach

In 2005, Zellerhoff et al. 10 refined the water cylinder cor-
rection to differently handle the case when the midpoint of
the water cylinder is fitted on the “unmeasured side” of the
boundary (see discussion above). They found on real data
that in this case, better results can be achieved if the water
cylinder fit is replaced by a Gaussian extrapolation. To per-
form this extrapolation, the center and the standard deviation
of the Gaussian need to be determined. The center of the
Gaussian is set to the location of the last available projection
value; see Fig. 6. For the computation of the standard devia-
tion, the method assumes that this last projection value, say
p(ug), corresponds to an integral along a ray through a water-
equivalent object (with attenuation coefficient wyy). The ray’s
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FiG. 6. Gaussian extrapolation: the projection values at the truncated detec-
tor boundary increase. In this case, a Gaussian function is fit to the data; see
Ref. 10 for details.

intersection length [ with this object is then defined by !/
=p(uy)/ py, and the standard deviation of the Gaussian is set
to 25% of 1.

The method always produces decreasing projection values
for the missing part of the object although in the case of a
Gaussian fit, the extrapolated data are continuous only up to
the first order. For future reference, this combination of water
cylinder correction and Gaussian extrapolation will be called
the hybrid approach.

lll.C. Preliminary considerations

A straightforward data truncation correction method for
oblique filtering lines would apply the hybrid approach along
the filtering lines themselves instead of applying it along the
detector rows as in Ref. 10. However, Zellerhoff designed
this approach primarily as a data truncation correction
method that is applied to the FDK algorithm. The FDK al-
gorithm does not incorporate the view dependent data differ-
entiation step, which is inherent to the M-line algorithm.
This data differentiation step is crucial since the nature of the
differentiated cone-beam data is very different from that of
the original, nondifferentiated cone-beam data. Because the
hybrid approach was designed to operate on nondifferenti-
ated cone-beam data, there is no justification for applying it
after the data differentiation step. In particular, the values on
the filtering lines correspond to differentiated cone-beam
data. Therefore, this straightforward data truncation method
does not seem reasonable. With this in mind, we designed
two alternative approaches that avoid this difficulty. Those
methods are presented hereafter.

lll.D. Method 1: Basic approach

The basic approach (BA) makes use of the hybrid ap-
proach in two data preprocessing steps. In step 1 (BA-R), the
hybrid approach is applied along the detector rows. In step 2
(BA-C), the hybrid approach is applied again, this time along
the detector columns of the extended detector rows. After
those two steps, the reconstruction algorithm is used without
modification. The extended reconstruction algorithm com-
prises the following steps:

(1) BA-R. Apply the hybrid approach along the detector
rows.
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FiG. 7. Proposed truncation correction methods in block diagram format.
Shaded boxes correspond to the conventional steps of the M-line algorithm,
white boxes correspond to the proposed truncation correction steps. (a) Ba-
sic approach (BA-R, BA-C). (b) Kink approach (BA-R, KA-C). The remain-
ing block labels are as follows: view differentiation (VD), cosine weighting
(CW), forward rebinning (FR), Hilbert filtering (HF), backward rebinning
(BR), data selection (DS), and backprojection (BP).

(2) BA-C. Apply the hybrid approach along the detector
columns.

(3) View differentiation.

(4) Cosine weighting.

(5) Forward rebinning.

(6) Hilbert filtering.

(7) Backward rebinning.

(8) Data selection.

(9) Backprojection.

Figure 7(a) shows the complete algorithm in block dia-
gram format.

lI.E. Method 2: Kink approach for the partial-circle-
plus-arc geometry

While the basic approach makes no assumptions about the
specific geometry, the kink approach is designed for the
partial-circle-plus-arc trajectory and relies on the fact that
one detector axis is always aligned almost parallel to the
plane of the partial-circle scan and that the M-lines tend to be
less oblique relative to this axis. This axis defines our detec-
tor rows. The axis orthogonal to the rows then defines the
detector columns; see Fig. 8.

