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The accurate delivery of external beam radiation therapy is often facilitated through the implanta-
tion of radio-opaque fiducial markers �gold seeds�. Before the delivery of each treatment fraction,
seed positions can be determined via low dose volumetric imaging. By registering these seed
locations with the corresponding locations in the previously acquired treatment planning computed
tomographic �CT� scan, it is possible to adjust the patient position so that seed displacement is
accommodated. The authors present an unsupervised automatic algorithm that identifies seeds in
both planning and pretreatment images and subsequently determines a rigid geometric transforma-
tion between the two sets. The algorithm is applied to the imaging series of ten prostate cancer
patients. Each test series is comprised of a single multislice planning CT and multiple megavoltage
conebeam �MVCB� images. Each MVCB dataset is obtained immediately prior to a subsequent
treatment session. Seed locations were determined to within 1 mm with an accuracy of 97�6.1%
for datasets obtained by application of a mean imaging dose of 3.5 cGy per study. False positives
occurred in three separate instances, but only when datasets were obtained at imaging doses too low
to enable fiducial resolution by a human operator, or when the prostate gland had undergone large
displacement or significant deformation. The registration procedure requires under nine seconds of
computation time on a typical contemporary computer workstation. © 2008 American Association
of Physicists in Medicine. �DOI: 10.1118/1.2975153�
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I. INTRODUCTION

Volumetric imaging immediately prior to radiation therapy
treatment delivery facilitates accurate dose administration
via improved patient positioning and/or treatment plan adap-
tation. By coregistering these volumetric datasets with the
original planning computed tomography �CT� volume, it is
possible to estimate the geometric transformation between
anatomic elements.

Contemporary image-guided radiation therapy �IGRT�
systems typically employ registration methods based on
large scale gray level image matching. In scenarios such as
pretreatment imaging of the prostate gland, intrinsically poor
contrast between soft tissue structures can lead to inaccurate
registration. Unsupervised matching algorithms are often dis-
proportionately influenced by bony landmarks, the motion of
which then dominates the determination of the resulting

transformation parameters. This can lead to large inaccura-
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cies, since target structures such as prostate can move by
over a centimeter with respect to bony landmarks.1

Radio-opaque fiducial markers are often implanted into
mobile structures such as the prostate gland and lung in order
to better identify the displacement and deformation of such
organs.2–5 When such fiducials are available, it makes sense
to employ these as landmarks in the coregistration procedure.
This is because the presence of fiducials decreases reliance
on the skill and anatomical knowledge of the operator, as
well as the soft tissue contrast resolution of the imaging mo-
dality.

Since fiducial-based registration lends itself to unsuper-
vised automation, algorithms were initially developed for the
determination of seed displacement using a two-dimensional
�2D� pretreatment projection x-ray image. This would be
compared to a reference digitally reconstructed radiograph

6
derived from the planning CT. The algorithm presented here
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achieves the same objective using three-dimensional �3D�
datasets. The major advantage of a 3D-to-3D registration is
that information from all angular projections is used to de-
termine the seed positions. Consequently, greater accuracy is
possible, especially in situations where the presence of more
than three markers leads to identification ambiguity.

A second potential advantage relates to the distribution of
imaging radiation dose to the patient. As compared to 2D
methods based on paired orthogonal projections, tomogra-
phic acquisition distributes total imaging dose in a different
manner throughout the patient. For example, an anterior arc
may not only redistribute dose away from the rectal wall, but
can also be routinely considered as part of the treatment dose
distribution for overall optimization.7 We apply our algo-
rithm to images obtained over a wide dose range in order to
illustrate that the method is effective in registering datasets
acquired at a doses as low as 1.0 cGy, which is significantly
less than that used for typical megavoltage �MV� orthogonal
portal image-based IGRT.

