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ABSTRACT

The accurate delivery of external beam radiation therapy is often
facilitated through the implantation of radio-opaque fiducial markers
(seeds). Before the delivery of each treatment fraction, seed posi-
tions can be determined via volumetric imaging. By registering these
seed locations with the corresponding locations in the previously
acquired treatment planning CT, it is possible to adjust the patient
position or the treatment plan so that seed displacement is accom-
modated. We present an automatic algorithm that identifies seeds in
both planning and pretreatment images and subsequently determines
the geometric transformation between the two sets. The algorithm is
applied to the imaging series of 10 prostate cancer patients. Each
series is comprised of a single multislice planning CT and several
megavoltage conebeam CT images obtained immediately prior to a
subsequent treatment session. Seed locations were determined for
164 images to within 1mm with an accuracy of 98± 6.3%.

Index Terms— image registration, x-ray imaging, pattern
recognition

1. INTRODUCTION

The employment of volumetric imaging prior to the delivery of ra-
diation therapy treatment fractions facilitates accurate dose admin-
istration by improving the ability to correctly position the patient or
to adapt the treatment plan. By co-registering subsequently acquired
images with the original planning CT, it is possible to estimate the
geometric transformation between anatomic elements. Most con-
temporary image-guided radiation therapy (IGRT) systems employ
registration methods that are based on gray level image matching. In
applications such as the imaging of the prostate gland, intrinsically
poor contrast between soft tissue structures can lead to inaccurate
registration. Often, the influence of bony landmarks dominates other
contributions toward the determination of the transformation param-
eters. This can lead to large inaccuracies, since target structures such
as the prostate gland can move by over a centimeter with respect to
bony landmarks [1]. Radio-opaque fiducial markers are often im-
planted into mobile structures such as the prostate gland and lung
in order to better identify the displacement and deformation of such
organs [2–4]. When such fiducials are available, it makes sense to
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employ these as landmarks in the co-registration procedure. This
is because the presence of fiducials decreases reliance on the skill
and anatomical knowledge of the operator, as well as the soft tissue
contrast resolution of the imaging modality.

Automatic algorithms were developed previously for the deter-
mination of seed displacement using a 2D projection image obtained
before treatment delivery, and a digitally reconstructed radiograph
(DRR) derived from the planning CT [5]. The algorithm presented
here achieves the same objective using 3D datasets. The major ad-
vantage of a 3D-to-3D registration is that information from all angu-
lar projections is used to determine the seed positions. Consequently,
greater accuracy is possible, especially in situations where the pres-
ence of more than three markers leads to ambiguity.

2. METHODS

We now describe the proposed algorithm in the context of the imag-
ing and treatment workflow:

1. At the start of the treatment planning process, the patient is
imaged using a 3D modality such as x-ray CT or MR. We
denote this reference image as ImageR.

2. The locations of the fiducial markers are determined manually
and saved for later use. We denote the world coordinates of
theP markers asxR

p = [xp yp zp]
T , p = 1, 2, . . . , P .

3. Before delivery of thenth treatment fraction, the patient is
imaged using a 3D modality to yield Imagen.

4. The proposed algorithm is used to automatically detect the
positions of the fiducial markers within Imagen and com-
pute the transformation of these positions with respect to the
reference image. ThexR

p are given as input.

The registration process proceeds by iterating over three
nested loops. The variablesk, i andj represent the indices
for the thresholding, matching, and grouping loops, respec-
tively. The algorithm proceeds as follows for Imagen:

(a) A volume-of-interest (VOIn) is defined that constrains
the unknown fiducial positions to a feasible volume
within the image. This is normally predefined for a
specific type of study and is not adjusted on a case-by-
case or patient-by-patient basis.

(b) A thresholding operation is performed to identify vox-
els in VOIn that contain highly attenuating material.
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These voxel indices are assigned to the set:

S
k
0 = {[q, r, s] | f [q, r, s] < γ ×

Imax, [q, r, s] ∈ VOIn} (1)

wheref [q, r, s] is the intensity value of the voxel of
Imagen at discrete position[q, r, s], Imax is the max-
imum intensity value in the VOI, andγ is a threshold
parameter chosen by the operator.

(c) Connected components analysis [6] is applied to group
adjacent points into features. Features whose volume
exceedsVmax, the maximum expected apparent volume
of a seed, are removed fromSk

0 .
(d) In order to obtain a reduction in dimensionality and

a resulting decrease in computational burden, voxels
within close mutual proximity are grouped into theL

possibly overlapping setsgl, l = 0, 1, . . . , L. These
sets are collected into the set:

Gij =
{

gl | gl ⊂ S
k
i

}

,
⋃

Gij = S
k
i . (2)

(e) A matching algorithm is applied that attempts to trans-
form the reference fiducial positions to the positions of
the centroids of subsetsgl of the setGij . The algorithm
produces a quality-of-fit metric which is used to select
the best match. Letgp, p = 1, 2, . . . , P be the set of
groups that scores the best match. The current set of
groups is then updated as:

S
k
i+1 =

P
⋃

p=1

gp. (3)

(f) Steps d) through e) are repeated until
∣

∣Sk
i

∣

∣ ≤ UB,
where UB is an upper bound of numbers of groups
to be used in the matching process. This parameter
is chosen by the operator and its value determines the
nature of the compromise between processing time and
detection accuracy.