As with the basic approach, the kink approach (KA) con-
sists of two steps. Step 1 is identical to the first step of the
basic approach, BA-R, i.e., the hybrid approach is applied

detector columns

Plane of the circle scan

rotation |

object v

S

backprojection
region

N

detector border

a) b)

Fi16. 9. Method 2: the Kink Approach. Filtering is done along lines with a
kink if these lines exceed the detector in the direction of the detector col-
umns. (a) Original filtering lines. (b) Corresponding filtering lines with kink.
The setup matches that of Fig. 4(b). Note that the backprojection region
could become as large as the detector.

along the detector rows. In contrast to the basic approach,
step 2 (KA-C) modifies the filtering lines if these lines ex-
ceed the detector in the direction of the detector columns
such that in this case, filtering is done along lines with a
kink; see Fig. 9. When a line intersects the detector border,
the samples are taken from the first or last detector row,
respectively. This can be efficiently incorporated into a
modified forward rebinning step.

Compared to the basic approach, the kink approach does
not require extension of the detector in both directions. This
allows some savings in data storage and may facilitate a
hardware implementation. The kink approach may be seen as
an application of the “row repetition” technique14 that is
widely used by CT manufacturers for data extrapolation with
no additional data storage requirement.

The extended reconstruction algorithm comprises the fol-
lowing steps:

(I) BA-R. Apply the hybrid approach along the detector
rOws.

(2) View differentiation.

(3) Cosine Weighting.

X-ray source

arc segment

circle segment

+ X-ray source

FiG. 8. Geometrical setup of the detector relative to the partial-circle-plus-arc trajectory. Whether the x-ray source moves along the partial-circle or along the
arc segment, one axis (the one defining the orientation of the detector rows) is always aligned almost parallel to the plane of the partial-circle scan.
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FIG. 10. The value of p'(u,) is approximated by the slope of the line closest
to the projection values p(u_g),...,p(ug). For that visualization, we used
K=5.

(4) KA-C. Perform a modified forward rebinning from de-
tector coordinates to filtering line coordinates by taking
the samples from the first or last detector row if a filter-
ing line exceeds the detector in the direction of the de-
tector columns.

(5) Hilbert filtering.

(6) Backward rebinning.

(7) Data selection.

(8) Backprojection.

Figure 9(b) shows the complete algorithm in block dia-
gram format.

IIl.F. Measurement noise

In a realistic scenario, the projection values will be dis-
turbed by measurement noise. A stable and robust implemen-
tation of the proposed methods must consider fluctuations in
the projection values caused by noise. In fact, there is one
implementation step, common to both proposed methods,
which may become critical in the presence of measurement
noise. This step is part of the original water cylinder correc-
tion, which in turn is part of the hybrid approach on which
our methods are built. Specifically, the water cylinder correc-
tion requires the computation of the derivative p’(u) of the
projection curve at the location u of the last available pro-
jection value. To achieve a robust implementation, we use
techniques similar to those suggested by Hsieh et al.’ That i,
we compute p’(uy) by fitting a line to a set of projection
values p(u;), with i=-K,...,0,...,K, K& N. The slope of
the fitted line is then taken as an approximation for p’(u).
The values p(u_g),...,p(u_;) as well as the last available
projection value p(u,) are measured values. The values
p(uy),...,pug) are generated from p(u_g),...,p(u_;) by an
antisymmetric mirroring operation, according to

plug) =2p(ug) = plu_y) 3)

with k=1, ...,K; see Fig. 10. Given the pairs (p(u,),u;), we
set up the following linear system of equations
Al=0 4)

where
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plug) ug 1
A=|pluy) uy 1 (5)
_P(UK) ug 1 |

is the (2K+1) X 3 measurement matrix and [=(l,l,,l5)" is
the representation of the line in homogeneous coordinates.
For a unique solution to exist, it is required that A has at least
dimension 2 X 3. However, for improved stability, we use
K=12, resulting in a measurement matrix A of dimension
25 X 3, and we define the solution / as the vector of norm 1
that minimizes ||A/|. Numerically, this solution can be calcu-
lated as the right-hand singular vector corresponding to the
smallest singular value of A by using a singular value de-
composition. This basically corresponds to a linear least-
squares estimation of [. After solving for [, p'(ug)=-1,/1,.
The sign of p’(u) is used in the hybrid approach, to decide
whether the water cylinder correction or the Gaussian ex-
trapolation must be applied.

IV. EXPERIMENTS AND RESULTS

In this section we present a performance evaluation of our
proposed truncation correction methods. We first explain the
general experimental setup and provide the involved param-
eter settings. We then define a figure of merit, which is used
to compute the degree of data truncation. Finally, the trunca-
tion correction performance is evaluated quantitatively and
qualitatively.