II. METHODS

II.A. Seed coregistration as a point matching problem

The registration of 3D datasets based on implanted fidu-
cial markers is a classical point matching problem. The lo-
cation of a known point set taken from volumetric dataset A
must be found within volumetric dataset B. The latter dataset
will generally contain, in addition to the fiducials present in
A, an indeterminate number of additional points that con-

found the identification of the desired point set.
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A useful point matching algorithm must be able to accu-
rately detect the corresponding points in dataset B, while in
the process rejecting the spurious features present in B. Chui
et al. present a robust point matching algorithm that esti-
mates the correspondence between point sets by computing a
nonrigid transformation between the two sets.8 For IGRT ap-
plications that do not involve treatment replanning, it is pru-
dent to accept only translations and rotations of the target
structures. A full nonrigid registration approach allows for
tissue deformation and this cannot be compensated for by
simply readjusting patient position. We therefore pursue a
rigid body transformation approach to point matching. While
such an approach is able to tolerate some degree of nonrigid
deformation, such transformations are associated with a
higher “cost” in terms of a goodness-of-fit metric. Unaccept-
ably high cost function values indicate that it may not be
appropriate to deliver a plan to a patient on a particular day,
or indeed, that replanning may be necessary.

The rigid point matching approach we develop here is
inspired by the random sample consensus �RANSAC�
algorithm,9 which is widely used for the robust fitting of
models in the presence of many data outliers. An example
application of this algorithm to fiducial seed data appears in
Fig. 1. In the upper left panel of this figure, we see the
reference point set from dataset A plotted alongside the true
locations of these points in dataset B. The upper right panel
illustrates, in addition to the reference points in dataset A, the
collection of potential matching points after feature extrac-
tion has been applied to dataset B. While many points are

FIG. 1. Illustrative example of the ap-
plication of a point matching algo-
rithm based on a rigid geometric trans-
formation. Upper left: The locations of
reference points from dataset A, and
the true locations of these points in
dataset B are plotted in a single coor-
dinate system. Upper right: After the
application of feature extraction tech-
niques to dataset B, a large number of
candidate point matches are possible.
The point matching algorithm must
find correspondences that are consis-
tent with a constrained rigid geometri-
cal transformation of the reference
points from dataset A. Lower left: The
point matching algorithm correctly
identifies the point correspondences
between datasets A and B. In the
present application, the transformation
associated with these points may then
be used to adjust the patient position
or the treatment plan accordingly.
clustered around the true locations of the fiducials, several
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remote outliers are also present. Application of the point
matching algorithm finds the best rigid transformation be-
tween reference set A and all of the potential points by ex-
haustively searching all possible correspondences between
point sets. The final match is illustrated in the lower left
panel. This match is not perfect, indicating in this case that
some minor elastic deformation of the anatomy has occurred.

II.B. Detailed algorithm description

We now describe the proposed algorithm in the context of
the imaging and treatment workflow. While we define all
mathematical symbols as these are introduced in the follow-

TABLE I. Table of mathematical symbols used.

Image R reference image
Image n nth pretreatment image
VOIn volume-of-interest of nth image
f�q ,r ,s� intensity value of the voxel at discrete position �q ,r ,s�
Imax maximum intensity value in the VOI
� threshold parameter 0���1
P number of flducial markers
x world coordinates of a single point
xp

R world coordinates of markers in reference image
k index for thresholding iteration
i index for matching iteration
j index for grouping iteration
Si

k set of points at iteration k, i
gl set of points within close mutual proximity, called group
L number of groups
Gij set of all groups at iteration i, j
C temporary set of points in grouping process
D set of points or groups that are fed to the matching

algorithm
r proximity radius parameter
UB upper bound used in the matching process
av size of the VOI
Vmax maximum volume of feasible features
�i transformation error at iteration i
�final error obtained upon final application of the matching

algorithm
�+ threshold for early termination
�max maximum allowed transformation error
h transformation function
� parameter vector that determines the geometric transform
�� changes in parameter vector
bl, bh maximum permitted rotation angles in each direction

TABLE II. Table of mathematical operators used.

� union of sets
� subsets of a set
�A� cardinality=number of elements in set S
A \B set exclusion �select only those elements

of set A that are not present in set B�
n! factional=1�2. . . � �n−1��n
� k

n� number of possible ways of selecting k elements
from a set of n elements without replacement
=n! / �h!�n−k�!�
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ing exposition, for the convenience of the reader we list all
symbols and operators used in Tables I and II, respectively.

�1� At the start of the treatment planning process, the patient
is imaged using a 3D modality such as x-ray CT or
magnetic resonance imaging. We denote this reference
image as image R.