(g) At this point, the setSk
i contains the pointsxp and

P ≤
∣

∣Sk
i

∣

∣ ≤ UB. The transformation parameters are
computed to match thexp ∈ Sk

i to thex
R
p . The error

of this transformation is denotedεi.
(h) If εi > εmax, we repeat steps b)-g) using a lower value

of intensity thresholdγ. The parameterεmax represents
the maximum allowed transformation error. This is ap-
plication dependent and is selected by the operator.

Figure 1 describes the adaptive thresholding and matching pro-
cess in more detail, as does the exposition below.
2.1. Grouping of points

After elimination of the contribution of large features using con-
nected components analysis, the number of points

∣

∣Sk
i

∣

∣ may still be
undesirably large for direct application of the matching algorithm.
To speed up the matching process, a dynamic grouping process is im-
plemented whereby several single points within close mutual prox-
imity are grouped into the groupsgl. This process is defined by the
following pseudocode:

D := Sk
i ; l := 1;

for each voxel index inD or until |D| = 0
find all voxel indices∈ Sk

i within radiusr
assign voxels indices togl

D := D\gl

l := l + 1
end

The representative coordinate of a groupgl is computed as the
centroid of its points. The maximum distance between two voxels
belonging to the same group is smaller than or equal to2 r. De-
pending on the actual number of groups|Gij |, a regrouping may be
performed where the proximity radius parameterr is dynamically
adjusted to keep the number of groups within the rangeP ≤ |Gij | ≤
UB. When such an appropriate group size is attained, the matching
algorithm is applied to select theP most relevant groups. These
groups are then decomposed into the original points. If more than
UB points exist after decomposition, the grouping process is applied,
otherwise the points are fed directly to the matching algorithm.

2.2. Matching algorithm

The optimal match is computed by a pattern matching algorithm sim-
ilar to RANSAC (random sample consensus) [7]. LetD denote the
set of points or groups that are fed to the matching algorithm. For
the matching of groups and points, we haveD = Gij andD = Sk

i ,
respectively.

In each iteration,P elements are randomly chosen out of the set
D of candidate matches. Since the order of the points is relevant, the
maximum number of iterations necessary to evaluate all matches is
P ! ×

(

|D|
P

)

.
The cost function that is minimized by the matching algorithm is

the root mean square of the distance between the transformed source
points and the closest points (or group centroids) in the target dataset.

The pseudocode for the matching algorithm is given as follows:

for each possible permutation of points or groups
chooseP pointsxp out ofD
compute transformation betweenxp andx

R
p

if the matching errorε ≤ ε+
break

end

The transformation is constrained to consist of rotations around
three orthogonal axes and a 3D translation. The RMS distanceε be-
tween the transformed source points and the current target points is
used as the quality metric for the transformation. After evaluating
all possible target point combinations, we choose the point set asso-
ciated with the transformation that produces the smallest error. The
iteration over all possible combinations is terminated before an ex-
haustive search is completed if the error of a transformation is below
an operator-defined thresholdε+.

We denote the error obtained upon final application of the
matching algorithm, where individual points are considered, asεfinal.

3. EVALUATION
3.1. Datasets

The algorithm was tested on 164 target datasets obtained from 10
patients. All target datasets were obtained using megavoltage linac
beams of Siemens Primus and Oncor radiation therapy linear accel-
erators. Two different beam configurations were used in the studies.
Most images where produced using a conventional 6MV treatment
beam. This beam is generated by the action of≈7MeV electrons on
a tungsten target. The resulting photons are filtered using a stainless
steel flattening filter. The remaining images were obtained using a
prototype imaging system in which≈4.5MeV electrons impinged
on a carbon (diamond) target. No flattening filter was employed. We
refer to this beam using the nominal designation “4.5MV”.

The latter studies were obtained over a wide dose range in order
to determine the minimum possible useful dose for imaging. As a
result, the quality of some of the images is extremely poor. In some

1172



Fig. 1. Algorithm flowchart. Notation:P : number of markers, UB: upper bound used in the matching process.

cases it is not possible for a human observer to identify the fiducial
markers.

The images were acquired at the University of California at San
Francisco and the Savannah Oncology Center, Savannah, Georgia
with the approval of the relevant ethics boards. The algorithm was
applied to the data retrospectively and did not influence patient treat-
ment.

A treatment planning CT dataset, obtained using a multislice
diagnostic CT system, was obtained for each patient prior to the
before-treatment images.