IV.A. General setup

We have evaluated the basic approach and the kink ap-
proach on simulated cone-beam data of the FORBILD head
phantom. The simulation was done by using a partial-circle-
plus-arc (or more precisely a short-scan-plus-arc) trajectory
with parameter settings that are typical of a commercial
C-arm system. The radius of both, partial-circle as well as
arc segment of the trajectory, was set to 750 mm while the
source-to-detector distance was set to 1200 mm. The detec-
tor was simulated with 1024% square pixels of side length
0.4 mm. The sampling rate was 0.4°/projection, resulting in
500 (=199.6°) projections for the partial-circle scan and 58
(=22.8°) projections for the arc scan. The arc scan was po-
sitioned at the start of the partial-circle scan. For reconstruc-
tion, the M-line algorithm was used. The M-point was posi-
tioned at 140° on the partial-circle scan, measured from the
start of the arc segment. In general, it is preferred to position
the M-point at the middle of the partial-circle scan to pro-
duce less oblique filtering lines. Here, we explicitly selected
the M-point differently to accentuate the obliqueness of fil-
tering lines and thus truncation problems.

For our evaluation, we designed three experiments that
differ from each other by the type of data truncation. We
distinguish between trans-axial, axial, and combined data
truncation. For the trans-axial data truncation experiment, we
truncated the cone-beam data by cutting off a specific num-
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FiG. 11. Artificial truncation, shown exemplarily for the first projection of
the partial-circle scan for the FORBILD head phantom. (a) Original projec-
tion, no data truncation. (b) Trans-axial data truncation with 100 detector
columns on both sides cut off. (c) Axial data truncation with 400 top detec-
tor rows cut off. (d) Combined data truncation as a combination of (b) and

(c).

ber of detector columns. For the axial data truncation experi-
ment, we cut off a specific number of detector rows instead.
The combined data truncation experiment represents a com-
bination of both, the trans-axial and the axial data truncation
experiments.

For each experiment, we tested 11 levels of data trunca-
tion. The first level corresponds to zero truncation while the
last level corresponds to the maximal degree of truncation.
For trans-axial data truncation, two successive levels differ
by a truncated area of 10 detector columns on each side of
the projection image. The maximal cutoff is 100 detector
columns. For axial data truncation, two successive levels dif-
fer by a truncated area of 40 detector rows, measured from
the top of the projection image. The maximal cutoff is 400
detector rows. For combined data truncation, two successive
levels differ by a truncated area of 10 detector columns and
40 detector rows. The maximal cutoff is 100 detector col-
umns and 400 detector rows. The columns were cut off from
both sides of the projection image and the rows from the top
of the projection image, as before. Figure 11 shows example
projection images with trans-axial, axial, and combined data
truncation.

We have organized the evaluation as follows. For each
experiment, we first provide quantitative truncation correc-
tion performance results. Then, we show qualitatively the
visual image quality that can be achieved with our methods.
For the reconstructed volumes of the quantitative evaluation,
we chose a coarse Cartesian grid of 256* cubic voxels of side
length 1.0 mm. For the visual image quality, we refined the
grid and used 5123 voxels of side length 0.5 mm instead. In
any case, the volumes always contain the whole object.

IV.B. Scan field of view

For the computation of the degree of truncation (see next
section), it is important to first compute the scan field of
view. We define this field of view as the union of voxels that
are located where the M-line reconstruction would be pos-
sible if the Hilbert filtering step was not part of the algo-
rithm. To determine the size and shape of the scan field of
view, we start with a large volume of voxels and then elimi-
nate in a loop over the projections each of the voxels of this
volume that is spurious. A voxel is eliminated when the pro-
jection of its center (say x,) onto the detector plane falls
outside the detector while the source position is on the tra-
jectory segment required for reconstruction at x,; see Fig. 1.

Medical Physics, Vol. 35, No. 12, December 2008

Hoppe et al.: Truncation correction for oblique filtering lines

5916
/A 7 71
Ty L Flo (A
AN L 1)
/ |
cube of voxels object scan field of view

Fi. 12. The quantities N,, Ny, and N count the number of dark voxels. For
N, and N, the decision if a voxel is counted or not is based on the location
of the voxel’s midpoint. For display reasons, this example is in 2D but the
same principle is applied in 3D. Note that the scan field of view does not
have to be circular as depicted.

In other words, if the projection of a voxel falls outside the
detector only for source positions that are not involved in the
backprojection step for reconstruction at this voxel, then the
voxel belongs to the scan field of view. The scan field of
view corresponds to the region where the minimum data re-
quirement mentioned in the Introduction is fulfilled.