�2� The locations of the fiducial markers are determined
manually and saved for later use. We denote the world
coordinates of the P markers as xp

R= �xpypzp�T, p
=1,2 , . . . , P.

�3� Before delivery of the nth treatment fraction, the patient
is imaged using a 3D modality to yield image n.

�4� The proposed algorithm is used to automatically detect
the positions of the fiducial markers within image n and
compute the transformation of these positions with re-
spect to the reference image. The xp

R are given as input.

The registration process proceeds by iterating over three
nested loops. The variables k, i, and j represent the indices
for the thresholding, matching, and grouping loops, respec-
tively. The algorithm proceeds as follows for image n:

�a� A volume-of-interest �VOIn� is defined that constrains
the unknown fiducial positions to a feasible volume
within the image. This is normally predefined for a
specific type of study and is not adjusted on a case-by-
case or patient-by-patient basis.

�b� A thresholding operation is performed to identify vox-
els in VOIn that contain highly attenuating material.
These voxel indices are assigned to the set

S0
k = ��q,r,s��fn�q,r,s� � � � Imax,�q,r,s� � VOIn� , �1�

where fn�q ,r ,s� is the intensity value of the voxel of
image n at discrete position �q ,r ,s�, Imax is the maxi-
mum intensity value in the VOI, and � is a threshold
parameter chosen by the operator.

�c� Connected component analysis10,11 �CCA� is applied to
group adjacent points into features. This is performed
only for the purpose of removing from the candidate
point set the contributions of contiguous features that
are larger than seeds. Features whose volume exceeds
Vmax, the maximum expected apparent volume of a
seed, are removed from S0

k.
�d� In order to obtain a reduction in dimensionality and a

resulting decrease in computational burden, voxels
within close mutual proximity are grouped into the L
possibly overlapping sets gl, l=0,1 , . . . ,L. These sets
of voxels are collected so as to become subsets of the
possibly larger set

Gij = �gl�gl � Si
k� ,

�Gij = Si
k. �2�

This step differs from the CCA analysis applied in
the previous step in that mutual proximity rather than
contiguity is the criterion for grouping. Also, the inten-
tion behind this step is dimensionality reduction rather

than large-feature exclusion.
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�e� A matching algorithm is applied that attempts to trans-
form the reference fiducial positions to the positions of
the centroids of subsets gl of the set Gij. The algorithm
produces a quality-of-fit metric which is used to select
the best match. Let gp, p=1,2 , . . . , P be the set of
groups that scores the best match. The current set of
groups is then updated as

Si+1
k = �

p=1

P

gp.

�f� Steps �d� and �e� are repeated until �Si
k��UB, where

UB is an upper bound of numbers of groups to be used
in the matching process. This parameter is chosen by
the operator and its value determines the nature of the
compromise between processing time and detection ac-
curacy.

�g� At this point, the set Si
k contains the points xp and P

� �Si
k��UB. The transformation parameters are com-

puted to match the xp�Si
k to the xp

R. The error of this

transformation is denoted �i.
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�h� If �i��max, we repeat steps �b�–�g� using a lower value
of intensity threshold �. The parameter �max represents
the maximum allowed transformation error. This is
application-dependent and is selected by the operator.

Figure 2 describes the adaptive thresholding and matching
process in more detail, as does the exposition below. Figures
3–7 provide an illustrative example of the application of the
thresholding, grouping and matching processes to clinical
images.

II.C. Grouping of points

After elimination of the contribution of large features us-
ing connected component analysis, the number of points �Si

k�
may still be undesirably large for direct application of the
matching algorithm. To speed up the matching process, a

FIG. 2. Algorithm flowchart. Notation:
P: number of markers, UB: upper
bound used in the matching process.
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dynamic grouping process is implemented whereby several
single points within close mutual proximity are grouped into
the groups gl. This process is defined by the following
pseudocode:

FIG. 3. The upper panel shows transaxial slices from CT �upper� and MVCB
CT �lower� images of the same patient. The presence of two fiducial markers
within the prostate is evident in this 3 mm-thick CT slice. Only the lower
left marker is visible in the 1 mm-thick MVCB CT slice owing to the
smaller slice thickness. The enlarged volume-of-interest is shown to the
right of this image. The MVCB CT image was obtained using a dose of
5 cGy.