3.2. Specific implementation

A single set of operator-chosen parameters was employed for all
datasets examined. We describe these choices below.

3.2.1. Connected components analysis

The actual voxel size of a seed depends on the resolution of the
imaging modality, i.e. pixel spacing and slice thickness. For our
megavoltage conebeam pre-treatment images we retained as poten-
tial seed features only those connected groups having a volume of
less thanVmax = 65 voxels= 65 mm3.

3.2.2. Thresholding

When gold seeds are imaged using megavoltage (MV) beams, their
intensity values typically exceed those due to bone by a significant
margin. An intensity thresholdγImax that is close to the maximum
intensity within the volume of interest is thus appropriate for the
thresholding of MV images. We selectedγ = 0.85.

3.2.3. Grouping

The maximum proximityr for group inclusion was initially set to
2.0 mm. Dependent on the actual number of groups|Gij |, the radius
is either increased or decreased for the regrouping. We set the upper
bound on the number of groups UB=15. When more groups are
identified than are desired,r is increased by the ratio of the number
of current groups and UB. When the number of groups is less than
P=3, r is decreased by 1mm forr ≥1.5mm and by a factor of2

3

otherwise.

3.2.4. Transformation constraints

Rotation was constrained to the angular range between−π

8
and π

8
.

This range accommodates all observed prostate rotations. Transla-
tion was not constrained.

3.2.5. Matching

The threshold for early terminationε+ in the grouping stage was set
to 0.1 mm (RMS) and the threshold for the final errorεmax to 2.0 mm.
These values provide a positioning tolerance of similar magnitude to
delivery system and treatment plan tolerances.

4. RESULTS

The results obtained through application of the algorithm to datasets
acquired using the 6MV and 4.5MV beams appear in Tables 1 and
2, respectively.

The validated detection rate takes into account only those im-
ages that were acquired with doses of 1 cGy or above. The images
that were excluded from the calculation of this statistic are marked
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Table 1. MV datasets obtained using a 6MV beam

ID #Datasets Acquisition CT to 1st MV #Correct Total correct Error RMS #False
time range (days) (days) detections (%) (mm) detections

c1 41 64 18 41 100 % 0.124 - 0.815 0
c2 25 52 12 25 100 % 0.021 - 1.233 0
c3 3 11 6 3 100 % 0.070 - 0.355 0

Table 2. MV datasets obtained using a 4.5MV beam

ID #Datasets Acquisition CT to 1st MV # Correct #Correct Total correct Error RMS #False
time range (days) (days) detections rejections (%) validated (mm) detections

i1 8 55 7 7 0 100% 0.075 - 0.248 1*
i2 6 40 15 5 0 100% 0.101 - 0.538 1*
i3 6 22 36 4 1* 80% 0.538 - 1.618 1
i4 4 47 10 4 0 100% 0.033 - 0.240 0
i5 3 3 0 3 0 100% 0.087 - 0.107 0
i6 37 67 0 37 0 100% 0.052 - 0.370 0
i7 31 66 0 29 2 100% 0.075 - 0.890 0

with the superscript “*” in Table 2. We justify this cut-off byob-
serving that the seeds in the<1 cGy images are not visible to human
observers.

The average processing time per dataset (mean± standard de-
viation) was 4.7±2.8s for the 6MV studies and 8.1±2.6s for the
4.5MVstudies.

5. DISCUSSION

We described a practical algorithm for the automatic 3D co-
registration of metallic fiducial markers and demonstrated its ef-
fectiveness through application to a large number of megavoltage
CT abdominal datasets.

When applied to images obtained using a commercially-available
6MV imaging system, the algorithm was 100% successful in identi-
fying the fiducial positions (69 studies on 3 patients).

The failure of registration in one study of Series i1 was due to
poor image quality. This dataset was produced with dose of 0.3 cGy
and was too noisy to allow even manual seed identification.

In Series i2, the matching error in one study was due to a very
large amount of prostate motion relative to the reference image. One
of the fiducial markers was displaced from the entire volume-of-
interest in this case. This case illustrates the importance of operator
validation of the final output of the algorithm.

The result obtained for a very low dose (0.6cGy) image in Series
i3 represents a true negative. The algorithm was not able to find a
match with an acceptably low error and indicated this to the user.

Unexpectedly, application of the algorithm to one higher dose
(10cGy) image in Series i3 led to a false positive match. More than
five seeds were present within the prostate of this patient. On the
day this image was acquired, the patient presented with a highly de-
formed prostate, probably because of a full bladder and rectum. The
presence of this deformation allowed the algorithm to find an accept-
able match to an incorrect marker. Selection of the correct match in
this case is not straightforward, even for a trained human operator.

In Series i7, two images were rejected due to bad image quality.
Both images showed artifacts due to missing tomographic projec-
tions, so even manual seed identification was not possible.

The rapid execution time of the algorithm prototype makes it
suitable for employment in an image guided radiation therapy work-
flow.
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