IV.C. Degree of truncation

To quantitatively show how much data truncation our
three experiments involve, we use a figure of merit called
DoT (degree of truncation):

DoT=1-NIN,, (6)

where N and N, are defined as follows. Consider a Cartesian
grid of voxels that encompasses the object to be recon-
structed, and let N, be the number of voxels in this grid.
Parameter Ny <N, is the number of voxels that are inside the
object, while parameter N<<N,<<N, is the number of voxels
that are inside the object as well as inside the scan field-of-
view. Obviously, the value of N depends on the detector size.
Basically, DoT quantifies how much of the object is affected
by truncation for implementation of the backprojection step
alone. If N=N,, no portion of the object is affected by trun-
cation and so DoT=0. On the other hand, if N=0, the whole
object is truncated and so DoT=1. Figure 12 displays N,, Ny,
and N. To compute the DoT, the extent of the reconstructed
object must be known or at least be estimated. Figures 13-15
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FiG. 13. DoT for trans-axial data truncation. The first truncation level cor-
responds to zero truncation while the last truncation level corresponds to the
maximal truncation (DoT=5.7%), where 100 detector columns have been
cut off on both sides of the projection image.
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FiG. 14. DoT for axial data truncation. The first truncation level corresponds
to zero truncation while the last truncation level corresponds to the maximal
truncation (DoT=35.2%), where 400 detector rows have been cut off from
the top of the projection image.

show the DoT for each of our three experiments, as a func-
tion of the truncation level.

IV.D. Truncation correction performance

To measure the average voxel error for the basic approach
and the kink approach, we define the root mean square
(RMS) error o between the reconstructed object without data
truncation V* and the reconstructed object with a specific
degree of data truncation V according to

12

N
o= (S @ -vie?) )
i=1

where the x;’s denote only voxels that have their midpoint
inside the reconstructed object as well as inside the scan field
of view. The parameter N counts the number of those voxels,
as in the DoT formula (6). From one truncation level to the
next, the scan field of view decreases and, thus, the param-
eter N also decreases. We computed the RMS error for the
trans-axial, the axial, and the combined data truncation ex-
periments. The resulting curves are shown in Figs. 16-18.

0.4

0.3F k 1

0.1- b

% 2 4 6 8 10
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FIG. 15. DoT for combined data truncation. The first truncation level corre-
sponds to zero truncation while the last truncation level corresponds to the
maximal truncation (DoT=39.7%), where 100 detector columns and 400
detector rows have been cut off. The columns have been cut off on both
sides of the projection image and the rows have been cut off from the top of
the projection image.
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FiG. 16. The RMS error is shown for different levels of trans-axial data
truncation. The curve with diamonds shows the case without truncation
correction. The curve with circles shows the case when applying the basic
approach and the curve with squares when applying the kink approach.
However, these last two curves are very similar and cannot be distinguished
from each other on the plot.

In the trans-axial data truncation experiment of Fig. 16,
we can first look at the curve where no truncation correction
was applied (the curve with diamonds). In this case, we see
that the RMS error rises constantly, starting from truncation
level 3 until it finally reaches a value of 222 HU. In contrast,
the BA curve (the curve with circles) and the KA curve (the
curve with squares) rise at a much lower RMS error level.
Both BA and KA curves reach a final value of 29 HU. This
corresponds to a difference of 193 HU compared to the curve
where no truncation correction was applied. Because BA and
KA share the same implementation when it comes to trans-
axial data truncation, both curves are identical.

For the axial data truncation experiment in Fig. 17, we
again consider first the curve where no truncation correction
was applied (the curve with diamonds). This curve rises until
truncation level 8, where it starts to fall again until it finally
reaches a value of 21 HU at truncation level 11. This curve
behavior may be explained by the fact that those parts of the
object which have a strong contribution to the RMS error fall
outside the scan field of view beyond truncation level 8 and
are thus not considered in the computation of the RMS error.
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Fic. 17. The RMS error is shown for different levels of axial data trunca-
tion. The curve with diamonds shows the case without truncation correction.
The curve with circles shows the case when applying the basic approach and
the curve with squares when applying the kink approach.
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FiG. 18. The RMS error is shown for different levels of combined data
truncation. The curve with diamonds shows the case without truncation
correction. The curve with circles shows the case when using the basic
approach and the curve with squares when using the kink approach. How-
ever, these last two curves are very similar and cannot be distinguished from
each other on the plot.