FIG. 4. The upper panel shows the MVCB CT slice that appears in Fig. 3
after the initial thresholding operation. The black spots represent voxels
selected to be included as potential features. We see that along with the true
fiducial marker, some of the bone volume also exceeds the threshold, thus
adding spurious elements to the feature set. In the lower panel, which shows
a slice where no seeds are present, a small amount of bone constitutes the

entire feature set.
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CªSi
k; lª1;

for each voxel index in C or until �C�=0
find all voxel indices�Si

k within radius r
assign voxels indices to gl

CªC \gl

lª l+1
end

The representative coordinate of a group gl is computed
as the centroid of its points. The maximum distance between
two voxels belonging to the same group is smaller than or
equal to 2r. Depending on the actual number of groups �Gij�,
a regrouping may be performed where the proximity radius
parameter r is dynamically adjusted to keep the number of
groups within the range P� �Gij��UB. When such an appro-
priate group size is attained, the matching algorithm is ap-
plied to select the P most relevant groups. These groups are

FIG. 5. After the application of grouping and matching steps to the features
identified in Fig. 4 �and simultaneously to similar features in other slices
within the volume that we have not shown�, we find that the spurious voxels
representing bone volume have been removed from the feature set. Only the
true fiducial seed in the slice shown in the upper panel remains in this set, as
is clear from the presence of only a single constellation of black voxels in
the upper panel.
then decomposed into their constituent points. If more than
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UB points exist after decomposition, the grouping process
ensues, otherwise the points are fed directly to the matching
algorithm.

II.D. Matching algorithm

The optimal match is computed by a pattern matching
algorithm similar to RANSAC �random sample consensus�.9

Let D denote the set of points or groups that are fed to the
matching algorithm. For the matching of groups and points,
we have D=Gij and D=Si

k, respectively.
At each iteration, P elements are randomly chosen out of

the set D of candidate matches. Since the order of the points
is relevant, the maximum number of iterations necessary to
evaluate all matches is P!� � �D�

P
�. The notation �D� denotes

the number of elements in set D �cardinality�.
The cost function that is minimized by the matching al-

gorithm is the root mean square of the distance between the
transformed source points and the closest points �or group
centroids� in the target dataset.

The pseudocode for the matching algorithm is given as
follows:
for each possible permutation of points or groups

choose P points xp out of D
compute transformation between xp and xp

R

if the matching error ���+

break
end

The transformation is constrained to consist of rotations
around three orthogonal axes and a 3D translation. The root
mean square �RMS� distance � between the transformed

FIG. 6. After the procedures illustrated in Figs. 3–5 are complete, the algo-
rithm outputs the detected seed locations as well as the geometrical trans-
formation needed to register the patient to the planning CT. The three de-
tected seeds lie at the centers of the white circles shown in the right column
�MVCB CT�. The left column shows the slices of the planning CT of the
same patient for reference.
source points and the current target points is used as the
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quality metric for the transformation. After evaluating all
possible target point combinations, we choose the point set
associated with the transformation that produces the smallest
error. The iteration over all possible combinations is termi-
nated before an exhaustive search is completed if the error of
a transformation is below an operator-defined threshold �+.

We denote the error obtained upon final application of the
matching algorithm, where individual points are considered,
as �final.

II.E. Determination of matching transform parameters

The transformation parameters between prospective point
set matches are computed by optimization of the goodness-
of-fit function using a nonlinear projected descent method.
This approach iteratively minimizes the sum of squared dis-
tances between transformed source points h�xp

R ,�� and the
target points xp to yield the optimal transformation vector as

�opt = arg min
�

�
p=1

P

	xp − h�xp
R,��	2, �3�

where the solution is subject to the bound constraints

bl � � � bh. �4�

The function h applies the rigid transformation, which con-
sists of a 3D rotation and translation. The 3D rotation is
comprised of successive rotations around the x, y, and z axes.
These axes are defined to intersect at the isocenter of the
megavoltage cone beam �MVCB� CT image. The parameter
vector � determines the transform and is initialized using the
operator-defined starting values �0. The boundaries bl and bh

represent the operator-defined maximum permitted rotation
angles in each direction.

To perform the optimization in Eq. �3�, we employ a sta-
bilized Newton method. In this algorithm, the Newton de-
scent direction is chosen when the Hessian in positive
semidefinite. Otherwise, the steepest descent direction is
used. The Armijo line search rule is employed to determine
step size �Ref. 12, p. 58�.

To implement the bound constraints, at iteration j the up-
dated parameter vector

� j = � j−1 + �� j �5�

is projected onto the permissible solution set using the
operator13

���� = 
max�min�	1,b1
u�,b1

l �
]

max�min�	n,bn
u�,bn

l �
� . �6�

III. EVALUATION

III.A. Datasets

A high quality treatment planning CT dataset, acquired
using a Siemens multislice diagnostic CT system, was ob-

tained for each patient prior to the pre-treatment MV image
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volumes. Typically, these images are obtained by delivering
200 mA s at 140 kVp to yield a body CT dose index of
2.2 cGy �center� and 3.6 cGy �surface�.

The algorithm was tested on 164 target datasets obtained
from ten patients. All target datasets were obtained using
megavoltage linac beams of Siemens Primus and Oncor ra-
diation therapy linear accelerators. Two different beam con-
figurations were used in the studies. The majority of the im-
ages were produced using a conventional 6 MV treatment
beam. This beam is generated by the action of �7 MeV
electrons on a tungsten target. The resulting photons are fil-
tered using a stainless steel flattening filter. The remaining
images were obtained using a prototype imaging system in
which �4.5 MeV electrons impinged on a carbon �diamond�
target. No flattening filter was employed.14 We refer to this
beam using the nominal designation “4.5 MV.”

The 4.5 MV imaging studies were obtained over a wide
dose range in order to determine the minimum possible use-
ful dose for imaging. As a result, the quality of some of the
images is extremely poor. In some cases it is not possible for
a human observer to identify the fiducial markers.

All patient images were acquired at the University of
California at San Francisco and the Savannah Oncology
Center, Savannah, Georgia with the approval of the relevant

TABLE III. Resolution of planning CT images.

Pixel resolution in nm Slice thickness in mm

1.270�1.270 5.000
0.916�0.916 3.000
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ethics boards. The algorithm was applied to the data retro-
spectively and did not influence patient treatment.

A treatment planning CT dataset, obtained using a multi-
slice diagnostic CT system, was obtained for each patient
prior to the before-treatment images. These datasets had dif-
ferent characteristics with respect to pixel resolution and
slice thickness. The values employed are listed in Table III.
MVCB images were all acquired with pixel resolution of
1070 mm�1.070 mm and slice thickness of 1.000 mm.

The applied dose for MVCB CT images is usually stated
in monitor units �MU�, where 1 MU produces a dose of
1 cGy at a depth of dmax in water �at the isocenter� for a
10 cm�10 cm radiation field, with a source-to-isocenter dis-
tance of 1 m. The quantity dmax is the depth along the dose-
versus-depth curve at which the maximum dose is observed.
Since we employ two different beams, we quote doses in
cGy rather than MU and employ the relevant MU-to-cGy
conversion factor for the particular beam.

All images were corrected for cupping artifact �due to
beam hardening, lateral projection truncation, scatter, and
nonuniform beam profile� using the method described in Ref.
15.

III.B. Specific implementation

In this section, we describe the selection of algorithm pa-
rameter values and provide other details relating to the algo-
rithm evaluation procedure.

The single set of operator-chosen parameter values speci-
fied below was used to process all of the datasets.

FIG. 7. These four figures provide an
illustrative example of the point
grouping and geometric matching pro-
cess. Each plot represents a 2D projec-
tion of a 3D scenario that contains fea-
tures such as those represented using
black dots in Fig. 4. Each point in the
candidate feature set is denoted by the
symbol “�.” The upper left image
shows a set of points obtained after
thresholding. In this case, the three
leftmost point constellations corre-
spond to three gold seeds. The right-
most constellation represents spurious
candidate points due to bone. The ap-
plication of the first grouping opera-
tion yields 13 groups. The centroid of
each group is denoted using the sym-
bol “
.” The lower left panel shows
the result of the application of the first
matching step. Only points belonging
to the groups that produce the lowest
matching error �i remain in the feature
set. The centroid positions after the
subsequent grouping operation also
appear in this plot. Finally, the lower
right image illustrates the result of the
second matching step. These points
represent the final point candidates.
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III.B.1. Volume-of-interest