Of course this behavior depends on the chosen phantom as
well as on the chosen geometrical setup. For the BA curve
(the curve with circles) and the KA curve (the curve with
squares), we see that with the exception of truncation level 6,
the RMS error of the basic approach is always slightly lower
than that of the kink approach. The BA curve finally reaches
a value of 0.1 HU while the KA curve reaches a value of
1.6 HU at truncation level 11. In any case, comparing Figs.
16 and 17, we observe that axial data truncation is a much
less severe problem than trans-axial data truncation.

For the combined data truncation experiment in Fig. 18,
the curve progressions mostly emulate the trans-axial data
truncation case (except for the truncation levels 2 and 3)
since, in this combination, the errors caused by trans-axial
data truncation are higher than those caused by axial data
truncation.

IV.E. Visual image quality

In this section, we compare the reconstructed images by
visual inspection rather than by quantitative analysis. For
each experiment, we picked the images with the maximal
DoT values, corresponding to the highest truncation level.
We show the ground truth reconstruction and a reconstruc-
tion without truncation correction along with reconstructions
using the basic approach and the kink approach. We also
show FDK reconstructions, where we applied the hybrid ap-
proach along the detector rows for truncation correction; this
amounts to applying step BA-R on the truncated data. The
FDK results allow us to compare the performance of the
FDK algorithm with the original hybrid approach to the
M-line algorithm with our proposed methods.

For this visual inspection, we chose three orthogonal
slices through the FORBILD head phantom. The slices were
at z=20 mm, y=50 mm, and x=0 mm. The results for trans-
axial, axial, and combined data truncation can be seen in
Figs. 19-21, respectively.

From Fig. 19, we see an extreme intensity drop-off when
no truncation correction is applied. The intensity drop-off
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FiG. 19. Reconstruction of three slices at z=20 mm, y=50 mm, and x
=0 mm (from top to bottom) through the FORBILD head phantom for trans-
axial data truncation. In (a), (f), (k), the ground truth, in (b), (g), (1), the
reconstruction without truncation correction, in (c), (h), (m), the reconstruc-
tion using the basic approach, in (d), (i), (n), the reconstruction using the
kink approach, and in (e), (j), (0), the FDK reconstruction using the hybrid
approach is shown. The window was set to [-30 HU; 130 HU].

manifests as almost uniformly black shadows due to the cho-
sen gray window, in those regions where the filtering lines
are truncated. The basic approach and the kink approach re-
store the image such that all high and low contrast inlays can
be clearly identified. The methods are not able to resolve the
data truncation problem without remaining artifacts. Those
artifacts appear as small located black shadows and as di-
rected nonlocated streaks throughout the volume. In those
regions, the assumptions of the underlying water cylinder
correction seem to be too weak. However, both methods
clearly outperform the case without truncation correction.
Figure 20 shows the same intensity drop-offs when no
truncation correction is applied. In contrast to the trans-axial
data truncation scenario, those shadows cover a much
smaller portion of the object. However, the artifacts are se-
vere enough to mask important details of the FORBILD head
phantom. The shape and location of the shadows are a con-

00000
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FiG. 20. Reconstruction of three slices at z=20 mm, y=50 mm, and x
=0 mm (from top to bottom) through the FORBILD head phantom for axial
data truncation. In (a), (f), (k), the ground truth, in (b), (g), (1), the recon-
struction without truncation correction, in (c), (h), (m), the reconstruction
using the basic approach, in (d), (i), (n), the reconstruction using the kink
approach, and in (e), (j), (0), the FDK reconstruction using the hybrid ap-
proach is shown. The window was set to [-30 HU; 130 HU].
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FiG. 21. Reconstruction of three slices at z=20 mm, y=50 mm, and x
=0 mm (from top to bottom) through the FORBILD head phantom for com-
bined data truncation. In (a), (f), (k), the ground truth, in (b), (g), (1), the
reconstruction without truncation correction, in (c), (h), (m), the reconstruc-
tion using the basic approach, in (d), (i), (n), the reconstruction using the
kink approach, and in (e), (j), (0), the FDK reconstruction using the hybrid
approach is shown. The window was set to [-30 HU; 130 HU].

sequence of the chosen experimental setup (M-point loca-
tion, geometry, etc.). For axial data truncation, both basic
approach and kink approach recover the object almost per-
fectly. No differences in visual image quality can be seen
between the two truncation correction methods.