The volume-of-interest VOI is defined by the user to en-
close all possible seed locations. It is specified by a single
parameter av, which corresponds to the sidelength of a
square in the transaxial plane. The VOI thus defined is a
rectangular prism of square cross section, centered at the
isocenter, that spans the entire support of the image along the
patient axis. We choose av=70 mm.

III.B.2. Thresholding

When gold seeds are imaged using MV beams, their in-
tensity values typically exceed those due to bone by a sig-
nificant margin. An intensity threshold �Imax that is close to
the maximum intensity within the volume of interest is thus
appropriate for the thresholding of MV images. We select
�=0.85.

III.B.3. Connected component analysis

The actual voxel size of a seed depends on the resolution
of the imaging modality, i.e., pixel spacing and slice thick-
ness. The patients imaged in this study were implanted ret-
roperitoneally using cylindrical gold seeds having a diameter
of 1 mm and a length of 3 mm. The seed volume is thus
2.4 mm3. Due to the influences of finite imaging system fo-
cal spot size, projection image smoothing, image noise, and
the partial-volume effect, the contribution of a seed is
spreadout over a much larger volume than this in image
space. For our megavoltage conebeam pretreatment images
we retained as potential seed features those connected groups
having a volume of less than Vmax=65 voxels3=69.57 mm3.

III.B.4. Grouping

The maximum proximity r for group inclusion was ini-
tially set to 2.0 mm. Dependent on the actual number of

TABLE IV. MV datasets obtained using a 6 MV beam

ID No. of datasets
1st MVCB—

last MVCB �days�
CT to 1

�d

c1 41 64 1
c2 25 52 1
c3 3 11

TABLE V. MV datasets obtained using a 4.5 MV beam.

ID No. of datasets

1st MVCB—
last MVCB

�days�

CT to
1st MVCB

�days�
No. of co

detectio

i1 8 55 7 7
i2 6 40 15 5
i3 6 22 36 4
i4 4 47 10 4
i5 3 3 0 3
i6 37 67 0 37
i7 31 66 0 29
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groups �Gij�, the radius is either increased or decreased for
the regrouping. We set the upper bound on the number of
groups UB=15. The lower bound is set to P=3.

III.B.5. Transformation constraints

Rotation was constrained to the angular range between
−� /8 and � /8. This range accommodates all observed pros-
tate rotations. Translation was not constrained.

III.B.6. Matching

The threshold for early termination �+ in the grouping
stage was set to 0.1 mm �RMS� and the threshold for the
final error �max to 2.0 mm. These values provide a position-
ing tolerance of similar magnitude to delivery system and
treatment plan tolerances.

III.B.7. Algorithm implementation

The algorithm was coded in MATLAB �Version 2007b,
Mathworks, Inc., Natick, MA� and was executed on a dual
3.2 GHz Intel Xeon �Family 15, Series 4� processor com-
puter system.

IV. RESULTS

The results obtained through application of the algorithm
to datasets acquired using the 6 and 4.5 MV beams appear in
Tables IV and V, respectively. These tables also indicate the
time range in days between the acquisition of a particular
patient’s first CT scan and first MVCB scan, as well as the
number of days between the patient’s first and last MVCB
scans.

In Fig. 3, a transaxial slice of the planning CT that con-
tains an implanted prostate seed, and a corresponding slice of
a megavoltage cone beam pretreatment image are shown.
Figures 4 and 5 illustrate intermediate results after the appli-

CB No. of correct
detections

Total correct
�%�

Error RMS
�mm�

41 100 0.124–0.815
25 100 0.021–1.233
3 100 0.070–0.355

No. of correct
rejections

Total correct
�%�

validated
Error RMS

�mm�
No. of false
detections

0 100 0.075–0.248 1*

0 100 0.101–0.538 1*

1* 80 0.538–1.618 1
0 100 0.033–0.240 0
0 100 0.087–0.107 0
0 100 0.052–0.370 0
2 100 0.075–0.890 0
.

st MV
ays�

8
2

6

rrect
ns
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cation of two steps of the algorithm. A typical result is pre-
sented in Fig. 6. The detected seed locations lie at the centers
of the white circles.

The validated detection rate takes into account only those
images that were acquired with doses of 1 cGy or above. The
images that were excluded from the calculation of this sta-
tistic are marked with the superscript “ *” in Table V. We
justify this cut-off by observing that the seeds in the �1 cGy
images are not visible to human observers.

The average processing time per dataset �mean�standard
deviation� was 4.7�2.8 s for the 6 MV studies and
7.7�2.9 s for the 4.5 MV studies.

V. DISCUSSION

We formulated and demonstrated a practical algorithm for
the automatic 3D coregistration of metallic fiducial markers
and demonstrated its effectiveness through application to a
large number of volumetric megavoltage conebeam datasets.

When applied to images obtained using a commercially
available 6 MV imaging system, the algorithm was 100%
successful in identifying the fiducial positions �69 studies on
three patients�.

The failure of registration in one study of series i1 was
due to poor image quality. This dataset was produced with
dose of 0.3 cGy and was too noisy to allow even manual
seed identification.

In series i2, the matching error in one study was due to a
very large amount of prostate motion relative to the reference
image. One of the fiducial markers was displaced from the
entire volume-of-interest in this case.

The result obtained for a very low dose �0.6 cGy� image
in series i3 represents a true negative. The algorithm was not
able to find a match with an acceptably low error and indi-
cated this to the user.

Unexpectedly, the application of the algorithm to one
higher dose �10 cGy� image in series i3 led to a false positive
match. More than five seeds were present within the prostate
of this patient. On the day this image was acquired, the pa-
tient presented with a highly deformed prostate likely due to
a full bladder and rectum. The deformation permitted the
algorithm to erroneously find an acceptable match to an in-
correct marker. Selection of the correct match in this case is
not straightforward, even for a trained human operator.
Nonetheless, these cases re-enforce the clinical importance
of final operator validation.

In series i7, two images were correctly identified as true
negatives due to bad image quality. Both images showed
artifacts due to missing tomographic projections, so even
manual seed identification was not possible.

In the study presented here, the algorithm is employed as
a tool for effecting pretreatment IGRT. While it is relatively
rare for the prostate gland to move significantly during treat-
ment, motion of over 2 cm is encountered in some cases. A
recent study of intrafraction prostate motion determined that
displacements of more than 3 mm were observed during one
in eight treatment sessions during the first five minutes after

initial patient alignment. 10 min after initial alignment, such
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motion was observed in a quarter of all treatment episodes.17

The authors of this study conclude by emphasizing “the im-
portance of initiating treatment shortly after initially posi-
tioning the patient.” This supports our focus on the applica-
tion of our algorithm to pretreatment IGRT, since any time
that elapses in between 3D imaging and determination of the
correct patient position shift that must be applied increases
the probability of prostate motion introducing targeting error.
In addition, it appears that the dosimetric consequences of
intrafraction prostate motion are rather limited, even when
narrow 3 mm margins are employed to extend the clinical
target volume �CTV�. Langen et al. report, as a worst-case
observation, a patient in which prostate motion would have
caused the CTV to extended more than 4 mm from the
planned target volume for 3.1% of the treatment time had the
patient been planned with 3 mm margins.17 Such small dosi-
metric consequences are far less likely to influence treatment
outcome than inaccurate initial patient setup.

The impact of any potential transient or systematic motion
error on the method presented here is identical to its impact
on contemporary standard workflows that involve obtaining
orthogonal portal images for pretreatment seed detection. An
ideal IGRT system would continue to track the fiducials dur-
ing treatment. Future delivery systems are envisaged which
make use of an integrated magnetic resonance imaging unit
or multisource x-ray tomosynthesis system to provide real-
time 3D imaging during treatment. While tomosynthesis sys-
tems provide rather limited 3D information in general owing
to poor depth resolution, the latter is greatly enhanced for
objects characterized by high spatial frequencies, such as fi-
ducial markers. There is no reason to expect that this algo-
rithm will not perform as well as demonstrated here when
applied to magnetic resonance images or to tomosynthesis
images acquired at diagnostic x-ray energies. Streaking of
gold seeds due to beam-hardening may require the upward
adjustment of the seed volume parameter. However, this is
unlikely to be problematic since the higher spatial resolution
will decrease the partial volume effect and better contrast
between bone and gold will decrease the probability of iden-
tifying bony features as fiducials.