Without truncation correction in Fig. 21, the outcome ap-
pears almost identical to the trans-axial truncation case since
these artifacts are dominant. However, in fact, the artifacts
are composed of trans-axial and axial data truncation. The
basic approach and the kink approach show small located
shadows and directed nonlocated streaks as expected from
the trans-axial data truncation case but otherwise restore the
images quite well.

Figure 22 shows the results of combined data truncation
from one realization of Poisson noise (250 000 photons).
From the figure, we observe that both the basic approach and

FiG. 22. Reconstruction of three slices at z=20 mm, y=50 mm, and x
=0 mm (from top to bottom) through the FORBILD head phantom for com-
bined data truncation from one realization of Poisson noise (250 000 pho-
tons). In (a), (f), (k), the ground truth, in (b), (g), (1), the reconstruction
without truncation correction, in (c), (h), (m), the reconstruction using the
basic approach, in (d), (i), (n), the reconstruction using the kink approach,
and in (e), (j), (0), the FDK reconstruction using the hybrid approach is
shown. The window was set to [-30 HU; 130 HU].
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the kink approach seem to be robust to noise, at least for this
particular data set. The outcome seems to be analog to that of
Fig. 21.

V. CONCLUSIONS

We have presented two empirical methods to handle data
truncation for oblique filtering lines. Both methods are based
upon the so-called hybrid approach, which is a truncation
correction technique for horizontal filtering lines that is ap-
plied to the FDK algorithm. The basic approach compensates
data truncation in two successive preprocessing steps. It is
therefore independent of any specific reconstruction algo-
rithm. The kink approach uses similar concepts for data ex-
trapolation as the basic approach but adapts the filtering lines
when necessary. It therefore needs to be integrated into the
reconstruction algorithm. In both methods, truncation correc-
tion is done solely for the purpose of filtering. No extrapo-
lated value is ever backprojected.

The methods were tested on simulated data of the FOR-
BILD head phantom. The results show that truncation effects
resulting from oblique lines can be considerably mitigated.
Unfortunately, some artifacts remain, especially in the case
of trans-axial data truncation (truncation along the detector
rows). These artifacts appear in the form of small intensity
drops in the vicinity of truncated edges, and in the form of
low-intensity streaks that radiate from these edges and spread
over the entire reconstructed volume. We note that they were
already present in the FDK reconstruction, but they were
then less noticeable because of the numerous CB artifacts
that mask them.

Since the streaks and intensity drops are present in both
the FDK reconstruction and the M-line reconstruction, we
may assume that they are caused by the hybrid approach
itself. Using the empirical hybrid approach to handle oblique
filtering as suggested in the basic approach and the kink
approach does not seem to generate additional types of arti-
facts. Refinements of the hybrid approach aiming at reducing
these artifacts are beyond the scope of this paper, but will be
investigated in the future.

Our quantitative analysis highlighted only small differ-
ences between the basic approach and the kink approach, and
these differences lead to no visual differences between the
noise-free reconstructions achieved with these two methods.
Also, addition of noise did not change this observation. Both
methods appear equally robust to noise, and we believe that
this feature is a direct attribute of the robustness of the hy-
brid approach, on which both methods are built. Conse-
quently, preference for one method versus the other should
be primarily based on ease of implementation and specifics
of the data acquisition geometry. As mentioned earlier, the
kink approach offers a gain in data storage, but is also not
applicable to all data acquisition geometries.

In our experiments and in the presented drawings, the
M-point projected always outside of the detector. This will
always be the case, if the M-point is chosen to be approxi-
mately in the middle of the partial-circle segment of the
partial-circle-plus-arc trajectory, at least for a realistic C-arm
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geometry, e.g., see Ref. 13. In general, no severe conse-
quences are to be expected if the M-point projects inside of
the detector. Both methods may still be applied without
changes. However, if the M-point projects onto the back-
projection region itself, some of the resulting filtering lines
will become vertical, e.g., they will have the same orienta-
tion as the detector columns. For those filtering lines, the
kink approach cannot be applied as presented, since in the
case of axial data truncation, the method would infinitely
repeat the last projection value whenever a (vertical) filtering
line leaves the detector. The basic approach does not have
this specific problem and should be thus preferred in that
case.

Our methods can be applied, besides the M-line approach,
to any FBP algorithm that requires oblique filtering lines,
e.g., the Katsevich partial-circle-plus—line15 or
partial-circle-plus-arc4 algorithms or the ACE algorithm.3
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