Each MVCB image is acquired over a period of less than
45 s. The influence of motion during this period on algorithm
performance is difficult to predict, since its effects on image
quality are highly dependent on the amount of motion that
occurs and the time at which it occurs during the imaging
process. However, since no attempt was made to regulate
prostate motion in the studies to which the algorithm is ap-
plied here, we expect that such motion will not increase the
average error rate from that observed in this investigation.

A major determinant of the practical utility of automatic
algorithms is their sensitivity to the values of algorithm pa-
rameters such as thresholds and parameter bounds. While we
have demonstrated that the present algorithm is able to pro-
vide excellent performance over a large number of datasets
using a single set of parameter values, a discussion of the
sensitivity of the algorithm to different parameter values se-

lections is in order.
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The algorithm requires the user to set the volume-of-
interest in order to bound the space inside which the algo-
rithm will search for fiducial markers. Since the planning CT
is available, it is relatively straightforward to select a reason-
able value for this parameter based on the known maximum
radius of the seeds from the isocenter and an allowance for
the maximum expected patient setup error. While selection
of an overly large value will increase processing time, it is
unlikely to increase the detection error rate unless additional
non-relevant markers are present in the expanded VOI.

The selection of the threshold intensity value for the ini-
tial identification of highly attenuating features within the
search volume is a key algorithm parameter. Implementation
of a hard threshold is unattractive, since the HU values of
seeds may vary due to beam characteristics, incorrect HU
scaling, cupping artifacts, noise levels, and partial volume
effects. The present algorithm makes use of an adaptive
thresholding technique that adjusts the threshold based on
the size and nature of the feature set yielded by a particular
threshold setting. When the initial threshold is set too high,
too few feature sets are detected. When it is set too low, too
many features are identified with the result that processing
time and false positive rates are increased. The adaptive
threshold adjustment strategy provides a practical mecha-
nism for reducing computation time and increasing detection
accuracy.

Fundamental to the successful automatic adjustment of
the intensity threshold is valid feature identification. We em-
ploy CCA to remove features having a volume in excess of
those expected for fiducial markers. CCA is applied only for
removing objects such as prosthetics and bone from the set
of potential features and does not play a role in the grouping
of remaining feature points into seeds. The algorithm is not
very sensitive to the precise selection of the parameter lim-
iting the maximum volume of feasible seed features within
the search space. This is because highly attenuating objects
other than seeds are normally much larger than the fiducial
markers.

A major feature of the algorithm is the sophisticated itera-
tive grouping process. It is important to note that while such
a complex process is not essential for the successful identi-
fication of seeds in most imaging studies, it does provide
necessary robustness against noise and partial volume ef-
fects. An additional advantage of the scheme we employ is
that initial proximity-based feature grouping greatly acceler-
ates algorithm execution by reducing the number of possible
point correspondences in the matching process.

A good choice of the parameter limiting the maximum
proximity of voxels for group inclusion leads to fewer re-
grouping iterations and thus decreases processing time.
However, since these regrouping steps constitute only a
small fraction of the total computational burden, the influ-
ence of this factor on efficiency is minor. The UB of the
matching process plays a far more significant role. When the
value of UB is too small, detection accuracy is decreased,
while values that are too high will increase execution time
considerably, since the algorithm performs an exhaustive

search among all possible combinations.
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The parameters constraining the geometric transform
must be set after consideration of typical motion and set-up
errors encountered in the specific clinical application. It
should be possible to employ a single set of limits for a
particular IGRT protocol, such as pretreatment positioning
for prostate radiotherapy. These limits might be obtained
from published distributions of prostate motion and set-up
errors.16 The transformation constraint limits the maximal
movement between source and target images. The transfor-
mation error bound distinguishes between successful detec-
tion on the one hand and incorrect detection or unacceptably
large deformation on the other.
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